
Paper 3824-2019

Automating Migration from the SAS® Macro Language to the LUA
Procedure Using Transpiling

Igor Khorlo, Syneos Health™

ABSTRACT

Many solutions based on SAS® use the SAS macro language to structure, automate, or make
SAS code more dynamic. When you scale out to a large application with thousands of lines
of macro code, SAS macro usually becomes a bottleneck in the development and starts to
hit its limitations. Maintenance, debugging, and testing can become a challenging and time-
consuming process even for experienced SAS programmers. The Lua language was designed
to be embedded into applications to provide scripting functionality. Compared to alternatives
like PROC GROOVY that runs in a separate JVM process, PROC LUA (introduced in SAS® 9.4M3)
runs inside a SAS process and, as a result, has access to the C function bindings that SAS has
for reading, writing data sets, and so on. With that plus its performance, small footprint,
elegant syntax, and support for data structures, the PROC LUA became a very promising
replacement for a SAS macro for big projects.

A transpiler is a program that takes the source code of a program written in one program-
ming language as its input and produces the equivalent source code in another programming
language. In other words, it is a source-to-source compiler (like PROC DSTODS2 in SAS).

In this paper, we consider performance differences in terms of CPU, memory, and disk I/O
between PROC LUA and SAS macro for common coding situations, and build a transpiler1 that
parses SAS macro code, creates an Abstract Syntax Tree representation and translates it to
Lua source code.

INTRODUCTION

SAS introduced the LUA Procedure2 in SAS version 9.4 Maintenance 3. A good introduction
into the Lua language in the scope of SAS language was made by Paul Tomas3, an excellent
introductory workshop was held by Rowland Hale on PharmaSUG 2018 China4. People from
the SAS community continuously show interested in Lua language. The LUA procedure was
evolving from the time it was introduced, and many uncertainties were addressed, the docu-
mentation getting better and now contain many useful examples, the os module was included,
despite, it was initially disabled. The simplicity of the language, low entry threshold, its per-
formance, and integrability into SAS environment makes it a promising replacement for the
old fashioned SAS Macro.

PERFORMANCE

The main difference between SAS macro and Lua which improves efficiency so dramatically is
that Lua holds all its variables/objects in memory while SAS macro needs to maintain views

1demo – https://saslint.com/sasmacro2lua
2SAS (2018)
3See Tomas (2015)
4Hale (2018a); see Hale (2018b) for the workshop materials

1

https://documentation.sas.com/?docsetId=proc&docsetTarget=p0lqta2cbq9b44n12h28nil7a093.htm&docsetVersion=9.4&locale=en

like SASHELP.VMACRO. This overhead results in a lot of disk I/O operations. The disk resource
is usually a bottleneck in the performance. A simple loop like this:

%macro dummy_loop;
%do i=1 %to 1000000;

%put &i;
%end;

%mend;
%dummy_loop;

can spawn utility files up to 100mb in the WORK library. That is an incredible waste of system
resources for such a simple task:

$ ls -al
-rw-r--r-- 1 sasdemo sasdemo 88039424 Oct 20 19:57 #tf0024.sas7butl
drwx------ 2 sasdemo sasdemo 1024 Oct 20 19:57 .
drwx------ 3 sasdemo sasdemo 96 Oct 20 19:56 ..
-rw-r--r-- 1 sasdemo sasdemo 12288 Oct 20 19:57 sasmac1.sas7bcat

SAS utility file “#tf0024.sas7butl” has a size of 88039424 bytes which is 88 megabytes!

We are going to compare the performance for SAS macro and PROC LUA for the following
coding situations that commonly arise in SAS macro development:

• loops
• iterating over a list
• reading a data set.

Performance of the SAS code can be monitored using SAS® 9.4 Interface to Application Re-
sponse Measurement (ARM) which will output a bunch of tables with numbers for CPU, memory,
disk, I/O, etc. Consequently, you would need to do a lot of data preparation and visualisation
until you get something presentable and clear. We are going to use the Enterprise Session
Monitor (ESM)5 for the performance monitoring that will output performance profiling graphs
via an intuitive, user-friendly web-based interface.

DO-loop (for loop)

First code example we are going compare is a simple DO-loop (for loop):

for i = 1, n do
print(i)

end

Listing 1: Lua

%do i = 1 %to &n;
%put &i;

%end;

Listing 2: SAS Macro

From here it is already noticeable how Lua syntax is different from SAS macro syntax – no
redundant “%”, no semicolons. We are going to compare the above examples for 10 million
iterations (n=1e7). We run both examples one by one – first Lua one, second SAS macro after
a little pause.

5Enterprise Session Monitor (ESM) for SAS is visual performance monitoring software by Boemska
https://boemskats.com/esm/

2

https://documentation.sas.com/?docsetId=armref&docsetTarget=p0xucsk6rz0tkwn1bqqwbcegyaa2.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=armref&docsetTarget=p0xucsk6rz0tkwn1bqqwbcegyaa2.htm&docsetVersion=9.4&locale=en
https://boemskats.com/esm/
https://boemskats.com/esm/

C
PU

 U
sa

g
e M

em
o
ry

Filesystem
 Size / IO

 T
h
ro

u
g
h
p
u
t

FOR_LOOP_MACROFOR_LOOP_MACROFOR_LOOP_LUAFOR_LOOP_LUA

15:06:30 15:07:00 15:07:3015:06:20 15:06:25 15:06:35 15:06:40 15:06:45 15:06:50 15:06:55 15:07:05 15:07:10 15:07:15 15:07:20 15:07:25 15:07:35

15:04 15:05 15:06 15:07 15:08

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 MB

100 MB

200 MB

300 MB

400 MB

500 MB

600 MB

700 MB

800 MB

900 MB

1000 MB

1100 MB

1200 MB

1300 MB

0 MB

100 MB

200 MB

300 MB

400 MB

500 MB

600 MB

700 MB

800 MB

Zoom 1M 10M All CPU Res Memory Virt Memory Tags Work Util MBytes Read MBytes Written

Figure 1: DO-loop comparison – PROC LUA on the left, SAS macro on the right. Red curve –
CPU, yellow curve – memory, wide purple blue bars – WORK directory size, green bars –
I/O write.

From the first look, it is already clear that the Lua version is faster and consumes fewer system
resources. Before we consider this in more detail, I want to add a few notes about execution
time measurement. There are boxes with labels FOR_LOOP_LUA, FOR_LOOP_MACRO that
indicate bounds of each comparison unit. These boxes created out of SAS code using a tagging
functionality in ESM that allows passing information from SAS session to the monitoring graphs.
We are going to measure execution time and pass that value to ESM so that it will be visible
to us at a closing tag.

• Execution time. Lua version took 3.03 seconds, which is 10 times faster than SAS
macro, it took 34.35 seconds.

• Disk. Lua version had no impact on the WORK directory size, Lua did not create any
utility files which is expected – it holds everything in memory. On the other hand, SAS
macro version did create utility files in the WORK directory, and the size of the WORK
directory increased from 0 to 793 Mb.

• CPU. Both versions were keeping CPU at ~100% load which was expected. However, the
SAS macro version took 10 longer than Lua, which means that cumulatively it consumed
more CPU resources.

• Memory. SAS macro did not show any noticeable memory use. For the Lua version, the
situation is a bit different. In the beginning, memory use increased by 180 Mb – this
is the memory footprint of an initialised Lua session. Amount of used memory did not
change during execution. To free this memory up PROC LUA has TERMINATE= option.
Although, 180 Mb is a tiny memory amount by modern standards.

The guesses were confirmed and as we can see, SAS macro creates utility files under WORK
library of insane sizes. Let’s see the next example.

3

https://boemskats.com/docs/esm-userguide/#tags
https://boemskats.com/docs/esm-userguide/#tags
https://documentation.sas.com/?docsetId=proc&docsetTarget=p0lqta2cbq9b44n12h28nil7a093.htm&docsetVersion=9.4&locale=en#p0fmipwzucy4u8n13z2ax1npqbhc

Iterating over a list

The irony here is that SAS macro does not even have a built-in list data structure, so a standard
solution to that is to use a macro variable as storage where list elements are joined with a
character, not present in any element. Elements can be retrieved afterwards using %SCAN
Macro Function. Lua has an array-like data structure encapsulated into a basic type – table.

For simplicity, we are going to use a list of 9 words, that we are going to iterate 100000 times
(n=1e5). The equivalent code in SAS macro and Lua will look like:

list = {"George", "Paul", "Ringo",
"John", "Foo", "Bar",
"Baz", "Macro", "Polo"}

for _, i in ipairs(list) do
print(i)

end

Listing 3: Lua

%let list=George Paul Ringo John
Foo Bar Baz Macro Polo;

%do i = 1 %to
%sysfunc(countw(&list));
%let item=%scan(&list, &i);
%put &item;

%end;

Listing 4: SAS Macro

ipair() function in Lua returns a pair – index, item. However, as we don’t need an index
here, we just use a placeholder “_” for it – that is a conventional way to indicate a non-used
variable.

C
PU

 U
sa

g
e M

em
o
ry

Filesystem
 Size / IO

 T
h
ro

u
g
h
p
u
t

LIST_MACROLIST_MACROLIST_LUALIST_LUA

15:18:30 15:19:0015:18:35 15:18:40 15:18:45 15:18:50 15:18:55 15:19:05 15:19:10 15:19:15 15:19:20 15:19:25

15:15 15:16 15:17 15:18 15:19

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 MB

100 MB

200 MB

300 MB

400 MB

500 MB

600 MB

700 MB

800 MB

900 MB

1000 MB

1100 MB

1200 MB

1300 MB

0 MB

25 MB

50 MB

75 MB

100 MB

125 MB

150 MB

175 MB

200 MB

225 MB

250 MB

275 MB

300 MB

Zoom 1M 10M All CPU Res Memory Virt Memory Tags Work Util MBytes Read MBytes Written

Figure 2: Iterating over a list comparison – PROC LUA on the left, SAS macro on the right.

From the graph, we can see the same performance patterns. For the Lua version that is even
cannot be called a load. Let’s consider each system resource:

• Execution time. Lua version took 777 milliseconds. For SAS macro is took 25.55 sec-
onds.

• Disk. Same problem here for SAS macro – it is intensively writing to WORK directory.
Lua version had no impact on disk.

4

https://documentation.sas.com/?docsetId=mcrolref&docsetTarget=p1nhhymw6gxixvn1johcfl6kaygw.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=mcrolref&docsetTarget=p1nhhymw6gxixvn1johcfl6kaygw.htm&docsetVersion=9.4&locale=en
https://www.lua.org/pil/11.1.html

• CPU. Lua version showed CPU usage <30% that could be barely called as a warmup,
while SAS macro was burning 100% CPU for 25 seconds.

• Memory. SAS macro does not require memory; Lua needs around 180 Mb to initialise
and hold its state.

Reading a data set

Another ubiquitous task arises in SAS macro development is to read a SAS dataset in a pure
macro way. For testing purposes, we created an extended SASHELP.CLASS dataset in the
following way:

data class(drop=i);
set sashelp.class;
do i = 1 to 100000;
output;

end;
run;

The resulting CLASS dataset has 1.9 million observations, 5 variables and is 73 Mb of size. The
equivalent code in SAS macro and Lua will look like:

dsid = sas.open('class')

-- there are at least 3 ways
-- of reading a dataset in Lua
for obs in sas.rows(dsid) do

-- now you can use obs.name
-- or obs['age']

print(obs.name .. ', ' ..
obs['age'] .. ' years')

end

sas.close(dsid)

Listing 5: Lua

%let dsid = %sysfunc(open(class));
%syscall set(dsid);
%let nobs =

%sysfunc(attrn(&dsid, nlobs));

%do i=1 %to &nobs;
%let rc =

%sysfunc(fetchobs(&dsid, &i));

%put %trim(&name), &age years;
%end;

%let rc = %sysfunc(close(&dsid));

Listing 6: SAS Macro

Note, that in both cases we just load data into variables (lua variables and macro variables
respectively) and do nothing with them, since we only want to imitate a data reading situation
without any further processing.

The performance profiling by ESM will look as follows:

5

C
PU

 U
sa

g
e M

em
o
ry

Filesystem
 Size / IO

 T
h
ro

u
g
h
p
u
t

READ_DS_MACROREAD_DS_MACROREAD_DS_LUAREAD_DS_LUA

16:26:30 16:27:00 16:27:3016:26:15 16:26:20 16:26:25 16:26:35 16:26:40 16:26:45 16:26:50 16:26:55 16:27:05 16:27:10 16:27:15 16:27:20 16:27:25

16:23 16:24 16:25 16:26 16:27

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 MB

200 MB

400 MB

600 MB

800 MB

1000 MB

1200 MB

1400 MB

0 MB

50 MB

100 MB

150 MB

200 MB

250 MB

300 MB

350 MB

400 MB

450 MB

Zoom 1M 10M All CPU Res Memory Virt Memory Tags Work Util MBytes Read MBytes Written

Figure 3: Reading a data set – PROC LUA on the left, SAS macro on the right.

The situation changed a little bit. But still, the Lua version looks as a strong competitor. All
our examples showed that the key disadvantages of using SAS macro in terms of performance
are intense disk write operations and much longer execution time.

To sum it up, PROC LUA has better performance, more natural syntax, and useful data struc-
tures.

TRANSPILING

A transpiler is a program that takes the source code of a program written in one program-
ming language as its input and produces the equivalent source code in another programming
language. In other words, it is a source-to-source compiler (like PROC DSTODS2 in SAS).

In order to produce the equivalent Lua version of SAS macro we are going to classify macros
into 3 categories:

• Outside step macro – generates SAS code outside of a step boundary.
• Inside step macro – generates SAS code inside a step.
• Pure SAS macro – does not generate any SAS code, but can return values. Usually, that
type of macro is called within SAS macro expressions.

Let’s consider them in more details.

OUTSIDE STEP MACRO

That type of macro can be used only in open code outside of PROCs/DATA step boundaries. The
reason for this is that these macros usually use PROCs/DATA steps internally. Let’s consider
this on example:

/* print_dataset.sas */

6

%macro print_dataset(dat, vars=);
proc print data=&dat;

%if %length(vars) %then %do;
var &vars;

%end;
run;

%mend;

/* main.sas */
%print_dataset(sashelp.class, name age)

This macro uses PROC PRINT. Consequently, it must always be called outside of PROC and
DATA steps. The following call will result in an error.

data _null_;
set sashelp.class;
%print_dataset(sashelp.cars) <= ERROR here
bmi = weight / height ** 2;

run;

It is the most convenient macro’s type for transpiling into Lua. Resulting Lua equivalent would
be:

function print_dataset(dat, vars)
sas.submit_("proc print data=@dat@;")
if string.len(vars) then
sas.submit_("var @vars@;")

end
sas.submit("run;")

end

print_dataset("sashelp.class", "name age")

The key challenges here are to identify the islands of SAS code in between SAS Macro State-
ments and step boundaries (like we had above with “run;”). These islands of SAS code we
are going to call free text.

INSIDE STEP MACRO

Inside step macro generates SAS code as well, but, this code belongs to a particular step
or statement. In other words, such macro resolves into SAS code that becomes a part of a
statement, PROC or DATA step. A classic example is a macro that generates attributes for
variables:

/* attrib.sas */
%macro attrib(dat);

%let dat = %upcase(&dat);
%if &dat = DM %then %do;
attrib STUDYID length=$10 label='Study Identifier'

USUBJID length=$20 label='Unique Subject Identifier';
%end;
%else %if &dat = AE %then %do;

7

https://documentation.sas.com/?docsetId=mcrolref&docsetTarget=p15uzqjm8zbainn1w0sfhg32eujc.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=mcrolref&docsetTarget=p15uzqjm8zbainn1w0sfhg32eujc.htm&docsetVersion=9.4&locale=en

attrib AETERM length=$200 label='Reported Term for the Adverse Event'
AEDECOD length=$200 label='Dictionary-Derived Term'
AESTDTC length=$19 label='Start Date/Time of Adverse Event';

%end;
%else %do;

%put ERROR: Unknown dataset!;
%end;

%mend;

/* main.sas */
data ae;

%attrib(ae);
aeterm = 'Lorem ipsum dolor sit amet';
aedecod = 'consectetur adipisicing elit.';
aestdtc = put(today(), is8601dt.);

run;

The way how we transpile this kind of macro is the following:

1. transpile the macro to return generated SAS code as a string
2. save the result string to a macro variable
3. substitute that macro variable to the place where macro is called.

proc lua restart;
submit;

-- (1)
function attrib(dat)

local r = ""
dat = dat:upper()
if dat == 'DM' then

r = r .. [[
attrib STUDYID length=$10 label='Study Identifier'

USUBJID length=$20 label='Unique Subject Identifier';
]]

elseif dat == 'AE' then
r = r .. [[
attrib AETERM length=$200 label='Reported Term for the Adverse Event'

AEDECOD length=$200 label='Dictionary-Derived Term'
AESTDTC length=$19 label='Start Date/Time of Adverse Event';

]]
else

print('ERROR: Unknown dataset!')
end
return r

end

-- (2)
sas.symput('attrib_1', attrib('ae'), 'G')

endsubmit;
run;

data ae;
/* (3) */
&attrib_1

8

aeterm = 'Lorem ipsum dolor sit amet';
aedecod = 'consectetur adipisicing elit.';
aestdtc = put(today(), is8601dt.);

run;

PURE SAS MACRO

Pure SAS macro is a macro that returns text that is later used within SAS macro expressions.
Let’s consider a macro that checks whether a dataset or a view exists and return a 1 or 0
accordingly:

/* exist_dataset.sas */
%macro exist_dataset(dat);

%if %sysfunc(exist(&dat)) or %sysfunc(exist(&dat, VIEW)) %then 1;
%else 0;

%mend;

/* main.sas */
/* 1 */
%put {%exist_dataset(sashelp.class)};

/* 2 */
%if %exist_dataset(sashelp.class) %then %do;

%put SASHELP.CLASS exists!;
%end;
%else %do;

%put SASHELP.CLASS does not exist!;
%end;

Resulting Lua equivalent would be:

function exist_dataset(libds)
if sas.exist(libds) or sas.exist(libds, 'VIEW') then
return 1

else
return 0

end
end

-- 1
print('{'..exist_dataset('sashelp.class')..'}')

-- 2
if exist_dataset('sashelp.class') then

print('SASHELP.CLASS exists!')
else

print('SASHELP.CLASS does not exist!');
end

From the examples of different macro types considered, we can see that two main points.

9

• Free text in outside step macro is passed into “sas.submit” for execution.
• Free text in inside step macro and pure macros is returned as a value and is later used
from the calling environment.

The complexity in transpiling inside step macro and pure macros is that PROC LUA cannot be
called at the calling point. Therefore, the calling environment must be transpiled as well, as
we have seen in inside step macro example. We are not going to consider workarounds with
%SYSFUNC with DOSUBL Function because of the performance implications, although this can
be a solution in some situations.

FINAL LOOK OF THE TOOL

$./sasmacro2lua src/ -o lua/
[1/3] Parsing input...

4 files
3 macros

[2/3] Building dependecy graph...
1 pure sas macros
1 inside step
1 outside step

[3/3] Transpiling...
Transpiled successfully in 1.12s.

ARCHITECTURE

This tool uses SAS Parser from the SASLint project6. The parser takes SAS program on input
and produces a parse tree – a machine-readable data structure that represents a syntactic
structure of a program:

macroExprAtom

vars

macroExprAtom

macroExprAtom ;

program

macroDefinitionArg

vars

literal

stmt

macroStmtIf

macroExprAtom

literal macroReference literal

print_dataset

=

&

)

%length

macroExprAtom

%macro macroDefinitionArgList

%if

=

freeTextmacroCallArg

print

macroStmt

,

macroCallArgList

macroDefinition

dat

&

stmt

macroDefinitionBody

macroExprAtom macroExprAtom

run

vars

macroVariable

%then

macroExprAtom

%end

data

macroDefinitionArg

proc

literal

freeText

macroStmtDo

(

;macroExprAtom

%mend

stmt

;

macroCall

)

stmt

stmt

;

;

macroVariable

freeText

;;

dat

macroExpr

var

macroStmt

stmt

(

macroReference

macroStmt

%do

literal

literal

textNoCommaCB

Figure 4: Parse Tree of the print_dataset.sas program from outside step macro section

6Khorlo (2018)

10

https://documentation.sas.com/?docsetId=lefunctionsref&docsetTarget=p09dcftd1xxg1kn1brnjyc0q93yk.htm&docsetVersion=9.4&locale=en
https://saslint.com

By walking this tree, we collect information out of it and build a dependency graph and identify
the type of each macro:

print_dataset.sas attrib.sas exist_dataset.sas

print_dataset attrib exist_dataset

main.sas

Figure 5: Dependency Graph of the input

After identifying types of the macros, we walk the tree again using the visitor pattern
and output Lua statements instead of SAS Macro statements. Below is the visitor for
%IF-%THEN/%ELSE Statement:

@Override
public String

visitMacroStmtIfWithElse(SASMacroParser.MacroStmtIfWithElseContext ctx) {

String evalMacroExpr = visit(ctx.macroExpr());
String evalStmtThen = visit(ctx.stmt(0));
String evalStmtElse = visit(ctx.stmt(1));
String r = "if " + evalMacroExpr + " then\n" +

" " + evalStmtThen + "\n" +
"else\n" +
" " + evalStmtElse + "\n";

return r;
}

The transpiler can be tried at https://saslint.com/sasmacro2lua.

ACKNOWLEDGMENTS

I want to thank Nikola Marković who inspired myself and showed that incredible performance
difference between Lua and SAS macro during the debut SAS User Group Germany Meetup in
Berlin7.

The ESM software was kindly provided by Boemska for the performance profiling purposes in
the scope of this paper – this made the comparison of PROC LUA and SAS macro an easy and
enjoyable experience.

CONTACT

Igor Khorlo – igor.khorlo@gmail.com

7SUGG (2018)

11

https://documentation.sas.com/?docsetId=mcrolref&docsetTarget=n18fij8dqsue9pn1lp8436e5mvb7.htm&docsetVersion=9.4&locale=en
https://www.linkedin.com/in/nikmarkovic/
https://boemskats.com/esm/
https://boemskats.com/
mailto:igorkhorlo@gmail.com

REFERENCES

Hale, Rowland (2018a): PROC LUA and why you should know it. 2018, URL: http://www.
pharmasug.org/china/2018/workshop.html [Accessed: 23.3.2019]

Hale, Rowland (2018b): PROC LUA and why you should know it (workshop materials). 2018,
URL: https://github.com/rowland2425/Lua_PharmaSUG_China_2018 [Accessed: 23.3.2019]

Khorlo, Igor (2018): SASLint: A SAS® Program Checker. In: SAS® Global Forum 2018
Proceedings, 2018, URL: https://www.sas.com/content/dam/SAS/support/en/sas-global-foru
m-proceedings/2018/2543-2018.pdf [Accessed: 23.3.2019]

SAS, Institute Inc. (2018): Base SAS® 9.4 Procedures Guide, Seventh Edition: LUA Pro-
cedure. 2018, URL: https://documentation.sas.com/?docsetId=proc&docsetTarget=p0lqta2c
bq9b44n12h28nil7a093.htm&docsetVersion=9.4&locale=en [Accessed: 23.3.2019]

SUGG (2018): Debut SAS User Group Germany Meetup in Berlin. 2018, URL: https:
//www.sasusergroups.org/meetup/sugg/2018/09/14/sugg-debut-meetup-berlin.html [Ac-
cessed: 23.3.2019]

Tomas, Paul (2015): Driving SAS® with Lua. In: SAS® Global Forum 2015 Proceed-
ings, 2015, URL: https://support.sas.com/resources/papers/proceedings15/SAS1561-2015.p
df [Accessed: 23.3.2019]

12

http://www.pharmasug.org/china/2018/workshop.html
http://www.pharmasug.org/china/2018/workshop.html
https://github.com/rowland2425/Lua_PharmaSUG_China_2018
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2543-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2543-2018.pdf
https://documentation.sas.com/?docsetId=proc&docsetTarget=p0lqta2cbq9b44n12h28nil7a093.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=proc&docsetTarget=p0lqta2cbq9b44n12h28nil7a093.htm&docsetVersion=9.4&locale=en
https://www.sasusergroups.org/meetup/sugg/2018/09/14/sugg-debut-meetup-berlin.html
https://www.sasusergroups.org/meetup/sugg/2018/09/14/sugg-debut-meetup-berlin.html
https://support.sas.com/resources/papers/proceedings15/SAS1561-2015.pdf
https://support.sas.com/resources/papers/proceedings15/SAS1561-2015.pdf

	Abstract
	Introduction
	Performance
	DO-loop (for loop)
	Iterating over a list
	Reading a data set

	Transpiling
	Outside step macro
	Inside step macro
	Pure SAS macro
	Final look of the tool
	Architecture

	Acknowledgments
	Contact
	References

