
1

Paper 3733-2019

SAS® on Kubernetes: Container Orchestration of Analytic Work
Loads

Sumanth Yamala, Core Compete

ABSTRACT

With vast amounts of data, the infrastructure demands for advanced analytics is ever
increasing. There are a class of analytic problems like optimization, forecasting, machine
learning in domains of retail, finance, and other verticals, where the problem could be
broken down into smaller sub-problems. Example, in retail; assortment by store, or price
optimization by category, in finance; security portfolio optimization by industry, the entire
problem is broken down into subset of smaller jobs. In this paper we present orchestrating
these jobs on Kubernetes, GKE powered by Google Cloud Platform (GCP). We marry the
best in analytics; SAS®, with the best in container orchestration, GKE, to build a robust
solution to manage analytic workloads. The solution will have the following properties:
scalable, performant, elastic, cost efficient and simple to deploy.

INTRODUCTION

Containers are becoming the currency of deployment. Enterprises are increasingly running
container technologies in production. GKE is a container orchestration system that
automates the deployment, management, scaling, networking and availability. In this paper
we introduce analytic, storage, compute and orchestration subsystems. At the end, an
integrated view of subsystems is presented, that enables orchestration of SAS® analytic
workloads on GKE. This paper assumes that the reader has knowledge of Kubernetes. To
make this easier to follow, a problem is defined and then a solution is designed using
Kubernetes.

PROBLEM STATEMENT

A retailer is planning to make decisions on SKU’s to be included in the product portfolio,
based on current inventory levels. The objective is to identify substitutes for products. A
retailer will have a hierarchy of products and locations. In this problem the decisions are at
city and sub-class level. Data pipelines, which have run on a daily basis, have already pre-
partitioned inventory and sales data at sub-class level and city level and persisted the data
on cloud storage (GCS). One of the analytic components, is to run a decision tree model
across these hierarchies.

ANALYTIC SUBSYSTEM

From the problem statement, a SAS Viya ML decision tree model is evaluated at the retailer
hierarchies. There are two containers that are part of the analytic system which run in a
single pod. The containers are the following:

1) The SMP CAS container

2) A python container which uses the swat library to connect to CAS and run the
decision tree model.

The following is the deployment file

2

apiVersion: apps/v1beta1

kind: Deployment

metadata:

 name: gcs

 labels:

 app: gcs

spec:

 replicas: 1

 strategy:

 rollingUpdate:

 maxSurge: 1

 maxUnavailable: 1

 type: RollingUpdate

 template:

 metadata:

 labels:

 app: gcs

 spec:

 containers:

 - name: gcs-container

 image: gcr.io/sgf-sas-on-k8/cas-viya-job

 imagePullPolicy: IfNotPresent

 securityContext:

 privileged: true

 capabilities:

 add:

 - SYS_ADMIN

 lifecycle:

 postStart:

 exec:

 command: ["gcsfuse", "sask8queue", "/etc/gcs"]

 preStop:

 exec:

 command: ["fusermount", "-u", "/etc/gcs"]

3

 - name: python-swat-container

 image: gcr.io/sgf-sas-on-k8/python-swat-container

 imagePullPolicy: Always

STORAGE SUBSYSTEM

All analytic systems process large volumes of data. Most analytic data are stored in object
storage like GCS, or persistent disks. They are inexpensive, durable and highly available.
Kubernetes provides a neat abstraction between storage and compute. This delineation
helps in scaling on-demand compute independent of storage. Kubernetes refers to storage
as persistent volumes. https://kubernetes.io/docs/concepts/storage/persistent-volumes
explains them in detail. Dynamic binding of persistent disks based on store number, user
profile or any other criterion can be achieved using persistent volume claims (PVC). Local
SSD’s will serve as CAS cache for high throughput. The storage subsystem designed here
will have the following types of volumes:

1. GCS Fuse Mount – This will mount a GCS bucket to all containers in the pod. This is a
durable storage. It will serve as a repository for analytic data mart.

When using object storage like GCS, one would need to logically partition the data that
maps to business use cases. From the problem statement, data has been pre-partitioned at
the city-subclass level. There are other storage options to leverage with GKE.

MESSAGE PIPELINE SUBSYSTEM

The objective of an analytic job is to crunch data and produce results, to enable decision
making. Clients invoke these analytical jobs. Clients could be users, user interfaces or
machines. We abstract the client concept, by introducing a queue. In this queue clients
publish messages that carries instructions which identifies:

1) Sub-class of the product hierarchy

2) City location of the location hierarchy

3) Dynamic variables and model parameters

4

Google Pub Sub (https://cloud.google.com/pubsub/docs/overview), provides that
infrastructure, to deliver messages in a reliable and idempotent way. Messages can be in
any format that the analytic system can understand. JSON is a format that makes the
message easily readable and can be designed to conform to a schema. The following JSON
schema has an instruction set to run decision tree model for the city – Dallas and for the
sub-class – Culinary whose ID is 124901. It also describes model parameters which need to
be used for tuning the model.

{

 "city": "Dallas",

 "sub-class": "Culinary",

 "sub-class-id": "124901",

 "model_params": {

 "maxEvals": 50,

 "maxIters": 5,

 "maxTime": 3600,

 "popSize": 10,

 "randomSeed": 445

 }

}

COMPUTE SUBSYSTEM

In Kubernetes one can create a cluster that meets the needs of the underlying analytical
process. Examples:

1) If it is an optimization process – the cluster needs to be built on multi-core CPU’s.

2) Machine learning on SAS Viya – powerful multi-core CPU and a large amount of memory
should characterize the underlying clusters.

A Kubernetes cluster is a collection of VMs. This process of creating a cluster in GKE is
explained in detail here. https://cloud.google.com/kubernetes-engine/docs/how-to/creating-
a-cluster

SECURITY

GKE has security at node level, network level and at the control plane level. At the control
plane level, the cluster can be hosted on private clusters and master authorized networks.
Ingress and egress communication can be controlled by managing network policies in a
namespace hosting the pods.

5

KUBERNETES Compute Elasticity

In the approach presented here we scale the analytic pod horizontally, based on number of
messages in the message pipeline. The replication controller manages the number of
analytic pods based on number of messages (analytic job instructions) in the queue.

https://cloud.google.com/kubernetes-engine/docs/tutorials/external-metrics-autoscaling
describes the horizontal pod scaling set up.

ORCHESTRATION SUBSYSTEM

The orchestration system unifies the storage, compute and message pipeline tiers. The
instructions carried in the message pipeline are executed by SAS Viya containers. The
number of SAS Viya containers changes based on the load on the system.

Figure 1: Flow diagram of SAS Viya on Kubernetes – processing analytical workloads

CONCLUSION

6

SAS® VIYA REST API’s and its support for Python makes it an open platform. Its support for
containers makes it compatible with container platforms like Docker Swarm, Kubernetes and
AWS Batch. The presentation here highlights how enterprises can execute SAS analytical
workloads in a cloud native way. Using containers as a deployment currency along with
dynamic storage management and elastic compute creates a solid foundation to manage
analytic workloads and build idempotent pipelines. In addition, the solution presented here
is cost efficient and simple to deploy.

REFERENCES

https://kubernetes.io/docs/home/

https://github.com/sassoftware/sas-viya-programming

ACKNOWLEDGMENTS

I would like to thank Srikanth Yadav Dodlakadi, for his contribution towards building the
infrastructure.

RECOMMENDED READING

 Pod Scaling - https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

 Container Recipes - https://github.com/sassoftware/sas-container-recipes

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Sumanth Yamala
Core Compete
sumanth.yamala@corecompete.com

