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ABSTRACT  

Cars in Denmark are heavily taxed, and the level of taxation is changed from time to time. 

In recent years, first an extra tax was introduced in order to reduce fuel usage, and two 

years later a new tax was introduced in order to make more secure cars affordable. The first 

intervention was in favor of small cars, while the second was in favor of large cars. Whether 

such changes in the taxation rate were introduced immediately or were announced some 

months before makes a difference in their impact. Also, changes in taxation are expected by 

everyone interested in the negotiations in parliament. 

Statistics Denmark publishes the number of cars sold in many segments. In this paper, the 

car segments small, medium, and large are used in order to illustrate the effect of these 

changes in taxation. The models applied are estimated by the ARIMA procedure with 

intervention components, because exogenous, deterministic effects like changes in taxation 

should be modeled separately by deterministic components and not as a part of the 

stochastic model. 

In this paper, models for exponentially decreasing impacts of an intervention are of interest. 

However, situations where impacts are increasing up to the actual date of an announced 

future change in taxation also exist in this data set. Such situations are easily modeled by 

reverting the direction of time. 

INTRODUCTION 

All time series models have a stochastic component to fit the influence from various sources 

outside the model. These impacts are in a statistical model seen as outcomes of stochastic 

variables. They are often denoted "noise" which is an intuitive explanation for the fact that 

they are seen as noise that makes the true signal, the correct data series, more dim. Often 

the series is however also influenced by events with large impacts on the time series. Such 

events are explicitly known as extraordinary.  

We reserve the concept "interventions" to reactions to events that are of this non-stochastic 

nature. The existence of an exogenous intervention is known to the analyst and its impact 

should be modeled separately from the stochastic model of the "remaining" data series. The 

reaction to the time series of the intervention has some kind of deterministic explanation so 

the behavior of the series close to the time of the intervention has to be modeled apart from 

the stochastic mechanism that otherwise generate the observations. Otherwise the 

estimated residual variance become unrealistic large. 

An example of such an event is the intake of medicine where biological measurements 

indicate a reaction to the intake. It is known that the medicine is given so any change in the 

physiological behavior of the patient is assumed to be due to the medicine. Another 

example is the reaction of the consumers to an increase in taxes, where the consumption is 

believed to decrease. 

Intervention models are often formulated by dummy variables taken values like zero and 

one and hence they are by no means observed values. An intervention could model the level 

shift of a time series from summer to winter, but actual measurements of temperatures, 

humidity, hours of sunshine are by no way included in the model. For the two intuitive 
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examples mentioned above this means that the actual dose of the intake and the actual 

level of the tax increase are not included in the model. More refined models for 

interventions are however very close to models relying on actual observed values of the 

dose or taxation percentages so the distinction is by no way strict. 

A general framework for analyzing time series were presented in the book by Box and 

Jenkins(1976) and after that seasonal ARIMA models are standard when modelling 

univariate time series. Box and Jenkins(1976) in their book also considered intervention 

models of the kind considered in this paper. 

TYPES OF INTERVENTIONS 

Interventions may take various forms, as for instance one particular outlier, a level shift or 

perhaps a shift in the observed trend in the time series. More complicated interventions 

exist for instance a shift in the level which is not abrupt but instead occurs gradually. 

An intervention for an intervention that only affect the series for just one observation, at 

time t0, has the form 

(1) Xt = ωIt + Yt 

where the intervention components It is given by It = 0 for all t but for just the value It0 = 1 

at the event of the event. More precisely It = 0 for t ≠ t0 and It = 1 for t = t0. The 

remainder term Yt could be modeled in many ways according to the situation, e.g. as a 

regression model or as a time series model such as a multiplicative, seasonal ARIMA model, 

see Box and Jenkins(1976). 

For interventions for temporary level shifts we assumed above that the effect of the 

intervention was immediately, but often the effect lasts for some time. This could be 

modeled by introducing lags in the intervention model 

(2) Xt = ω0It − ω1It−1 − .. − ωrIt−r + Yt 

Here the effect of the intervention is given as steps in the following way 

 Time t0 : The effect is ω0 

 Time t0+1 : The effect is − ω1 

 .. 

 Time t0+r : The effect is − ωr 

The choice of sign for the parameters ωi in this parameterization is taken as the notation by 

Box & Jenkins(1976). 

One problem by using r > 0 in this parameterization is that the number of ω−parameters 

could be large and as they tell the same story they are subject to multicollinearity. This 

means that the estimates of the ωi parameters have large standard deviations. 

If r > 1 a more parsimonious parameterization could be often more efficient. In order to 

reduce the number of parameters it is often better to adopt another form of 

parameterization using the notation of lag polynomials. The idea is that the effect is slowly 

decaying by a factor δ as 

(3) Xt = ωIt + ωδI t−1 + .. + ωδr
 It−r + .. + Yt  =  

𝜔

1−𝛿𝐿
I t + Yt 

Here the effect of the intervention is given as steps in the following way 

 Time t0 : The effect is ω 

 Time t0+1 : The effect is ωδ 
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 .. 

 Time t0+r : The effect is ωδr 

 ... etc. 

The value δ = 0 gives the simple intervention (1). But the situation of a positive parameter 

0 < δ < 1 gives a gradual decrease towards the previous level of the series which is never 

reached but in practice the first steps are the largest. For | δ| ≥ 1 the series diverges and a 

new level is undefined. The parameter δ is therefore restricted to the interval ] −1, 1[. Even 

if the value δ =1 is not included in the parameter space values of δ close to +1 takes the 

form of a step function. These kinds of models are discussed in detail by Box and 

Jenkins(1976). 

 

Figure 1 Danish sales of cars in three segments. The vertical lines represent major 

changes in taxation. 

 

SALES OF NEW CARS IN DEMARK 

Statistics Denmark publishes monthly data for the sales of new cars in form of many time 

series. In this paper we apply series for the sales numbers in three segments of cars for 

private use: Mini (like Volkswagen Up), medium (like Volkswagen Golf) and Large (like 

Volkswagen Passat). The time series are published with start January 2004 and data up to 

December 2018 is used in this paper - total of 180 observations.  
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The Danish taxation on new cars is heavy. For cheap cars a taxation is at present 85% is 

added to value, while the taxation of the values higher than a certain limit, around 185,000 

DKK (corresponding to approximately 30,000 USD), is as high as 150%. Previously these 

percentages were even higher 105% resp. 180% and the limit was lower than now, around 

85.000 DKK (corresponding to approximately 13,000 USD). On top of the actual price of the 

car and all specific taxes moreover the general value added tax adds 25% to the final price. 

By definition this taxation system favors sales of smaller, cheaper cars. But in recent years 

the system has changed somewhat, as a new tax in 2013 depending on the fuel economy 

was introduced, and in 2017 a new taxation (in fact a tax reduction) depending on security 

factors was introduced. While taxes depending on fuel economy favor smaller cars as they 

use less fuel, taxes depending on security favors large cars as it is safer to be a passenger 

in a large car in case of a frontal crash.  

The sales series for the three segments series are plotted in Figure 1. Figure 2 shows 

average prices as met by the consumers in Danish Kroner for the three segments. The 

vertical lines on both plots mark some of the changes in taxation as an indicator of large 

interactions in the sales. 

 

 

 

Figure 2 Average price of cars in three segments. The vertical lines represent 

major changes in taxation. 
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ARIMA MODELS FOR MONTHLY SALES OF CARS 

As a benchmark model the so called airline model is used. This model is often applied as a 

default model for seasonal time series; made famous by the example of the number of 

airline passengers by Box and Jenkins (1976). The model is also applied as default in the 

X11-ARIMA algorithm for seasonal adjustments. For these datasets the model with 

parameters estimated by maximum likelihood are 

Mini:  (1 - B)(1 - B12)Xt = (1 - 0.51B)(1 - 0.88B12)εt , var(εt) = 532.762 

Medium: (1 - B)(1 - B12)Xt = (1 - 0.59B)(1 - 0.71B12)εt , var(εt) = 462.512 

Large : (1 - B)(1 - B12)Xt = (1 - 0.66B)(1 - 0.60B12)εt , var(εt) = 400.552 

AUTOMATIC OUTLIER DETECTION 

The variances are heavily influenced by extreme observations as they are estimated using 

the sum of squared residuals. Two times the standard deviation is of course a much too 

narrow limit for outlier detection as the expected number of outliers in that case is 0.05 × 

180 = 9. The critical value for a 5% test for outliers among 180 observations is 3.92 times 

the standard deviation. However, the residual variance is rather large due to the existence 

of outliers, which are nor corrected for any interventions. So a limit of three times the 

residual standard deviation in the ARIMA models are applied.  

For the three segments we find some months where the residuals have absolute values 

larger than three times their standard deviation, but only one observation for each segment 

is larger than four times its standard deviation. For the segment mini for September 2017 

which was 2796 higher than expected because of political negotiations on a possible 

increased taxation on smaller cars. For the segment medium a similar outlier was found in 

December 2016 where the taxation on all cars were reduced. For the segment large an 

outlier is found for December 2010 were sales were 1413 higher than expected due to an 

increased taxation on cars with low fuel economy. 

If these residuals are removed using dummy variables, the residual variance is reduced 

significantly. Of course more outliers could be compensated by dummy variables in order to 

reduce the variance even further, but the number of parameters then of course increases as 

each outlier leads to an extra parameter. 

INTERVENTIONS FOLLOWED BY AN EXPONENTIAL DECAY 

A numerically large residual could be considered as the simplest form of an intervention 

which is easy to see as a part of an ordinary time series analysis. Interventions followed by 

an exponential decay (3) are more advanced and not so simple to identify. But by macro 

programming it is possible to fit an intervention of the form (3) for each month in the 

dataset. However, the denominator variable δ is not well defined if the intervention is 

applied for the very last part of the series. Table 1 presents the estimated values of ω and δ 

for the months were ω numerically exceeds four times its standard deviation and the t-value 

(estimated value divided by its standard deviation) exceed three.  In some situations, the 

estimated δ is close to one, which means the intervention is probably a step function. 

Several of the entries in table show values of δ not significantly different from 0.7, which 

are interventions of the form (3). 
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Mini 

Date ω stderr ω δ stderr δ 

JUL2012 1666.29 392.89  0.96 0.05 

AUG2012 1343.83 430.23  0.92 0.09 

NOV2012 1460.84 386.92 -0.47 0.18 

DEC2012 -1924.00 453.04  0.62 0.18 

SEP2017 3016.34 401.60  0.22 0.13 

NOV2017 -1988.33 408.34  0.99 0.03 

 

Medium 

Date ω stderr ω δ stderr δ 

MAR2012 -1035.25 336.03  0.90 0.10 

DEC2016 1741.20 359.15 -0.09 0.20 

 

Large 

Date ω stderr ω δ stderr δ 

NOV2008 -802.31 259.45 0.93 0.08 

NOV2011 1208.11 306.63 0.61 0.17 

MAR2013 -948.96 239.31 0.99 0.02 

Table 1 Estimated parameters of models for exponential decay 

OUTLIER DETECTION IN THE REVERTED SERIES 

This model is fitted in order to take care of the autocorrelation structure in the time series. 

The estimated ARMA parameters and the residual variance has the same values when they 

are estimated based on the reverted time series. However, the idea of an innovation 

process, εt, and hence also the residual values are different. The residuals are now 

prediction errors when backcasting one period using only future values of the time series. In 

this case we also see outliers, but they are not necessarily for the same time stamps as 

outliers in the usual forecasts. 

For the three segments we find a few months where the residuals have absolute values 

larger than three times their standard deviation and again only one for each segment are 

larger than four times the standard deviation. That is the sales in the segment mini for 

September 2017 which was 2797 higher than expected, for the segment medium the sales 

December 2016 were 1324 larger than expected, and the sales for the segment large for 

December 2010 where the sales were 1413 larger than expected. 

EXPONENTIAL EFFECTS BEFORE AN INTERVENTION 

If the reverted series are the in the model for exponential decay, we find interventions 

which is in actual time direction exponentially build up in the months before rather than 

decaying after the interventions. The following table gives the estimated values of ω and δ 

for the months were ω numerically exceeds four times its standard deviation. 
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For some of these interventions the estimated δ is close to zero. This means that the 

intervention this particular month is probably an outlier. For one month, the estimated δ is 

close to one. This means the intervention is probably a step function. Several of the 

remaining entries in Table 2 show values of δ not significantly different from say 0.7; that is 

of the form (3).  

These results are based on an estimation of the denominator parameter δ for each month in 

the dataset. In order to ease the estimation burden a fixed value of δ, say δ = 0.7, could be 

applied so that only the ω parameter has to be estimated.  

 

Mini 

Date ω stderr ω δ stderr δ 

NOV2012 2336.31 412.41  0.80 0.09 

DEC2012 -1540.25 404.76 -0.29 0.22 

SEP2017 2819.17 399.02 0.06 0.22 

NOV2017 -1381.68 447.43  0.03 0.32 

 

Medium 

Date ω stderr ω δ stderr δ 

DEC2016 1625.74 360.00  -0.07 0.21 

SET2017 -1315.20 382.75 0.46 0.25 

AUG2018 1275.06 392.00 -0.09 0.30 

 

Large 

Date ω stderr ω δ stderr δ 

JUN2006 961.77 319.77 0.51 0.26 

DEC2010 1463.87 310.96 0.05 0.21 

MAR2011 1192.94 307.22 0.64 0.16 

Table 2 Estimated parameters for exponential decay models for the reverted series 

 

STATISTICS CANNOT REPLACE KNOWLEDGE! 

In the analyses presented for the three series interventions are detected automatically by a 

screening process. In order to see whether these findings are due to well defined events like 

e.g. changes in the taxation, we have to look through all history books and newspapers in 

the past many years for information of the history of Danish car taxes - and what else could 

affect car sales. Hmmm - sounds cumbersome, even though Google is your friend. 

It is optimal if a statistical model includes all known external factors for car sales. A more 

honest analysis takes the approach first to identify all possible reasons for interventions 

with an ideas of the form of the intervention and after that estimate the parameters of the 
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intervention components. Again - sounds cumbersome, even though Google is still your 

friend. 

If the purpose of the analysis is mainly focused on the most recent part of the time series a 

screening, like the one presented above is, however, a practical approach to help the 

analysts to remember long forgotten events. 
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