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ABSTRACT  

With vast amounts of data, the infrastructure demands for advanced analytics is ever 
increasing. There are a class of analytic problems like optimization, forecasting, machine 
learning in domains of retail, finance, and other verticals, where the problem could be 
broken down into smaller sub-problems. Example, in retail; assortment by store, or price 
optimization by category, in finance; security portfolio optimization by industry, the entire 
problem is broken down into subset of smaller jobs. In this paper we present orchestrating 
these jobs on Kubernetes, GKE powered by Google Cloud Platform (GCP). We marry the 
best in analytics; SAS®, with the best in container orchestration, GKE, to build a robust 
solution to manage analytic workloads. The solution will have the following properties: 
scalable, performant, elastic, cost efficient and simple to deploy. 

INTRODUCTION  

Containers are becoming the currency of deployment. Enterprises are increasingly running 
container technologies in production. GKE is a container orchestration system that 
automates the deployment, management, scaling, networking and availability. In this paper 
we introduce analytic, storage, compute and orchestration subsystems. At the end, an 
integrated view of subsystems is presented, that enables orchestration of SAS® analytic 
workloads on GKE. This paper assumes that the reader has knowledge of Kubernetes. To 
make this easier to follow, a problem is defined and then a solution is designed using 
Kubernetes. 

PROBLEM STATEMENT 

A retailer is planning to make decisions on SKU’s to be included in the product portfolio, 
based on current inventory levels. The objective is to identify substitutes for products. A 
retailer will have a hierarchy of products and locations. In this problem the decisions are at 
city and sub-class level. Data pipelines, which have run on a daily basis, have already pre-
partitioned inventory and sales data at sub-class level and city level and persisted the data 
on cloud storage (GCS). One of the analytic components, is to run a decision tree model 
across these hierarchies. 

ANALYTIC SUBSYSTEM 

From the problem statement, a SAS Viya ML decision tree model is evaluated at the retailer 
hierarchies. There are two containers that are part of the analytic system which run in a 
single pod. The containers are the following: 

1) The SMP CAS container 

2) A python container which uses the swat library to connect to CAS and run the 
decision tree model. 

The following is the deployment file 
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--- 

apiVersion: apps/v1beta1 

kind: Deployment 

metadata: 

  name: gcs 

  labels: 

    app: gcs 

spec: 

  replicas: 1 

  strategy: 

    rollingUpdate: 

      maxSurge: 1 

      maxUnavailable: 1 

    type: RollingUpdate 

  template: 

    metadata: 

      labels: 

        app: gcs 

    spec: 

      containers: 

      - name: gcs-container 

        image: gcr.io/sgf-sas-on-k8/cas-viya-job 

        imagePullPolicy: IfNotPresent 

        securityContext: 

          privileged: true 

          capabilities: 

            add: 

              - SYS_ADMIN 

        lifecycle: 

          postStart: 

            exec: 

              command: ["gcsfuse", "sask8queue", "/etc/gcs"] 

          preStop: 

            exec: 

              command: ["fusermount", "-u", "/etc/gcs"] 
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      - name: python-swat-container 

        image: gcr.io/sgf-sas-on-k8/python-swat-container 

        imagePullPolicy: Always        

 

STORAGE SUBSYSTEM 

All analytic systems process large volumes of data. Most analytic data are stored in object 
storage like GCS, or persistent disks. They are inexpensive, durable and highly available. 
Kubernetes provides a neat abstraction between storage and compute. This delineation 
helps in scaling on-demand compute independent of storage. Kubernetes refers to storage 
as persistent volumes. https://kubernetes.io/docs/concepts/storage/persistent-volumes   
explains them in detail. Dynamic binding of persistent disks based on store number, user 
profile or any other criterion can be achieved using persistent volume claims (PVC). Local 
SSD’s will serve as CAS cache for high throughput.  The storage subsystem designed here 
will have the following types of volumes: 

1. GCS Fuse Mount – This will mount a GCS bucket to all containers in the pod. This is a 
durable storage. It will serve as a repository for analytic data mart.  

When using object storage like GCS, one would need to logically partition the data that 
maps to business use cases. From the problem statement, data has been pre-partitioned at 
the city-subclass level. There are other storage options to leverage with GKE. 

 

 

MESSAGE PIPELINE SUBSYSTEM 

The objective of an analytic job is to crunch data and produce results, to enable decision 
making. Clients invoke these analytical jobs. Clients could be users, user interfaces or 
machines. We abstract the client concept, by introducing a queue. In this queue clients 
publish messages that carries instructions which identifies: 

1) Sub-class of the product hierarchy 

2) City location of the location hierarchy 

3) Dynamic variables and model parameters 
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Google Pub Sub ( https://cloud.google.com/pubsub/docs/overview ), provides that 
infrastructure, to deliver messages in a reliable and idempotent way. Messages can be in 
any format that the analytic system can understand. JSON is a format that makes the 
message easily readable and can be designed to conform to a schema. The following JSON 
schema has an instruction set to run decision tree model for the city – Dallas and for the 
sub-class – Culinary whose ID is 124901. It also describes model parameters which need to 
be used for tuning the model. 

{ 

 "city": "Dallas", 

 "sub-class": "Culinary", 

 "sub-class-id": "124901", 

 "model_params": { 

  "maxEvals": 50, 

  "maxIters": 5, 

  "maxTime": 3600, 

  "popSize": 10, 

  "randomSeed": 445 

 } 

} 

 

COMPUTE SUBSYSTEM 

In Kubernetes one can create a cluster that meets the needs of the underlying analytical 
process. Examples: 

1) If it is an optimization process – the cluster needs to be built on multi-core CPU’s. 

2) Machine learning on SAS Viya – powerful multi-core CPU and a large amount of memory 
should characterize the underlying clusters.  

A Kubernetes cluster is a collection of VMs. This process of creating a cluster in GKE is 
explained in detail here. https://cloud.google.com/kubernetes-engine/docs/how-to/creating-
a-cluster 

 

SECURITY 

GKE has security at node level, network level and at the control plane level. At the control 
plane level, the cluster can be hosted on private clusters and master authorized networks. 
Ingress and egress communication can be controlled by managing network policies in a 
namespace hosting the pods. 
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KUBERNETES Compute Elasticity 

In the approach presented here we scale the analytic pod horizontally, based on number of 
messages in the message pipeline. The replication controller manages the number of 
analytic pods based on number of messages (analytic job instructions) in the queue. 

https://cloud.google.com/kubernetes-engine/docs/tutorials/external-metrics-autoscaling 
describes the horizontal pod scaling set up. 

 

 

 

 

 

ORCHESTRATION SUBSYSTEM 

The orchestration system unifies the storage, compute and message pipeline tiers. The 
instructions carried in the message pipeline are executed by SAS Viya containers. The 
number of SAS Viya containers changes based on the load on the system.  

 

Figure 1: Flow diagram of SAS Viya on Kubernetes – processing analytical workloads 

CONCLUSION 
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SAS® VIYA REST API’s and its support for Python makes it an open platform. Its support for 
containers makes it compatible with container platforms like Docker Swarm, Kubernetes and 
AWS Batch. The presentation here highlights how enterprises can execute SAS analytical 
workloads in a cloud native way. Using containers as a deployment currency along with 
dynamic storage management and elastic compute creates a solid foundation to manage 
analytic workloads and build idempotent pipelines. In addition, the solution presented here 
is cost efficient and simple to deploy. 
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