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ABSTRACT 

The classic Traveling Salesman Problem (TSP) establishes a list of cities to visit and costs 

associated with travel to each location.  The goal is to produce a cycle of minimum cost that 

visits each city and returns the salesperson to her home location.  What happens if an 

imposed time limit on the journey makes visiting all locations impossible?  Assuming each 

location is of equal value then the goal transforms into visiting as many locations as 

possible within the imposed time limit.  This variation is known as the Prize Collecting 

Traveling Salesman Problem (PCTSP).  We use Proc Optgraph to implement the TSP, 

develop an approach to implement the PCTSP and utilize SAS® VIYA® to map results.  Set in 

a suburb of Metropolitan Atlanta, our motivation stems from the need to acquire as many 

virtual Pokémon as possible for Alice, the nine-year old daughter of one of the authors. 

Analysis of results from executing SAS® generated routes is included.   

INTRODUCTION TO THE TSP 

The traveling salesman problem (TSP) wishes to devise a route that starts a salesperson at 

a home base, visits every client on a list exactly once, and returns to the starting location. 

At times, the TSP is a question of existence such as a closed knight’s tour of a chessboard, a 

classic problem in recreational mathematics. Can a knight use legal moves to visit every 

square on the board and return to its starting position? While originally studied for the 

standard 8×8 board, the problem generalizes easily to other rectangular boards. The 3×3 

board does not admit a closed knight’s tour as it is impossible to enter or exit the center 

square.   The standard 8×8 board admits a closed knight’s tour.  Proc Optgraph trivializes 

the task of finding a closed knight’s tour, should one exist.  

*First, create the chessboard as a graph of legal knight moves; 

data board;     

rows = 8; 

columns = 8;           

do i = 1 to rows;  

do j = 1 to columns;                     

origin =  (i || j);  

/* input legal moves of the knight */ 

/* up 2 right 1 */                             

if i>=3 and j<= columns-1 then do  

 destination = (i-2 || j+1); 

 output; 

 end; 

/* up 1 right 2 */                             

if i>=2 and j<= columns-2 then do  

 destination  = (i-1 || j+2); 
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 output; 

 end; 

/* down 1 right 2 */                             

if i<=rows-1 and j<= columns-2 then do  

 destination  = (i+1 || j+2); 

 output; 

 end; 

/* down 2 right 1 */                             

if i<=rows-2 and j<= columns-1 then do  

 destination  = (i+2 || j+1); 

 output; 

 end; 

end; 

end; 

run; 

 

*Second, construct a TSP for the knight’s graph; 

 

proc optgraph   

data_links = board;   

*create graph from variables;  

data_links_var   

from = origin   

to = destination; 

* write cycle to file closed_knights_tour;  

tsp out = closed_knights_tour;   

run; 

 

The closed knight’s tour of the 8×8 board produced by this code is located in Appendix A.  

For a list of all rectangular chessboards that admit a closed knight’s tour, see Schwenk’s 

1991 paper. 

 

The closed knight’s tour is a question of existence in a TSP. The knight cannot legally move 

from just any square to any other square.  Furthermore, there is no cost associated with a 

knight’s move. In other TSPs, widely varying costs are associated with possible travel 

between every pair of locations. Cost definitions include time, monetary expenses, or any 

other variable for optimization.  In such problems, existence of a tour is not in question.  

Finding an optimal tour is the goal.    

 

Robert Allison (2016) generates an optimal route for collecting rare Pokémon in North 

Carolina in his blog on SAS Learning Post as shown in Figure 1.  Here the goal is to minimize 

total distance in miles of the tour. Reproducing the work to minimize travel time rather than 

distance, the route produced was only slightly different. The statewide scale and distance 

between locations produced likely similar results despite minimizing different variables.   

 

Typically, graphs or networks model the TSP.  In a transportation problem, the graph G = 

(V,E) is an ordered pair of sets where the vertex set V represents a set of locations and the 

edge set E represents the minimum cost of traveling between any two locations.  The TSP is 

known to be np-complete.     

Obviously, it will take a few days to collect all of the rare Pokémon in North Carolina.  What 

if a time limit exists for collecting Pokémon? One might not be able to collect every target 
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on the list.  You would then want a route that would capture as many targets or prizes as 

possible in the constrained time limit. In 1989, Egon Balas defined this as the prize 

collecting traveling salesman problem (PCTSP). The PCTSP is never a question of existence 

but always a question of maximizing the number of prizes collected in a fixed period.  As 

with the TSP, the PCTSP is np-complete as well.     

Like Robert Allison’s (2016) blog example, our motivating problem collects Pokémon as well.  

A Pokémon raid is a very different undertaking than traveling to a location and collecting a 

Pokémon. Raids involve first defeating a Pokémon in battle; these battles, particularly the 

ones of interest for this project, require multiple players participating at the location, at the 

same time. If the players successfully defeat the raid boss, they acquire the opportunity to 

capture the Pokémon they defeated. This opportunity is the prize in our PCTSP. 

 

 
 

Figure 1: TSP for capture of rare Pokémon in North Carolina 

 

Every day, raid battles are generated randomly all over the world. They sporadically appear 

and last for 45 minutes.  Interest in this project began in summer 2018 as Niantic, the 

game developer, rolled out a new variation of Pokémon Go. On specific days, every possible 

raid location has the same raid boss available for battle for three hours. Players can attempt 

the raid at each location until they defeat the boss once. 

DETERMINING RAID EVENT DURATION 

Needing to defeat a boss while working within a time constraint creates a unique situation 

when determining the number of locations that are possible to visit. As the process 

improves, the number of locations achievable increases which increases the total time to 

drive to battle the bosses. Thus, the amount of time remaining to travel between the 

locations decreases.  

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 + 𝛴 𝑅𝑎𝑖𝑑 𝐸𝑣𝑒𝑛𝑡 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≤ 180 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 

When each raid event begins, a two-minute timer starts that allows other players to join. 

This portion of the event is fixed and cannot be shortened. When the timer ticks down to 

zero the battle begins. Players must defeat the boss Pokémon within 300 seconds. If the 

boss still has health after 300 seconds, the battle is a loss for the players. Skilled teams 
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with upper level players will likely defeat a boss faster than the less experienced or smaller 

team.  After defeating the boss, players get the opportunity to catch the prize Pokémon with 

a number of special Poké balls that is determined by a number of factors. An explanation of 

the number of balls for catching the prize Pokémon is in Appendix B. 

 

Naturally, the first effort of time optimization began on the ground at a raid location. The 

catching phase lasts until the player catches the Pokémon or runs out of balls. The more 

balls needed, the longer the event lasts.   Catching the Pokémon is a function of skill and 

luck. A seasoned player has a better chance of ending the catching phase sooner by 

catching the Pokémon earlier. One member of the group was tasked with keeping the time 

of each event with a stopwatch. The timer began with the initiation of the raid and ended 

when the first player either caught the Pokémon or it ran away. Analysis found a duration 

time of 239 seconds. The distribution of times is highly skewed, so the median was a better 

measure of duration remaining for traveling between locations. More information on the 

calculation of raid duration time can be found in Appendix C.  A player does not have to 

remain at the location while catching. Thus, a large portion of the variation in event time 

caused by the catching phase was mitigated by having a passenger in the car attempt to 

catch the driver’s prize. As soon as the battle phase was over, the group would begin 

traveling to the next location. The team felt we had done everything to minimize the 

amount of time at each raid. Turning to software to maximize the number of locations 

seemed to be the next natural way to improve our results. Thus, we turned our attention to 

minimizing travel time to maximize the number of locations we visited. Knowing the location 

of events and a time limit necessitated a change in strategy.  Figure 2 maps the 35 

locations of raids for consideration within the three-hour time limit. 

 

Niantic places gym locations at areas of interest, monuments, and public art displays. This 

project focuses on a team playing in Cartersville, Georgia.  We omit locations for various 

reasons. These events take place on Saturdays; thus, we avoid gym locations at churches 

that meet on Saturday. Cemeteries are often full of gym locations. Many of the players in 

the group avoid the cemetery out of respect.   Parks also tend to be a treasure trove of gym 

locations. When festivals and local events are scheduled at parks, the group will exclude 

locations inside from the route as congestion of attendees slows the process. This is an easy 

adjustment to make, as finding information on events in a park in advance of the Pokémon 

Go event is easy. Our community of players tries to only play where we will not be 

disruptive. We maintain and respect a list of locations where our Pokémon activities might 

be disruptive.  
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Figure 2: Map of all raid locations 

 

ANALYSIS FREE AND GREEDY APPROACH 

On the first raid, a team of seven people gathered the morning of the event and picked a 

starting location. We began our route at a park that contained three locations. With no prior 

planning or analysis and as the event unfolded, we decided by committee the best route. As 

one might imagine, making live decisions by committee may not lead to a strategically, 

consistent approach, let alone an optimized route.  The group utilized a greedy approach by 

selecting the next closest location from its current position.  When the three-hour timer 

expired, we had visited twenty-two locations. This seemed to be a successful day.   

With some experience under our belt, a better plan formed for the second event. Slight 

adjustments came about by omitting a few locations due to circumstances such as needing 

to walk to a location from the parking lot, difficult parking situations, and avoiding traffic 

lights and train tracks. With these adjustments, we were able to increase our number of 

locations to twenty-five. This was better but still a greedy approach with no formal use of 

analytics. 
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Figure 3: Map of Greedy Route 

 

IMPLEMENTING THE TSP SOLUTION 

Proc Optgraph does not specifically implement PCTSP. The first attempt to improve the 

route uses Proc Optgraph to design a traditional traveling salesman solution. The 37 local 

raid locations formed the vertex set of the complete graph.  Each weighted edge in the 

graph represented the driving time between a pair of locations.  Scraping Google Maps 

produced the driving time between locations.  Proc Optgraph generated a tour of the 37 

locations  

*Graph Creation; 

proc optgraph 

data_links = times; 

*create graph from variables; 

data_links_var 

from = home 

to = next 

weight=Time; 

* write optimal cycle to file gym_time_TSPTour; 

tsp out = gym_time_TSPTour; 

run;  

 

Working with a group of 37 locations, and thinking that 37 raids would be unattainable, a 

goal of thirty raids was set. This number was chosen since it was almost a 50% increase in 
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locations from the initial attempt. To produce a 30-location route, we deleted the seven 

consecutive locations that had the longest drive time. We began traveling from the first 

location in the resulting path. Unfortunately, an eight-minute glitch in the Pokémon Go 

servers cut into the three-hour limit. Things progressed quickly after this delay. At a few 

points during the event, the SAS generated route took us to locations in an order that 

contradicted our intuition. The data scientist on the team had gathered a group of players 

who agreed to follow the route to the end of the three-hour limit though some grumbling 

ensued. The Proc Optgraph route allowed us to increase the number of prizes to 28. At the 

end, even the grumbling naysayers admitted the non-intuitive route was superior. 

Furthermore, at the end of the three-hour timer two more locations were within sight of the 

group. It seems likely that without the initial server issues the goal of 30 gym locations 

would have been achieved. 

 

  

Figure 4: Map of TSP Route 

  

IMPLEMENTING THE CLIQUE SOLUTION 

Implementing a TSP route for the PCTSP problem seems like a good starting point.  

However, the TSP will likely make sacrifices to time when plotting a return route to the 

starting location. We wanted an approach that did not make such a sacrifice.   

In graph theory, a clique is defined as a set of vertices, in this case gym locations, that are 

all adjacent and not part of a bigger such set. In an attempt to improve upon the modified 

TSP solution, cliques of locations were created using Proc Optgraph. The locations were 
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grouped by combining locations into groups based on the maximum drive time between all 

the locations in the groups. The data scientist chose an upper bound of 120 seconds 

because this max drive time created a reasonable number of cliques, namely 12.  These 

cliques were not disjoint. By hand, cliques were combined based on the number of 

overlapping locations. Nine disjoint cliques resulted from this process. 

proc optgraph  

 data_links = WORK.POKEMON_CLIQUES_graph;  

 data_links_var   

 from = home 

 to = next;  

 clique out = Cliques_in_Pokemon_graph;  

*find all cliques in graph;   

 title 'All Cliques';  

run; 

The locations of the cliques fall roughly in a linear form from southwest to northeast across 

Cartersville. It seemed natural to start at one end and continue through the cliques toward 

the other end. The weight to determine the order in which to visit the cliques was set by the 

minimum drive time between pairs of individual cliques. Starting at one end, the total drive 

time from the origin to all the cliques was calculated. The path with the shortest total drive 

time from one end to the other was then established. Once the optimal order to visit the 

cliques was determined, the cliques were stitched together into the final route. A TSP 

solution was implemented to create routes within the individual cliques. For every transition 

from one clique to the next, the data scientist had to decide at what point to enter the TSP 

loop and which direction to travel through it for the transition to the next. Having a good 

working knowledge of the area played a large role in the creation of this route. While using 

software to collect so many drive times, it becomes difficult to track the route that Google 

Maps is using to go between the locations. Shortcuts and lightly traveled roads were utilized 

that may have not been suggested otherwise.  

 

 

Table 1: Drive time to each clique from the beginning 

When creating the cliques, two locations formed cliques of size 1. This implies that these 

two locations were far away from all other sites and removed from consideration. One of 

these locations was used in the modified TSP route, the other belonged to the section of the 

loop that was removed. From the original group of 37, there were 35 locations used for the 

implementation of the clique solution. 

Vertex

Shortest 

Time 

From A

Previous 

Vertex

A 0

B 98 A

C 267 A

D 384 C

E 430 D

F 410 A

G 526 A

H 457 A

I 649 D
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Figure 5: Map of Locations Colored by Clique 

 

Unfortunately replicating the clique solution with the same group of players used for the TSP 

solution was not possible. While developing the clique solution, more gym locations had 

been added to the game.  Players were unwilling to ignore new gyms in order to compare 

the different routes.  Thus, a simulated run was used to assess the Clique Solution Route.   

For this simulation, the data scientist drove between locations, amidst the appropriate traffic 

conditions, and recorded actual drive time using a stopwatch. Utilizing these times, along 

with 239 seconds per location, determined the number of targets achievable. The loophole 

in this approach was that it did not take technical difficulty, like the server glitch in the TSP 

route or player congestion at a location, into account. This was accounted for by using the 

median raid event time. By implementing the clique solution, the team was able to visit 34 

locations. 
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Figure 6: Map of Clique Solution Route 

CONCLUSION 

Conducting analysis in SAS® by Proc Optgraph increased the number of raids the team was 

able to complete by 55 percent.   SAS® Viya® created detailed maps critical to 

understanding the geography of this problem specific to Cartersville, Georgia. The increase 

in the number of raids, from 22 to 34, from the greedy approach to the modified TSP and 

again with the Clique Approach illustrate the effectiveness of this process.    

FUTURE WORK 

SAS® Proc Optgraph provided important analysis of the traffic network for this problem.  

However, at certain junctures, the data scientist constructed portions of the results by hand.  

Determining the limiting time for clique construction and joining cliques to create a disjoint 

partition of sites are examples of such work. A clear next step for this work is automating 

such steps for wider and faster implementation.  
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APPENDIX A: CLOSED KNIGHT’S TOUR ON THE STANDARD CHESSBOARD  

Table 2 contains the knight moves generated in Proc Optgraph for the closed knight’s tour 

on the 8 by 8 chessboard.  

Move      Move      Move      Move     

1 1 1 2 3  17 4 7 2 8  33 1 4 2 6  49 8 7 6 8 

2 2 3 1 5  18 6 6 4 7  34 2 2 1 4  50 7 5 8 7 

3 3 4 1 5  19 5 4 6 6  35 4 1 2 2  51 8 3 7 5 

4 5 3 3 4  20 4 2 5 4  36 4 1 3 3  52 7 1 8 3 

5 5 3 4 5  21 6 1 4 2  37 2 1 3 3  53 7 1 5 2 

6 6 4 4 5  22 6 1 8 2  38 2 1 1 3  54 3 1 5 2 

7 7 2 6 4  23 8 2 7 4  39 1 3 2 5  55 3 1 1 2 

8 7 2 8 4  24 6 2 7 4  40 2 5 1 7  56 1 2 2 4 

9 8 4 6 5  25 8 1 6 2  41 1 7 3 8  57 4 3 2 4 

10 6 5 4 6  26 8 1 7 3  42 5 7 3 8  58 4 3 5 5 

11 4 6 2 7  27 7 3 8 5  43 5 7 7 8  59 5 5 3 6 

12 2 7 4 8  28 8 5 7 7  44 8 6 7 8  60 4 4 3 6 

13 5 6 4 8  29 7 7 5 8  45 8 6 6 7  61 6 3 4 4 

14 3 5 5 6  30 3 7 5 8  46 6 7 8 8  62 5 1 6 3 

15 3 5 1 6  31 3 7 1 8  47 7 6 8 8  63 5 1 3 2 

16 1 6 2 8  32 2 6 1 8  48 7 6 6 8  64 1 1 3 2 

Table 2: A closed knight’s tour  

Figure 7 appears in the 2018 paper by Henshaw, Staples, and DeMaio, Graph Visualization 

for PROC OPTGRAPH which describes a method for exporting SAS data to visualize a graph.  

Together the black and red lines indicate the edges in the knight’s graph for the 8 by 8 

board.  The red lines show one possible closed knight’s tour. 

 
Figure 7: Knight’s graph of the 8 by 8 chessboard 
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APPENDIX B: BONUS POKÉ BALL AWARDS 

The number of poké balls awarded for catching a prize Pokémon is dependent on several 

factors. For achieving a victory in the raid, a base of six balls is earned. Before participating 

in their first raid, players must choose a team. This team decision may not be changed for 

that player. There are three options available, Instinct, Valor, or Mystic. Gyms locations are 

controlled by the team that has Pokémon residing in them. Once controlling a gym six 

distinct players may place a Pokémon in the gym to “defend” it.  During the times when a 

raid event is not ongoing players from teams not controlling the gym may use their own 

Pokémon to battle and knock out the Pokémon of the controlling team. When all the 

defending Pokémon have been defeated, the victorious team may place their Pokémon in 

the gym. Once a raid event has begun, the team controlling the gym cannot be changed 

until after the raid. When a player from the controlling team completes a raid, they receive 

three additional balls. Teams also play an important part of the first damage bonus. Team 

damage bonuses and individual player damage bonuses are outlined in Table 3. Friendship 

level also grants bonuses, both for damage and Poké ball rewards. Friendship levels 

increase by interacting with players often. Table 3 shows how battling with friends affects 

Poké ball bonuses.  

 

 

Table 3: Poké ball raid bonuses 

 

 

 

 

 

 

 

 

Bonus 1 2 3

Team 

Damage*
0% to20% 33% to 49% ≥ 50%

Individual 

Damage*
0% to 5% 15% to 19% ≥ 50%

Gym 

Control
‒ ‒

Control 

gym

Friendship 

Bonus

With Great 

Friend

With Ultra 

Friend

With Best 

Friend

Number of Bonus Balls

*Percent of Total Damage
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APPENDIX C: CALCULATING RAID TIME TO BE USED IN SIMULATION 

In order to make a decision on what time to use for the simulated route, 295 raids were 

timed by the team. The Proc means results showed a mean time of 250.93 seconds and a 

median of 239 seconds. The skewed distribution, as seen in Figure 8 below, of the times led 

to using the median for the raid event time in the simulation  

 

Figure 8: Histogram of Raid Event Times 




