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ABSTRACT  
The JPMorgan Chase Operations Research and Data Science Center of Excellence 
(ORDS CoE) has started a multi-year project to provide the internal Business 
Resiliency team with a simulation-based application to supplement current practices 
regarding resiliency testing and analysis.  In the event of an outage, Business 
Resiliency seeks key insights about impacted locations: What will happen to service 
level during an outage? How will mitigation strategies impact service level (add 
headcount, reduce volume, and/or processing time)? The approach leverages 
simulation-based modeling (via SAS/OR® software) to estimate the expected 
impacts to service level due to an outage. The dynamic design of the model enables 
users to simulate any combination of numerous call centers and/or locations, with 
the ability to customize mitigation scenarios to compare with the “do-nothing” 
scenario.  This presentation highlights the methodology employed through SAS, 
including: applying SAS/OR and PROC CPM as the simulation engine; deriving 
survival functions (PROC LIFETEST) to model abandonment behavior; fitting 
historical handle time data to probability distributions by call type and building a 
handle time function (PROC FCMP) for use in model parameterization; improving 
model performance through parallel processing with MP CONNECT; and generating 
output statistics through bootstrapping with PROC SURVEYSELECT. 

INTRODUCTION  
JP Morgan Chase (JPMC) inbound call centers currently employs a large, 
geographically-dispersed workforce responsible for handling Consumer & 
Community Banking (CCB) calls. When disruptions to one or more of these call 
centers occur, customers attempting to reach JPMC may experience atypical, 
lengthy wait times as a result of the drop in available resources to handle calls. To 
minimize service interruptions, JPMC artificially simulates these disruptions to 
estimate customer impacts and then creates contingency plans based on those 
findings. Leveraging simulation software to model these disruptions creates 
business value by both allowing for more what-if contingencies and mitigating 
business impacts. 
 
JPMC’s Operations Research & Data Science Center of Excellence (ORDS CoE) 
developed a tool to predict key performance indicators (KPI) that may change 
during a resiliency event. After considering various simulation packages, ORDS 
decided to utilize the CPM Procedure within SAS/OR.  This procedure schedules 
tasks based on given time and resource constraints, task priority and task duration 
information.  
 
The scheduling algorithm effectively models each forecasted call queue relative to 
agent schedule constraints based on given expected call parameters (average call 
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duration, arrival pattern), and customer behavior (willingness to wait before 
abandonment). There are numerous benefits to the PROC CPM approach: 

• Easy to learn, build, and maintain 
• Ability to simulate site shutdowns by each individual location 
• Ability to assign resource availability by location and demand by time  
• Designed to specify operating hours across days and shifts – accounting for 

weekends and holidays 
• The capability to both forecast, as well as “back-test” the simulation using 

actual inputs instead of forecasts to dynamically gauge model fitness over 
time 

• Easily incorporate multiple data sources through various SAS database 
connection methods 

Call center agents can be single-skilled or multi-skilled in taking calls corresponding 
to different products and services offered by JPMC. When an inbound call arrives, it 
is either immediately routed to an available agent with the appropriate skillset or 
enters a queue when no agents are available. Calls in queue are answered based on 
priority level and then in the order they were received within that priority. The 
simulation models each of these queues and call centers, and is used to measure 
performance metrics when a location (and its resources) is removed from service, 
as shown in Figure 1. 
 

 
Figure 1. Simulation Process (BAU) 

 
Figure 2. Simulation Process (Outage) 

 

 

 



3 

METHODOLOGY 
PROC CPM is a SAS procedure to control and plan projects based on task duration, 
resource availability, and task precedence. While not a direct parallel to a call 
center, the project management tool can find feasible schedules of calls being 
answered (tasks) by available resources (agents). Agents are defined as a resource 
that can complete a task if they are trained on that type of call.    
 
To create the input datasets necessary for PROC CPM, we used several other 
statistical methods within SAS to estimate the system processes outlined below: 
 

1. Call arrival patterns: The distribution of calls coming into the system over 
a half-hour interval. For example, calls arriving mostly at the beginning of an 
interval and then tapering off versus calls arriving evenly throughout the 
interval. 

2. Call duration: The average length of a call in seconds (commonly referred 
to as average handle time (AHT).  

3. Abandonment time: The amount of time a caller is willing to wait before 
hanging up. 

 

CALL ARRIVAL PATTERNS - DISTRIBUTION FITTING 
Forecasts are provided for call volumes on a queue-level basis at thirty minute 
intervals. The volume then needs to be disseminated into individual calls with 
arrival times in the applicable thirty-minute time interval. Based on common 
queuing theory principles, the inter-arrival times (IAT) of events entering a system 
typically follow an exponential distribution. Utilizing historical call data, the IAT 
(length of time between call arrivals) was fit to several common probability 
distributions using the UNIVARIATE procedure as shown below: 
 

ods output GoodnessOfFit=FitStats FitQuantiles=FitQuants 
ParameterEstimates=ParmEsts ; 
proc univariate data=call_history noprint; 

var IAT; 
histogram / normal gamma (theta=est)  lognormal (theta=est) 
exp (theta=est) ; 

run; 
 
Based on that analysis it was determined that historical IAT followed an exponential 
distribution in this system as well. Because the PROC CPM tasks are given a starting 
time, an arrival time was needed as opposed to time between calls. Since we take 
the number of arrivals and length of time as given, we can treat this as a Poisson 
point process on the real line, which means call arrival times will be uniformly 
distributed within the interval. Each call in the volume forecast is assigned a 
random (uniformly-distributed) arrival time during the thirty minute interval, which 
is defined in the model as the earliest start time for that task (atype = ‘sge’).  
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CALL DURATION – DISTRIBUTION FITTING 
The task duration for each task (call) is based on the AHT for each call type during 
a given interval. Depending on the call type, the distribution of call handle times 
may be different. Similarly to the IAT analysis, historical call durations were fit to 
several known probability distributions using PROC UNIVARIATE. Additionally, the 
NPAR1WAY procedure was used when necessary to assess goodness of fit to a 
sample dataset from the Erlang distribution. The sample code below shows the 
options used: 
 

proc npar1way data=AHT_Fit edf noprint; 
by call_type ; 
class sample; 
var aht; 
output out=erlangstats edf ; 

run; 
 
The data for several call types adequately fit a single distribution well (Normal, 
Exponential, Gamma, etc.). However, other calls types fit better when modeled as a 
mixture distribution. For example, a call type might be represented well as a 
mixture of normal distribution and exponential distribution. 
 
Once an adequate distribution or mixture of distributions was determined for each 
call type, a permanent SAS function was developed to simplify the coding and 
dynamic nature of the process. Using the FCMP procedure, a parameterized 
function was created with the necessary inputs for generating a random variate for 
each call (task record) from the applicable probability distribution. The sample code 
below outlines the process: 
 

proc fcmp outlib= sasuser.functions.simmod; 
 function handletime(INT_AHT, param_1, param_2, ... , param_n); 
   
  -- Insert function logic here -- 
  
 return(value); 
 endsub; 

run;  
 

Running the SAS code above creates a permanent function that call be called from 
any SAS program that first specifies the function library in an options statement. 
The sample options statement below needs to be executed before attempting to use 
the new function: 
 

options cmplib=sasuser.functions; 
 
data get_AHT; 
set sample; 
HT = handletime(200, 1, 0.5, 4); 
run; 
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The distribution fitting process is repeated on a regular basis to ensure the handle 
time function is referencing the most up-to-date distribution details for a given call 
type. 
 

ABANDONMENT TIME - SURIVIVAL ANALYSIS 
The CPM procedure allows the user to specify a maximum delay before 
supplemental resources are employed. In the case of a call center, this maximum 
delay is used to represent the willingness to wait on the line before the customer 
abandons the call (see discussion in PROC CPM section below for more details of 
this unique application of PROC CPM).  
 
Using historical data, the ORDS CoE generated survival curves to form the basis for 
estimating the maximum acceptable delay of calls. To begin the analysis, the 
historical call data was organized as demonstrated in the sample dataset in Figure 3 
below. 
 

 
Figure 3. Sample Dataset for Survival Analysis 

 
Each record represents the number of historical calls (Records), by Call Type (Call 
Group), by wait time (WaitTime, expressed in seconds), that Abandoned 
(Abandoned = 1) or waited for an agent to answer, i.e. a handled call (Abandoned 
= 0). 
 
The LIFETEST procedure is applied to the data to develop a relationship between 
wait time and potential to abandon for each call type.  An example of a survival 
curve produced from the procedure is provided in Figure 4 below.  The curve 
represents the percentage of callers expected to wait for an agent as a function of 
wait time.  For example, at wait times near zero close to 100% of callers are 
expected to wait for an available agent. 

 
Proc Lifetest data= SampleDataset 
outsurv=survout  
method=LT 
NINTERVAL=MaxInterval; 
time WaitTime*ABANDON(0); 
Strata Call_Group; 
Freq Records; 
run; 
 

Call_Group Records WaitTime Abandoned
Call Group A 1000 0 0
Call Group A 100 0 1
Call Group A 2000 1 0
Call Group A 200 1 1
… … … …
Call Group N X Z 0
Call Group N X Z 1
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Figure 4. Sample survival curve 

In order for this information to be ingested into the model, ORDS CoE created an 
expression to estimate the maximum wait time for each caller in the simulation.  
This expression was created using a linear regression estimation of Wait Time as a 
function of the –ln(Survival Rate).  Figure 5 provides a graphical representation of 
this relationship, including an estimated trend line.    
 

 
Figure 5. Sample transformation of survival curve 

 
This transformation allows us to use a uniform random variable to simulate a 
survival percent and from that generate a corresponding wait time. Each call in the 
simulation is then assigned a maximum wait before abandon (unique for call type) 
using the following logic: 
 

RandSeed = Rand('uniform'); 
NegLog = -LOG(RandSeed); 
Max_Wait_Before_Abandon = RegressionParameter * NegLog; 

 

PROC CPM 
The three analyses feed into the PROC CPM processes part of the activity (task) 
dataset. In the task dataset, each row represents a call with duration, time of 
arrival (earliest start), maximum time until abandonment and necessary resource 
(agent with required skill set). 
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The call center system of record provides estimated head counts for each call type 
and interval. We update this distribution based on historic patterns of non-
productive time (breaks, lunch, etc.) to generate resource availability dataset.  
Figure 6 represents a subset of the resource dataset. 
 

• Blue section: shows the call types in the resid field that agents (Skill_1 – 
Skill_5) can answer. The values in Skill_1 – Skill_5 represent the agent 
priority for the given call type. 

• Yellow section: shows the number of available agents for each skill during 
the given interval (per). 

• Green section: sets the number of supplementary resources for each call 
type to be effectively unbounded. These are the resources that correspond to 
an abandoned call. 

• Orange section: specifies that each resources has a resrcdur value of zero 
(fixed duration effect).  

 

 
Figure 6. Sample Resource Dataset 

 
The other inputs into the procedure specify calendars, shifts, and holidays. 
Descriptions of the other input datasets  and their relationships to one another can 
be found in SAS paper 2621-2018, “Improving Scheduling and Strategic Planning at 
JPMorgan Chase’s Card Production Center”. A sample code for the PROC CPM 
execution can be seen below: 
 

proc cpm data=tasks resin=resources workdata=shifts 
calendar=calendar out=savec resourcesched=Resourceschedule noutil 
interval=dthour; 
 activity Task; 
 calid Cal; 
 duration NumHour; 
 aligndate adate; 
 aligntype atype; 
 res  Skill_1 - Skill_&j.  

/ period=per obstype=otype resid=resid schedrule=ACTPRTY 
ACTIVITYPRTY=FinalPriority schedrule2=shortdur 

     actdelay=maxdelay delayanalysis  awaitdelay; 
run; 

 

 

per otype resid SKILL_1 SKILL_2 SKILL_3 SKILL_4 SKILL_5 Call_Type_1 Call_Type_2 Call_Type_3 Call_Type_4 Call_Type_5
altprty Call_Type_1 1 2 3
altprty Call_Type_2 1 2 3
altprty Call_Type_3 1 2 3
altprty Call_Type_4 1 2
altprty Call_Type_5 2 1

suplevel                    . 1000 1000 1000 1000 1000
resrcdur 0 0 0 0 0 0 0 0 0 0

26Mar2019 0:00:00 reslevel 50 75 50 100 25
26Mar2019 0:10:00 reslevel 50 75 50 100 25
26Mar2019 0:15:00 reslevel 50 75 50 100 25
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EFFICIENCY STRATEGIES 
Simulations of the call center environment can include millions of calls over a multi-
week time horizon with thousands of agents. Although this could be solved in a 
single call to PROC CPM, several methods of code optimization are employed to 
improve model tractability. These methods, described below, leverage the structure 
of the problem, SAS parallel processing, and statistical sampling theory. 
 

TIME SUBSETTING 
In lieu of modeling the entire time horizon in a single call of PROC CPM, individual 
thirty minute blocks of time are run and then stitched together at the end of the 
process. This method has several benefits; primarily, the PROC CPM code processes 
fewer calls at once and is faster overall. An additional benefit is that each time 
period being modeled matches the underlying time frame used in the volume 
forecast.  
 
To correctly model the continuous process, after each half hour run the code 
calculates all calls still in queue and those calls being worked. The calls in queue are 
given highest priority and their maximum wait duration is reduced by the amount of 
time spent in queue in the previous interval. Agents in call at the end of the interval 
are kept in the same task for the remaining duration at the start of the next 
interval. This is done with basic data and PROC SQL calls. 
 

PARALLEL PROCESSING  
Representing the call center behavior using probability distributions for various call 
attributes and applying survival curves to mimic a customer’s willingness to wait on 
hold are examples of methods to improve the simulation’s representation of reality. 
However, these methods also inherently introduce random variability into the 
model. With that said, running the simulation model a single time for a particular 
use case will only yield one example of a possible predicted outcome based on the 
scenario inputs. A single simulation run does not produce results that are 
necessarily a good representation of reality. 
 
In order to produce results that will more likely encompass a close representation 
of reality, we decided to run the model multiple times and summarize the output 
metrics. Due to the complexity of the environment being modeled, it was difficult to 
run multiple simulations in a reasonable timeframe. Depending on the simulated 
outage, the call volume and number of impacted sites can vary greatly. A simple 
scenario could take minutes while a more complex scenario could take hours. With 
some simulations taking multiple hours to execute, it would take days to generate 
enough simulations for the appropriate calculations of output statistics. 
 
The solution was to run multiple simulations at the same time through parallel 
processing. Utilizing parallel processing quickly increased the output rate for 
simulation runs. Parallel processing can be invoked using the following example 
code: 
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option autosignon=yes sascmd="!sascmd" sysrputsync;   
%let pwork=%sysfunc(pathname(work));     
           
*Parallel Process 1;        
%syslput pwork="&pwork."/remote=sim1;     
rsubmit process=sim1 wait=no sysrputsync=yes;    
libname simpath &pwork.;       
 

  -- Insert SAS code here -- 
 
%sysrput path1=%sysfunc(pathname(work)); 
endrsubmit; 
 
 
*Parallel Process 2; 
%syslput pwork="&pwork."/remote=sim2; 
rsubmit process=sim2 wait=no sysrputsync=yes; 
libname simpath &pwork.; 
 
-- Insert SAS code here –- 
 
%sysrput path2=%sysfunc(pathname(work)); 
endrsubmit; 
 
waitfor _all_ sim1 sim2; 
 
libname sess1 "&path1."; 
libname sess2 "&path2."; 
 
data alldata; 
set sess1.data sess2.data ; 
run; 
 

 
When working with parallel processing it can be useful to pass macro variables back 
and forth between the local and remote hosts. Macro variables can be passed from 
the local host to the remote host using the %syslput macro statement. 
Alternatively, the %sysrput macro statement will pass the value of a remote macro 
variable to a macro variable on the local host. 
 
The example above is set up to pass the path of the original session’s work 
directory to each spawned parallel session. In doing this, data sets generated as 
part of the original session can be ingested and manipulated separately in each 
parallel session. Additionally, the path for the work directory from each parallel 
session is being passed back to the local session. This allows the local session to 
reference datasets generated as part of the parallel process. In practice, there are 
multiple macro variables that can be passed between hosts to maximize the 
functionality of parallel processing. Figure 7 outlines the performance benefits of 
parallel processing. Assuming each simulation task takes 1 hour, switching from 
serial processing to complete parallel processing would save 5 hours processing 
time for the example below. Due to system performance and available memory, it 
might be difficult to run all tasks in parallel. However, running multiple parallel 
processes with smaller serial jobs will still significantly reduce the overall processing 
time. 
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Figure 7. Serial vs. Parallel Processing Illustration 

 

BOOTSTRAPPING 
The use of parallel processing increased the number of simulations we were able to 
run in a reasonable amount of time. However, the sample size (number of 
simulations) was not large enough to support a robust statistic derived from 
traditional inferential statistics. The KPI’s could instead be calculated on a larger 
sample size built from many more bootstrap samples. Instead of providing output 
statistics as a single point estimate from a small sample, we could provide 
estimates with confidence intervals for each KPI. 
 
Developing confidence intervals for any of the simulation output statistics starts 
with generating N bootstrap samples of size m, where N is a sufficiently large 
sample size and m is the number of simulation runs. Table 1 represents example 
output for a particular KPI, average speed of answer (seconds), for an example 
simulation scenario. In this example there were 10 iterations for the simulation. 
Therefore, all bootstrap samples should have 10 values. 
 
Table 1. Sample Simulation Output (Average Handle Time, seconds) 

Simulation Output Run 
1 

Run 
2 

Run 
3 

Run 
4 

Run 
5 

Run 
6 

Run 
7 

Run 
8 

Run 
9 

Run 
10 

Average Speed of 
Answer (Call Type 

A) 
9 20 13 16 11 10 15 12 7 21 

 
 
To simplify the explanation, this example only generates 20 bootstrap samples. In 
reality, hundreds or thousands or samples would be created. The bootstrap samples 
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are created using simple random selection with replacement. This is accomplished 
with PROC SURVEYSELECT and specifying the method of sampling as URS 
(unrestricted random sampling). 
  

proc surveyselect data=sim_KPI method=URS  samprate=1 reps=20 
out=bootsamps noprint; 
strata call_type; 
run; 

 
The URS method samples records with equal probability and with replacement. That 
means that any given value from the original sample could appear multiple times in 
a single bootstrap sample. For example, as shown in Table 4, 11 appears twice in 
bootstrap sample 1, but there was only one 11 in the original sample. 
 
Specifying the samprate= option tells PROC SURVEYSELECT the portion that should 
be sampled. Setting samprate equal to 1, indicates a sample size of 100% (10 
records in our example). The reps= options specifies how many replications, or in 
our case, the number of bootstrap samples we would like. Lastly, the strata= option 
specifies that sampling should occur independently for each group identified by the 
named variable. In our case, we would like to generate bootstrap samples 
separately for each call type. 
 
Table 2 shows example input and Table 3 shows example output data sets for PROC 
SURVEYSELECT as outlined above. 
 
Table 2. Sample Input Dataset (Sim_KPI) 

 
 
 

Call_Type ASA
A 9
A 20
A 13
A 16
A 11
A 10
A 15
A 12
A 7
A 21
B 5
B 3
B 6
B 7
B 3
B 9
B 6
B 8
B 3
B 10
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Table 3. Sample Output Dataset (bootsamps) 

 
 
 
The output dataset in Table 3 is only showing the first two replications for the call 
type A strata. The actual dataset would have replicate values of 1 – 20 for both 
strata A and B. The two variables worth noting in the output dataset are Replicate 
and NumberHits. Replicate corresponds to the bootstrap sample and NumberHits 
indicates how many times the ASA value in that record was selected for the group. 
The number of records in the output dataset for each replication will not necessarily 
be equivalent to the samprate value (100% or 10 records in our case), because 
values can be selected more than once when creating the bootstrap samples. 
However, the sum of the records for NumberHits for a given replication should be 
equal to 10. With basic data manipulation of the output dataset, you can create 
your bootstrap samples in simple view as depicted in Table 4. 
 
Table 4. Example Bootstrap Sample Output 

Bootstrap 
Sample 

          

Sample 
Mean 

1 11 13 11 10 16 10 7 9 16 16 11.9 
2 13 11 7 16 13 9 12 16 13 21 13.1 
3 12 12 16 7 21 7 12 13 13 10 12.3 
4 12 20 21 15 20 10 7 20 13 20 15.8 
5 11 20 13 21 9 21 21 9 12 10 14.7 
6 9 13 15 16 15 11 13 7 13 16 12.8 
7 20 21 13 13 21 12 7 13 16 12 14.8 
8 12 10 16 21 9 9 11 20 12 16 13.6 
9 9 13 11 16 10 12 15 15 20 16 13.7 

10 15 21 21 15 16 21 10 7 21 11 15.8 
11 11 7 12 12 21 16 16 13 15 21 14.4 
12 11 20 7 12 20 7 15 9 16 20 13.7 
13 10 12 21 12 7 7 16 10 13 12 12.0 
14 11 16 12 13 20 13 20 7 16 20 14.8 
15 16 13 16 7 7 12 10 20 21 15 13.7 
16 16 10 15 15 21 7 12 21 12 12 14.1 

Call_Type Replicate ASA NumberHits
A 1 11 2
A 1 13 1
A 1 10 2
A 1 16 3
A 1 7 1
A 1 9 1
A 2 13 3
A 2 11 1
A 2 7 1
A 2 16 2
A 2 9 1
A 2 12 1
A 2 21 1
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17 13 15 11 7 15 10 10 9 12 15 11.7 
18 20 13 13 12 21 12 15 13 9 10 13.8 
19 7 9 21 12 9 11 10 9 12 15 11.5 
20 20 9 10 11 12 11 13 9 15 21 13.1 

 
 
Once you have generated the desired number of bootstrap samples (Table 4), you 
can begin calculating the desired statistics and confidence intervals. For this 
example, we are calculating the mean with a 90% confidence interval. The following 
steps outline the process for this example: 
 

1. Calculate the sample statistic (mean) for each bootstrap sample 
2. Order the statistic from smallest to largest 
3. Remove the top and bottom 5% (∝ 2� ) from the list. 

11.5, 11.7, 11.9, 12.0, 12.3, 12.8, 13.1, 13.1, 13.6, 13.7, 13.7, 13.7, 13.8, 14.1, 
14.4, 14.7, 14.8, 14.8, 15.8, 15.8 

4. The remaining minimum and maximum values represent your lower and 
upper confidence limits, respectively.  (11.7, 15.8) 

 

MODEL USAGE 
 
The process flow for usage of the SAS model can be shown by four main categories 
(Figure 8). The model is accessed by the business users through an IT supported 
user interface (Display 1). 
 

 
Figure 8. Simulation Model Process Flow 

 
The user’s scenario request is then captured in the data ecosystem, where the SAS 
program can ingest appropriate model inputs.  
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Display 1. Sample User Interface Screen 

 
After executing the PROC CPM portion of the SAS script, the output summary is 
generated and written back to the data ecosystem. At that point, a live Tableau 
connection reflects the scenario output in a Tableau dashboard to the business 
users. Displays 2 and 3 show example mockups of the dashboard details. 
 

 
Display 2. Sample Summary Output Screen 
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Display 3. Sample Interval-Level Output Screen 

 
 

CONCLUSION 
 
Using PROC CPM to represent the call centers at JPMC has several benefits, 
including giving developers access to the statistical and analytical capabilities in 
SAS within a single tool. Leveraging SAS allows the modeling process to easily 
ingest multiple sources of data and perform significant amounts of exploratory data 
analysis prior to beginning the CPM procedure. This upfront analysis and processing 
would be more difficult in other simulation software. Furthermore, the versatility of 
PROC CPM also makes it easy to represent most business processes, including 
those not fitting the traditional waterfall project management structure. This model 
is currently in development and testing, but augmenting current resiliency practices 
with simulations can provide significant business value.  
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