
1

Paper 3875-2019

Using Proc Optgraph to implement

the Prize Collecting Traveling Salesman Problem in SAS

(Gotta catch as many as we can in a Pokémon raid for Alice)

Bryan Yockey and Joe DeMaio,
Department of Statistics and Analytical Sciences, Kennesaw State University;

ABSTRACT

The classic Traveling Salesman Problem (TSP) establishes a list of cities to visit and costs

associated with travel to each location. The goal is to produce a cycle of minimum cost that

visits each city and returns the salesperson to her home location. What happens if an

imposed time limit on the journey makes visiting all locations impossible? Assuming each

location is of equal value then the goal transforms into visiting as many locations as

possible within the imposed time limit. This variation is known as the Prize Collecting

Traveling Salesman Problem (PCTSP). We use Proc Optgraph to implement the TSP,

develop an approach to implement the PCTSP and utilize SAS® VIYA® to map results. Set in

a suburb of Metropolitan Atlanta, our motivation stems from the need to acquire as many

virtual Pokémon as possible for Alice, the nine-year old daughter of one of the authors.

Analysis of results from executing SAS® generated routes is included.

INTRODUCTION TO THE TSP

The traveling salesman problem (TSP) wishes to devise a route that starts a salesperson at

a home base, visits every client on a list exactly once, and returns to the starting location.

At times, the TSP is a question of existence such as a closed knight’s tour of a chessboard, a

classic problem in recreational mathematics. Can a knight use legal moves to visit every

square on the board and return to its starting position? While originally studied for the

standard 8×8 board, the problem generalizes easily to other rectangular boards. The 3×3

board does not admit a closed knight’s tour as it is impossible to enter or exit the center

square. The standard 8×8 board admits a closed knight’s tour. Proc Optgraph trivializes

the task of finding a closed knight’s tour, should one exist.

*First, create the chessboard as a graph of legal knight moves;

data board;

rows = 8;

columns = 8;

do i = 1 to rows;

do j = 1 to columns;

origin = (i || j);

/* input legal moves of the knight */

/* up 2 right 1 */

if i>=3 and j<= columns-1 then do

 destination = (i-2 || j+1);

 output;

 end;

/* up 1 right 2 */

if i>=2 and j<= columns-2 then do

 destination = (i-1 || j+2);

2

 output;

 end;

/* down 1 right 2 */

if i<=rows-1 and j<= columns-2 then do

 destination = (i+1 || j+2);

 output;

 end;

/* down 2 right 1 */

if i<=rows-2 and j<= columns-1 then do

 destination = (i+2 || j+1);

 output;

 end;

end;

end;

run;

*Second, construct a TSP for the knight’s graph;

proc optgraph

data_links = board;

*create graph from variables;

data_links_var

from = origin

to = destination;

* write cycle to file closed_knights_tour;

tsp out = closed_knights_tour;

run;

The closed knight’s tour of the 8×8 board produced by this code is located in Appendix A.

For a list of all rectangular chessboards that admit a closed knight’s tour, see Schwenk’s

1991 paper.

The closed knight’s tour is a question of existence in a TSP. The knight cannot legally move

from just any square to any other square. Furthermore, there is no cost associated with a

knight’s move. In other TSPs, widely varying costs are associated with possible travel

between every pair of locations. Cost definitions include time, monetary expenses, or any

other variable for optimization. In such problems, existence of a tour is not in question.

Finding an optimal tour is the goal.

Robert Allison (2016) generates an optimal route for collecting rare Pokémon in North

Carolina in his blog on SAS Learning Post as shown in Figure 1. Here the goal is to minimize

total distance in miles of the tour. Reproducing the work to minimize travel time rather than

distance, the route produced was only slightly different. The statewide scale and distance

between locations produced likely similar results despite minimizing different variables.

Typically, graphs or networks model the TSP. In a transportation problem, the graph G =

(V,E) is an ordered pair of sets where the vertex set V represents a set of locations and the

edge set E represents the minimum cost of traveling between any two locations. The TSP is

known to be np-complete.

Obviously, it will take a few days to collect all of the rare Pokémon in North Carolina. What

if a time limit exists for collecting Pokémon? One might not be able to collect every target

3

on the list. You would then want a route that would capture as many targets or prizes as

possible in the constrained time limit. In 1989, Egon Balas defined this as the prize

collecting traveling salesman problem (PCTSP). The PCTSP is never a question of existence

but always a question of maximizing the number of prizes collected in a fixed period. As

with the TSP, the PCTSP is np-complete as well.

Like Robert Allison’s (2016) blog example, our motivating problem collects Pokémon as well.

A Pokémon raid is a very different undertaking than traveling to a location and collecting a

Pokémon. Raids involve first defeating a Pokémon in battle; these battles, particularly the

ones of interest for this project, require multiple players participating at the location, at the

same time. If the players successfully defeat the raid boss, they acquire the opportunity to

capture the Pokémon they defeated. This opportunity is the prize in our PCTSP.

Figure 1: TSP for capture of rare Pokémon in North Carolina

Every day, raid battles are generated randomly all over the world. They sporadically appear

and last for 45 minutes. Interest in this project began in summer 2018 as Niantic, the

game developer, rolled out a new variation of Pokémon Go. On specific days, every possible

raid location has the same raid boss available for battle for three hours. Players can attempt

the raid at each location until they defeat the boss once.

DETERMINING RAID EVENT DURATION

Needing to defeat a boss while working within a time constraint creates a unique situation

when determining the number of locations that are possible to visit. As the process

improves, the number of locations achievable increases which increases the total time to

drive to battle the bosses. Thus, the amount of time remaining to travel between the

locations decreases.

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 + 𝛴 𝑅𝑎𝑖𝑑 𝐸𝑣𝑒𝑛𝑡 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≤ 180 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

When each raid event begins, a two-minute timer starts that allows other players to join.

This portion of the event is fixed and cannot be shortened. When the timer ticks down to

zero the battle begins. Players must defeat the boss Pokémon within 300 seconds. If the

boss still has health after 300 seconds, the battle is a loss for the players. Skilled teams

4

with upper level players will likely defeat a boss faster than the less experienced or smaller

team. After defeating the boss, players get the opportunity to catch the prize Pokémon with

a number of special Poké balls that is determined by a number of factors. An explanation of

the number of balls for catching the prize Pokémon is in Appendix B.

Naturally, the first effort of time optimization began on the ground at a raid location. The

catching phase lasts until the player catches the Pokémon or runs out of balls. The more

balls needed, the longer the event lasts. Catching the Pokémon is a function of skill and

luck. A seasoned player has a better chance of ending the catching phase sooner by

catching the Pokémon earlier. One member of the group was tasked with keeping the time

of each event with a stopwatch. The timer began with the initiation of the raid and ended

when the first player either caught the Pokémon or it ran away. Analysis found a duration

time of 239 seconds. The distribution of times is highly skewed, so the median was a better

measure of duration remaining for traveling between locations. More information on the

calculation of raid duration time can be found in Appendix C. A player does not have to

remain at the location while catching. Thus, a large portion of the variation in event time

caused by the catching phase was mitigated by having a passenger in the car attempt to

catch the driver’s prize. As soon as the battle phase was over, the group would begin

traveling to the next location. The team felt we had done everything to minimize the

amount of time at each raid. Turning to software to maximize the number of locations

seemed to be the next natural way to improve our results. Thus, we turned our attention to

minimizing travel time to maximize the number of locations we visited. Knowing the location

of events and a time limit necessitated a change in strategy. Figure 2 maps the 35

locations of raids for consideration within the three-hour time limit.

Niantic places gym locations at areas of interest, monuments, and public art displays. This

project focuses on a team playing in Cartersville, Georgia. We omit locations for various

reasons. These events take place on Saturdays; thus, we avoid gym locations at churches

that meet on Saturday. Cemeteries are often full of gym locations. Many of the players in

the group avoid the cemetery out of respect. Parks also tend to be a treasure trove of gym

locations. When festivals and local events are scheduled at parks, the group will exclude

locations inside from the route as congestion of attendees slows the process. This is an easy

adjustment to make, as finding information on events in a park in advance of the Pokémon

Go event is easy. Our community of players tries to only play where we will not be

disruptive. We maintain and respect a list of locations where our Pokémon activities might

be disruptive.

5

Figure 2: Map of all raid locations

ANALYSIS FREE AND GREEDY APPROACH

On the first raid, a team of seven people gathered the morning of the event and picked a

starting location. We began our route at a park that contained three locations. With no prior

planning or analysis and as the event unfolded, we decided by committee the best route. As

one might imagine, making live decisions by committee may not lead to a strategically,

consistent approach, let alone an optimized route. The group utilized a greedy approach by

selecting the next closest location from its current position. When the three-hour timer

expired, we had visited twenty-two locations. This seemed to be a successful day.

With some experience under our belt, a better plan formed for the second event. Slight

adjustments came about by omitting a few locations due to circumstances such as needing

to walk to a location from the parking lot, difficult parking situations, and avoiding traffic

lights and train tracks. With these adjustments, we were able to increase our number of

locations to twenty-five. This was better but still a greedy approach with no formal use of

analytics.

6

Figure 3: Map of Greedy Route

IMPLEMENTING THE TSP SOLUTION

Proc Optgraph does not specifically implement PCTSP. The first attempt to improve the

route uses Proc Optgraph to design a traditional traveling salesman solution. The 37 local

raid locations formed the vertex set of the complete graph. Each weighted edge in the

graph represented the driving time between a pair of locations. Scraping Google Maps

produced the driving time between locations. Proc Optgraph generated a tour of the 37

locations

*Graph Creation;

proc optgraph

data_links = times;

*create graph from variables;

data_links_var

from = home

to = next

weight=Time;

* write optimal cycle to file gym_time_TSPTour;

tsp out = gym_time_TSPTour;

run;

Working with a group of 37 locations, and thinking that 37 raids would be unattainable, a

goal of thirty raids was set. This number was chosen since it was almost a 50% increase in

7

locations from the initial attempt. To produce a 30-location route, we deleted the seven

consecutive locations that had the longest drive time. We began traveling from the first

location in the resulting path. Unfortunately, an eight-minute glitch in the Pokémon Go

servers cut into the three-hour limit. Things progressed quickly after this delay. At a few

points during the event, the SAS generated route took us to locations in an order that

contradicted our intuition. The data scientist on the team had gathered a group of players

who agreed to follow the route to the end of the three-hour limit though some grumbling

ensued. The Proc Optgraph route allowed us to increase the number of prizes to 28. At the

end, even the grumbling naysayers admitted the non-intuitive route was superior.

Furthermore, at the end of the three-hour timer two more locations were within sight of the

group. It seems likely that without the initial server issues the goal of 30 gym locations

would have been achieved.

Figure 4: Map of TSP Route

IMPLEMENTING THE CLIQUE SOLUTION

Implementing a TSP route for the PCTSP problem seems like a good starting point.

However, the TSP will likely make sacrifices to time when plotting a return route to the

starting location. We wanted an approach that did not make such a sacrifice.

In graph theory, a clique is defined as a set of vertices, in this case gym locations, that are

all adjacent and not part of a bigger such set. In an attempt to improve upon the modified

TSP solution, cliques of locations were created using Proc Optgraph. The locations were

8

grouped by combining locations into groups based on the maximum drive time between all

the locations in the groups. The data scientist chose an upper bound of 120 seconds

because this max drive time created a reasonable number of cliques, namely 12. These

cliques were not disjoint. By hand, cliques were combined based on the number of

overlapping locations. Nine disjoint cliques resulted from this process.

proc optgraph

 data_links = WORK.POKEMON_CLIQUES_graph;

 data_links_var

 from = home

 to = next;

 clique out = Cliques_in_Pokemon_graph;

*find all cliques in graph;

 title 'All Cliques';

run;

The locations of the cliques fall roughly in a linear form from southwest to northeast across

Cartersville. It seemed natural to start at one end and continue through the cliques toward

the other end. The weight to determine the order in which to visit the cliques was set by the

minimum drive time between pairs of individual cliques. Starting at one end, the total drive

time from the origin to all the cliques was calculated. The path with the shortest total drive

time from one end to the other was then established. Once the optimal order to visit the

cliques was determined, the cliques were stitched together into the final route. A TSP

solution was implemented to create routes within the individual cliques. For every transition

from one clique to the next, the data scientist had to decide at what point to enter the TSP

loop and which direction to travel through it for the transition to the next. Having a good

working knowledge of the area played a large role in the creation of this route. While using

software to collect so many drive times, it becomes difficult to track the route that Google

Maps is using to go between the locations. Shortcuts and lightly traveled roads were utilized

that may have not been suggested otherwise.

Table 1: Drive time to each clique from the beginning

When creating the cliques, two locations formed cliques of size 1. This implies that these

two locations were far away from all other sites and removed from consideration. One of

these locations was used in the modified TSP route, the other belonged to the section of the

loop that was removed. From the original group of 37, there were 35 locations used for the

implementation of the clique solution.

Vertex

Shortest

Time

From A

Previous

Vertex

A 0

B 98 A

C 267 A

D 384 C

E 430 D

F 410 A

G 526 A

H 457 A

I 649 D

9

Figure 5: Map of Locations Colored by Clique

Unfortunately replicating the clique solution with the same group of players used for the TSP

solution was not possible. While developing the clique solution, more gym locations had

been added to the game. Players were unwilling to ignore new gyms in order to compare

the different routes. Thus, a simulated run was used to assess the Clique Solution Route.

For this simulation, the data scientist drove between locations, amidst the appropriate traffic

conditions, and recorded actual drive time using a stopwatch. Utilizing these times, along

with 239 seconds per location, determined the number of targets achievable. The loophole

in this approach was that it did not take technical difficulty, like the server glitch in the TSP

route or player congestion at a location, into account. This was accounted for by using the

median raid event time. By implementing the clique solution, the team was able to visit 34

locations.

10

Figure 6: Map of Clique Solution Route

CONCLUSION

Conducting analysis in SAS® by Proc Optgraph increased the number of raids the team was

able to complete by 55 percent. SAS® Viya® created detailed maps critical to

understanding the geography of this problem specific to Cartersville, Georgia. The increase

in the number of raids, from 22 to 34, from the greedy approach to the modified TSP and

again with the Clique Approach illustrate the effectiveness of this process.

FUTURE WORK

SAS® Proc Optgraph provided important analysis of the traffic network for this problem.

However, at certain junctures, the data scientist constructed portions of the results by hand.

Determining the limiting time for clique construction and joining cliques to create a disjoint

partition of sites are examples of such work. A clear next step for this work is automating

such steps for wider and faster implementation.

11

REFERENCES

Allison, Robert (2016). Most efficient way to find rare Pokémon. Retrieved from

https://blogs.sas.com/content/sastraining/2016/07/29/most-efficient-way-to-find-

rare-pokemon/

Balas, E., (1989). The prize collecting traveling salesman problem. Networks, 19, 621–636.

Gross, J. L., Yellen, J., & Zhang, P. (2014). Handbook of graph theory: Edited by Jonathan

L. Gross, Columbia University New York, USA; Jay Yellen, Rollins College Winter

Park, Florida, USA; Ping Zhang, Western Michigan University, Kalamazoo, USA. Boca

Raton: CRC Press.

Henshaw, H. M., Staples, L., & DeMaio, J. (2018). Graph visualization for PROC OPTGRAPH.

Paper presented at South Eastern SAS Users Group 2018 conference, St. Petersburg,

Florida. Retrieved from https://www.lexjansen.com/sesug/2018/SESUG2018_Paper-

286_Final_PDF.pdf

SAS®, “SAS® OPTGRAPH Procedure.” August 2018.

Schwenk, A. J. (1991). Which rectangular chessboards have a knight's tour? Mathematics

Magazine 64(5), 325-332.

ACKNOWLEDGMENTS

I would like to thank the faculty in the Department of Statistics and Analytical Sciences for

all the support and advice they provided me throughout this project. I would like to thank

the Analytics and Data Science Institute for providing me the necessary software for this

research. I would like to thank SAS Global Forum for hosting my work. I would like to

thank the Kennesaw State University Graduate Student’s Association for travel funding. I

would also like to thank the group of friends I have made while playing this game. Last, but

not least, I would like to thank my wife, Virginia, and Daughter Alice for their continued

support of, and enthusiasm for this undertaking.

RECOMMENDED READING

• Watkins, J. J., & Rzewnicki, A. (2012). Across the board: The mathematics of

chessboard problems. Princeton: Princeton University Press

• Catch Pokémon in the Real World with Pokémon GO! (n.d.). Retrieved March 08, 19,

from https://www.pokemongo.com/en-us/

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Bryan Yockey

Kennesaw State University

byockey@students.kennesaw.edu

Joe DeMaio

Department of Statistics and Analytical Sciences

Kennesaw State University

jdemaio@kennesaw.edu

12

APPENDIX A: CLOSED KNIGHT’S TOUR ON THE STANDARD CHESSBOARD

Table 2 contains the knight moves generated in Proc Optgraph for the closed knight’s tour

on the 8 by 8 chessboard.

Move Move Move Move

1 1 1 2 3 17 4 7 2 8 33 1 4 2 6 49 8 7 6 8

2 2 3 1 5 18 6 6 4 7 34 2 2 1 4 50 7 5 8 7

3 3 4 1 5 19 5 4 6 6 35 4 1 2 2 51 8 3 7 5

4 5 3 3 4 20 4 2 5 4 36 4 1 3 3 52 7 1 8 3

5 5 3 4 5 21 6 1 4 2 37 2 1 3 3 53 7 1 5 2

6 6 4 4 5 22 6 1 8 2 38 2 1 1 3 54 3 1 5 2

7 7 2 6 4 23 8 2 7 4 39 1 3 2 5 55 3 1 1 2

8 7 2 8 4 24 6 2 7 4 40 2 5 1 7 56 1 2 2 4

9 8 4 6 5 25 8 1 6 2 41 1 7 3 8 57 4 3 2 4

10 6 5 4 6 26 8 1 7 3 42 5 7 3 8 58 4 3 5 5

11 4 6 2 7 27 7 3 8 5 43 5 7 7 8 59 5 5 3 6

12 2 7 4 8 28 8 5 7 7 44 8 6 7 8 60 4 4 3 6

13 5 6 4 8 29 7 7 5 8 45 8 6 6 7 61 6 3 4 4

14 3 5 5 6 30 3 7 5 8 46 6 7 8 8 62 5 1 6 3

15 3 5 1 6 31 3 7 1 8 47 7 6 8 8 63 5 1 3 2

16 1 6 2 8 32 2 6 1 8 48 7 6 6 8 64 1 1 3 2

Table 2: A closed knight’s tour

Figure 7 appears in the 2018 paper by Henshaw, Staples, and DeMaio, Graph Visualization

for PROC OPTGRAPH which describes a method for exporting SAS data to visualize a graph.

Together the black and red lines indicate the edges in the knight’s graph for the 8 by 8

board. The red lines show one possible closed knight’s tour.

Figure 7: Knight’s graph of the 8 by 8 chessboard

13

APPENDIX B: BONUS POKÉ BALL AWARDS

The number of poké balls awarded for catching a prize Pokémon is dependent on several

factors. For achieving a victory in the raid, a base of six balls is earned. Before participating

in their first raid, players must choose a team. This team decision may not be changed for

that player. There are three options available, Instinct, Valor, or Mystic. Gyms locations are

controlled by the team that has Pokémon residing in them. Once controlling a gym six

distinct players may place a Pokémon in the gym to “defend” it. During the times when a

raid event is not ongoing players from teams not controlling the gym may use their own

Pokémon to battle and knock out the Pokémon of the controlling team. When all the

defending Pokémon have been defeated, the victorious team may place their Pokémon in

the gym. Once a raid event has begun, the team controlling the gym cannot be changed

until after the raid. When a player from the controlling team completes a raid, they receive

three additional balls. Teams also play an important part of the first damage bonus. Team

damage bonuses and individual player damage bonuses are outlined in Table 3. Friendship

level also grants bonuses, both for damage and Poké ball rewards. Friendship levels

increase by interacting with players often. Table 3 shows how battling with friends affects

Poké ball bonuses.

Table 3: Poké ball raid bonuses

Bonus 1 2 3

Team

Damage*
0% to20% 33% to 49% ≥ 50%

Individual

Damage*
0% to 5% 15% to 19% ≥ 50%

Gym

Control
‒ ‒

Control

gym

Friendship

Bonus

With Great

Friend

With Ultra

Friend

With Best

Friend

Number of Bonus Balls

*Percent of Total Damage

14

APPENDIX C: CALCULATING RAID TIME TO BE USED IN SIMULATION

In order to make a decision on what time to use for the simulated route, 295 raids were

timed by the team. The Proc means results showed a mean time of 250.93 seconds and a

median of 239 seconds. The skewed distribution, as seen in Figure 8 below, of the times led

to using the median for the raid event time in the simulation

Figure 8: Histogram of Raid Event Times

