
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. 

 



Application of Command-Line Interface Tools to Workflows Based on SAS® 
Boone Tensuda and Shahriar Khosravi 

BMO Financial Group, Canada 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. 

 

Abstract 

This e-poster showcases some of the potential applications of the command-line interface tools 

typically found within operating systems based on Linux to workflows built on SAS®. By 

executing SAS from the command line, a plethora of tools become available to the user. Some 

tools that are explored in this presentation are Bash, rsync, and Make. We demonstrate the 

application of these tools through individual examples for tasks such as automated code 

execution, scheduling, backup, and parallelization with SAS. The integration of the tools for 

advanced applications, such as automated software testing and dynamic parallelization, are also 

presented. Practical examples highlight the simplicity of implementation and potential efficiency 

improvements associated with these tools for typical SAS applications. 

 

Motivation 

Executing SAS scripts/workflows from the command line interface (CLI) allows the user to 

leverage 100s of supporting CLI tools. These tools accomplish helpful tasks such as: running 

processes in the background, scheduling processes, creating “sandbox” environments, 

automation, parallelization, and text parsing. Although these features overlap with various SAS 

products to some extent, they have several advantages. They are free and accessible, easy to 

integrate, stable, and purpose driven, which leads to simple use and integration with SAS driven 

workflows. 

 

How to Run SAS from the CLI 

1. Gain access to the system on which SAS is installed (e.g. using ssh). 

2. Determine the location of the SAS executable file. You may use the SAS “PATH” option to 

determine this (see example to the right using SAS Enterprise Guide). 

3. Run the SAS command found in step 2 followed by the SAS script name. 

4. Two files will be output; .log and .lst, which contain the resulting SAS log and report, 

respectively. 

1 

Bash Scripting 

• Combine SAS scripts and Linux commands into one “master” script. 

• Bash scripts are clear, repeatable, transferable, and version controllable (e.g. with Git). 

• The pipe character “|” in the last line of the script is used to send the output of one command 

directly to another command. 

 

2 

3 

4 

Example 1 



Application of Command-Line Interface Tools to Workflows Based on SAS® 
Boone Tensuda and Shahriar Khosravi 

BMO Financial Group, Canada 

Remote Execution via Background Processes 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. 

 

• Big data operations using SAS often require the user to submit a query or script to the server 

via SAS Enterprise Guide™ for it to run overnight. 

• This poses a challenge for the user because if the SAS Enterprise Guide session is terminated 

for any reason (e.g. local power outage or a surprise restart), then the query will be killed, and 

the user may lose a day of work. 

• One solution to mitigate this risk is to use the “nohup” tool in Linux in order to execute a SAS 

query .This will submit the process to the background, such that it will be executed on the 

server regardless of what happens to the user’s local machine: 

Scheduling Jobs 

• Users can easily schedule jobs to be executed at specific times. 

• For example, if the user would like to schedule the “demo.sas” query at 1:30pm today, all that 

is required is: 

• In the above example, “<EOT>” marks the end of the list of jobs to be executed, and could be 

inserted by Ctrl+D. 

• Any number of commands may be entered between the “at” command and  the “<EOT>”. 

Sandboxing – Part 1 

• When running queries on large datasets, it may be helpful to limit the amount of memory (RAM 

and ROM) and CPU resources that a SAS script has access to. 

• An obvious and important reason for limiting resources is to avoid causing widespread server 

outages due to possible bugs in the script. 

• One useful tool is “prlimit” that allows the user to limit output file size, for instance: 

Example 1 

Example 2 

Example 3 

Parsing SAS Log Files with AWK 

• A powerful CLI pattern scanning and processing language for extracting information and data 

from raw text files is “awk”. 

• One useful application of “awk” in SAS programming is extracting notes, warnings, or errors 

from large or numerous log files produced by complex SAS scripts. 

• Log files from SAS (or other applications) are typically structured in a predictable way, as 

demonstrated in Example 4. 

NOTE :  This is a note 

NOTE :  This is another note 

WARNING : This is a warning 

WARNING : Pay attention to warnings 

ERROR :  SEG FAULT 

NOTE :  I’m sorry  

Example 4 • In this example, the columns of text on the left- 

and right-hand sides may be referenced in “awk” 

by Column Identifiers “$1” and “$2”, respectively. 

Subsequent columns may similarly be referenced 

by “$3”, “$4”, etc. 

• Each column of text is separated from the next 

by a Field Separator. In Example 4, the Field 

Separator is the colon punctuation mark (:). 

• The anatomy of a one-line “awk” command is 

shown below in Example 5. 

$1 $2 

Example 5 

Field Separator Column Identifier 

• Example 6 is a one-line “awk” command to grab only warnings from the log. 

• In this example, the condition is if the first column of the text is equal to WARNING. As such, 

the command will print the second column only if the first column is equal to WARNING. The 

output of the command is also shown. 

Example 6 

NOTE :  This is a note 

NOTE :  This is another note 

WARNING : This is a warning 

WARNING : Pay attention to warnings 

ERROR :  SEG FAULT 

NOTE :  I’m sorry  

$1 $2 



Boone Tensuda and Shahriar Khosravi 

BMO Financial Group, Canada 

Automated Testing 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. 

 

• Regression/consistency testing is often an important requirement in software release 

management cycles. 

• For instance, comparing the output of two different code bases contained in different Git tags 

or branches may be required to ensure that both code bases produce consistent results.  

• Without any automation, this may be a cumbersome task since it involves manually switching 

between Git tags or branches before executing each code base. 

• This may be automated by coding the Git commands inside a Linux Bash script, as 

demonstrated in the Example 1. 

Example 1 

Example 2 

Example 3 

Example 4 

• In this example, “GITPATH” and 

“SCRIPTPATH” are the paths to the location 

of the Git repository and the test script (i.e. 

the SAS script containing the code for 

regression/consistency tests), respectively. 

• Standard Git commands may be used inside 

of the Bash script to checkout different 

branches or a specific tag. 

• The next step is to execute the SAS script 

for the regression/consistency test inside 

the Bash script, as shown in Example 2. 

• The output dataset from the baseline code 

may be renamed, such that it does not get 

overwritten by the next execution, as shown 

in Example 3. 

• The next step is to checkout the comparison 

branch from the Git repository and execute 

the test script, as shown in Example 4. 

• The new output may be renamed to 

distinguish it from the baseline results.  

• Finally, another SAS script may be called to 

compare the two outputs and publish the 

results in a report. 

Sandboxing – Part 2 

• Another sandboxing strategy would be to use a combination of CLI tools inside a Bash script in 

order to monitor the size of the current SAS work directory. 

• A useful tool for monitoring the size of the work directory inside a Bash script is “du”. 

• In the example below, “du” is used along with “tail” and “awk” in order to extract only the 

folder size. 

Example 4 

• The current SAS work directory and its size can be obtained using a combination of command 

line tools inside a Bash script, as demonstrated below: 

 

 

Example 5 

• In the same Bash script, triggers may be defined for violating a user-specified workspace size 

and time limit. 

• The triggers could then be used in a loop in order to check the directory size and time limit 

periodically, as demonstrated below: 

 Example 6 

• In this case, if either of the triggers are set equal 

to 1 inside the “while” loop, the SAS process 

could be killed within the same Bash script: 

Example 7 

Application of Command-Line Interface Tools to Workflows Based on SAS® 



Application of Command-Line Interface Tools to Workflows Based on SAS® 
Boone Tensuda and Shahriar Khosravi 

BMO Financial Group, Canada 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. 

 

Make 

• Make is a CLI tool that will automatically optimize, organize, and parallelize your SAS 

workflows. 

• Simply write one extra file (Makefile), see below. 

• The format of the command is “make” followed by the desired target. The “-j” option can be 

used to specify the number of CPUs. 

 

Make Features 

• Make can distinguish between different sections of workflows. For example, “all: 

outputAB outputC” in the example below will only execute functions required to 

generate those outputs (in this case all functions). 

• Make will not perform redundant work, for example, if only inputC has changed, 

only F(C) will be executed. 

• Make can combine inputs/outputs of different programs into one workflow, for 

example F(A) and F(B) could be SAS scripts, while F(AB) is a Python script.  

• Make will automatically parallelize the workflow (with the –j option). In the 

example below F(A), F(B), and F(C) will be executed independently and distributed 

to different processors (F(AB) will not be since it depends on the output of F(A) and 

F(B)). 

 

Example 1 

Makefile 

• Has a very simple structure; write the input, output (target), and how to go from input to output 

(function). In the example below “all” is a “dummy” target, which means a file called “all” is not 

actually created. 

Example 2 



Application of Command-Line Interface Tools to Workflows Based on SAS® 
Boone Tensuda and Shahriar Khosravi 

BMO Financial Group, Canada 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. 

 

Parallelization of Analysis 

• Even in this simple example, the “-j” option to parallelize leads to twice as fast execution of the 

extraction and analysis workflows: 

 

Extracting Data with rsync 

• rsync is a CLI tool for efficient copying and archiving of files. 

• It has the power to prevent unnecessary data transfer, using file hashes, modification times, 

and file sizes. 

Make Application 

• This example workflow contains several stages; extracting data from some source location, 

performing analysis, and testing the output. 

• The extraction and analysis of source_A and source_B are independent, however the final 

results are expected to be equivalent. 

Automated Testing 

• The “test” workflow will run a SAS script which compares the output_a and output_b SAS 

datasets and displays the “NOTE:” lines from the PROC COMPARE report . 

Passed ✓ 

Example 1 

Extract Optimization 

• Make will automatically check the modification time of the “input” files to prevent unnecessary 

work. 

• Example: The “extract”  dummy target is executed, but none of the source files have changed:  

Example 4 

Example 2 

Serial execution Parallel execution 
Example 3 



SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. 

 


