
1

Paper 3725-2019

Embracing the open API ecosystem to give analytics an organizational
operational landing spot

Olivier Thierie, Wouter Travers, and Andrew Pease, Deloitte Belgium.

ABSTRACT

Organizations often struggle to make strategic insights actionable. Powerful analytics,

available at key operational decision points, can make the difference. An example of such a

case was to determine occupancy of key docks at a major international seaport, using

object detection techniques on the camera feeds. In order to leverage such strategic

insights throughout the organization, a major hurdle is to deploy analytics in the key

operational systems.

With Viya, SAS® has embraced the open source community with open source analytics

integration and the open API ecosystem. This paper will demonstrate how to leverage CAS

for image recognition from within Python and how-to set-up a kappa architecture using

Kafka to publish results in real-time to organizational systems like SAP® and Salesforce®.

The focus in the paper is on the integration of open source and SAS® analytics in these two

systems, rather than on the specific use case.

That said, we begin with a short description of the business use case.

INTRODUCTION

Increasingly global naval ports reach full capacity with limited or prohibitively costly

expansion possibilities. Preparing an efficient planning of berth allocation is not an easy task

for the port authority. Many factors need to be considered, such as the number of available

free anchoring berths and the schedules of the seagoing vessels and barges. Detailed and

real-time insight into this information offers opportunities for optimizing quay utilization,

reducing transshipment time, maximizing crane usage and efficiently transporting and

storing containers. This leveraging of camera feeds to increase dock utilization within a

berth served as an ideal use case for demonstrating how SAS® Viya can be leveraged as the

main analytics backbone within a Kappa, open API architecture1.

Apache Kafka is an open source, distributed streaming platform that is designed for a Kappa

architecture. Apache Kafka focuses on scalable, real-time, processing of data [1]. Further in

the paper, we will discuss our rationale for choosing Kafka, instead of SAS®’ own Event

Stream Processing engine. Software vendors are increasingly integrating Kafka in their

framework architecture by providing open source connectors.

The established operational systems we chose to integrate were SAP® and Salesforce®. In

the context of SAP®, we chose to stream data to HANA® making use of their Kafka-Connect-

SAP framework. As Salesforce® does not have such a connector yet, we wrote our own

solution to stream messages to Salesforce. To make our solution more visible, we also

1 Kappa architecture: Lambda architecture consolidated into a single computation model that handles batch
processing as a lower frequency stream.

2

provided a Python Flask web application that streams consumed images immediately to the

web application.

Our experience indicates that Kafka is a sound choice for integrating different software

within the company architecture, while handling high volumes and real time streaming.

METHODOLOGY – ARCHITECTURE

Our solution blends various cloud technologies. The process starts with images from a

camera feed. The SAS® Viya server picks them up and passes them to the CAS scoring

code. After scoring the image, bounding boxes are retrieved, KPI’s get calculated, they are

put into an AVRO message and passed to the Kafka producer that produces to our Kafka

topic. Three different consumer groups are listening to the topic and grasp asynchronously

the messages which were stored on the Kafka topic. Within this set-up, we decided to go for

a Confluent Kafka platform to leverage the Avro schema registry capabilities and the usage

of open source connect apps. Every message is also stored on our Kafka Cluster for a

limited period of time. At the moment of consumption, the full message is pushed to SAP

HANA®, KPI Fields are pushed to Salesforce® and so we have a flask app running that is

able to stream the pictures in real time. The pictures are shown a single time and when

nothing is fed to the flask app, a default picture is shown. In the following section, we

review the core components of our solution. Figure 1 visualizes the entire, cloud-based

solution. The code of our solution can be found here [2].

Figure 1: Architectural overview

3

CONFLUENT KAFKA ON AWS®

The Kafka cluster is the core component of our solution. We make use of the open-source

framework of Confluent Kafka, deployed on the managed cloud infrastructure of AWS®.

We prefer the open-source version of Confluent® Kafka (5.0.0) because it contains some

tools that make Apache Kafka easier to use. In particular, the Avro Schema Registry and

the python client are two vital components for our solution. Furthermore, Confluent®

provides a deployment guide on AWS®, which makes configuration and installation of

Confluent® Kafka easier, scalable and manageable. In the following paragraphs, we will

discuss the setup of our PoC (Proof of Concept) cluster, our current configuration, and

finally we explain why we decided to make use of Kafka instead of SAS Event Stream

Processing®.

DEPLOYING CONFLUENT KAFKA ON AWS

The Confluent platform is a streaming platform for large-scale distributed environments,

built on Apache Kafka. The Platform enables you to connect interfaces and data systems, so

you can leverage upon integrated, real time information [3].Confluent provides a step by

step guide to deploy a proper virtual private cloud (VPC) on AWS®. The Initial set-up

provides a VPC as shown in Figure 2.

Figure 2: Default Confluent Kafka cluster set up

4

MINIMIZING COSTS IN A POC SETUP

As we built our Proof-of-Concept, we did not choose the plain vanilla setup2. We scaled

down the VPC deployment where possible and to settle on a single m4.large machine which

functions concurrently as the Worker, Broker and Zookeeper node. This set-up would not be

recommended in a production environment and was only done to minimize costs for the

PoC. Also, in order to have no firewall issues on the AWS® side, we allowed all traffic by

configuring the Network Access Control List (ACL) and the security groups applied on the

EC2 instance. This obviously is also not a production best practice.

SERVICES USED IN THE POC CLUSTER

Confluent provides a straightforward way to manage your Kafka services by using the

confluent command. In our case, we decided to deploy our services manually in separate

screens:

[centos@ip-xx-x-xxx-xxx ~]$ screen -list

There are screens on:

 5759.30716.HanaLink (Detached)

 31870.hannaConnector (Detached)

 24291.schema-registry (Detached)

 12586.broker (Detached)

 12293.zookeeper (Detached)

This allows us to have more control about used properties, accessibility and more visible

error handling. In the subsequent subsections, we will give you an overview of different

services. The HanaLink and HanaConnector will also be discussed further in this paper.

Zookeeper

Apache ZooKeeper is a centralized service for maintaining configuration information,

naming, providing distributed synchronization, and providing group services. All these kinds

of services are used in some form or another by distributed application [4]. In context of

Kafka, ZooKeeper is used to store persistent cluster metadata. In a production environment

it is recommended to run an ensemble of at least 3 zookeeper servers [5]. We started by

invoking one Zookeeper service within a screen. As Zookeeper is only used by Kafka

internally, we did not change anything to the property configuration.

Kafka Broker

A Kafka Cluster exists out several Kafka brokers. The brokers contain the topic log

partitions. The required set-up with at least three to five different brokers is considerable

task [6]. In our PoC setup, we deployed only one Kafka broker in a screen. As we required

access to our broker externally, we changed the listeners’ properties with the

advertised.listeners [1]:

advertised.listeners=PLAINTEXT://ec2-XX-XXX-XXX-XXX.us-west-

2.compute.amazonaws.com:9092

The used address is the public DNS of our EC2 instance. If we would have used the default

option, the external client will not be able to find the brokers. A more production-suitable

set-up would consist of multiple machines and brokers.

2 The setup suggested by the deployment guide of Confluent Platform on AWS

5

Avro Messages

Data flows as AVRO messages through our cluster. Apache AVRO is a data serialization

system that is compact, fast and is a binary data format. A written AVRO message comes

with a schema. This ensures a readability of an AVRO message when it is read or stored.

AVRO Schemas are defined in JSON [7]. As we are using Confluent Kafka, it is convenient to

manage your schemas. The schema registry allows schema’s to evolve over time while

ensuring compatibility. Our AVRO schema has the following configuration, the configuration

itself will be discussed in a subsequent section:

deloitte_kafka_schema = avro.loads("""

{"namespace": "be.deloitte.kafka",

 "type": "record",

 "name": "Image",

 "fields": [

 {"name": "imageId" , "type": "string"},

 {"name": "timestamp", "type": { "type": "long", "logicalType":

"timestamp-millis" }},

 {"name": "numOfBoats", "type": "int"},

 {"name": "occupancyRate", "type": "double"},

 {"name": "image", "type" : "string"}

]

 }

""")

Schema Registry Service

Data is produced by a Kafka producer towards a Kafka topic and a Kafka consumer will read

data from a topic. Data written by producers should be readable by consumers. These

schemas can evolve over time. The Schema Registry provides centralized schema

management ensures the compatibility [8].

The Schema registry is a distributed storage layer for Avro Schemas, by using the schema

registry, you have access to the versioned history of your schemas. It provides a plugin to

clients that handles schema storage and retrieval for messages that are sent in Avro format.

The schema registry is often used in Kafka connect (e.g. kafka-connect-sap). The Schema

Registry comes with a REST API that can be used to manage your schemas. The schema

registry was also deployed in a screen.

6

Topics, consumer groups and retention policy

Our AVRO message is produced towards the “deloitteKafka” topic, again as we are in proof

of concept environment, we did not allow for replication and partitioning. Also, we adapted

the storage time of approximately 3.5 hours. The commands that ensure the stated facts

can be found below:

bin/kafka-topics --zookeeper localhost:2181 --create --replication-factor 1

--partitions 1 --topic deloitteKafka

bin/kafka-configs --zookeeper localhost:2181 --entity-type topics --

entity-name deloitteKafka --alter --add-config retention.ms=12800000

KAFKA VS SAS EVENT STREAM PROCESSING®

The goal of this paper was demonstrating the integration of SAS® Viya within a broader

corporate IT-infrastructure. In this context, we decided to integrate exported results coming

from a SAS® Viya environment with other big vendor tools such as SAP® and Salesforce®. In

this way, the whole landscape can benefit from SAS® Viya’s capabilities. Since we already

had experience with Kafka, and the focus is on integration, Kafka was chosen as the tool to

stream the processed predictions towards other systems. Kafka allows proprietary vendors

to write their own Kafka Connectors. Otherwise, because of the scala and python api’s, it is

also relatively simple to write your own solution when such an out-of-the-box solution is not

available.

CONFLUENT® KAFKA LIBRARIES

As mentioned Confluent Kafka provides both Scala and Python APIs. This provides much

flexibility towards the developer and enforces creative solutions. In context of this PoC and

resulting paper, we wrote a simple framework focused on this particular use case. The Scala

framework is able to consume messages and pass them to Salesforce’s® REST API. The

Python framework is also able to produce, process and consume the messages. Both

Frameworks contain an object that handles all configuration related to Kafka. This

configuration is then passed to the particular object that produces, consumes and/or

processes data.

SAS VIYA ON AWS

DEPLOYING SAS® VIYA ON AWS®

In order to deploy SAS® Viya on AWS®, we followed the quick-start guide that is available

on Amazon Web Services [9]. Again, all security settings were minimized to ensure simple

accessibility.

VESSEL DETECTION IN SAS® VIYA

In this use case, we are making use of computer vision to determine dock utilization. Dock

utilization is a key metric for all international ports. Effective measuring allows detailed and

real-time follow-up. Camera feeds can be used to automatically detect vessels and their

exact location on the dock, allowing this information to be made available to different

parties more quickly.

Object detection

Automatically locating objects within a camera feed of a dock can be done using object

detection techniques. In general, there are two different categories of techniques: One

stage and two stage object detection. While two stage should have a higher location

7

accuracy it’s also a slower process. As real-time object detection was required only one

stage object detection algorithms where considered. These algorithms look at a predefined

finite set of image windows and thus do not require to do region proposal first. The selection

was made to use the YoloV2 algorithm [10].

The YoloV2 deep learning architecture is predefined in SAS® Viya and can be leveraged

using the SAS® DLPy python package. In this way, we leverage on the CAS deep learning

actions. We use 8287 labelled images, based on the camera feed.

The code required to train the model in SAS® will be briefly summarized below. Please refer

to the SAS® GitHub [11]–[13] for more examples and documentation.

First, we ingest the labeled images. SAS® Viya includes action sets to translate the labelled

images between various coordinate types. The images were labelled using the VOC Pascal

coordinates

#uploading the 8000+ images and corresponding label file to a sas table

#labelling was done using the yolo coordinate type

object_detection_targets = create_object_detection_table(s,

data_path = '/opt/sasinside/DemoData/data',

 local_path = '/opt/sasinside/DemoData/data',

 coord_type = 'yolo',

 output = 'detTbl')

Next, we define the anchors. In this case we utilized the get_anchors function, provided by

SAS. This is using k-means to find your initial set:

#K-means procedure to find initial anchors

anchors=get_anchors(s,data='detTbl',n_anchors=5, coord_type='yolo')

The YoloV2 architecture is predefined in SAS®, and the full architecture can be created with

the YoloV2 function in a single step:

#set up YoloV2 architecture

model = Yolov2(

 conn=s,

 randomMutation = 'none',

 actx = 'leaky',

 coordType='yolo',

 n_classes=11,

 predictionsPerGrid=5,

 width=416,

 height=416,

 randomBoxes = False,

 softMaxForClassProb=True,

 matchAnchorSize=False,

 numToForceCoord=-1,

 rescore=True,

 classScale = 1.0,

 coordScale=1.0,

 predictionNotAObjectScale = 1,

 objectScale=5,

 detectionThreshold=0.2,

 iouThreshold = 0.1,

 act = 'LOGISTIC',

 anchors = anchors

)

8

Optimization settings and the training are done using the following syntax:

optimizer=dict(miniBatchSize=1,logLevel=3,

 maxEpochs=10, regL2=0.0005,

 algorithm=dict(method='momentum', momentum=0.9,

 clipGradMax=100, clipGradMin=-100,

 learningRate=0.0001

))

r=model.fit(data='detTbl',

 optimizer=optimizer,

 forceEqualPadding = True,

 # specify data type of input and output layers

 dataspecs=[

 dict(type='IMAGE', layer='Data', data=inputVars),

 dict(type='OBJECTDETECTION', layer='Detect1', data=targets)],

 nthreads=8)

By training the YoloV2 algorithm on more than 8000 labeled images captured from historical

camera feeds, the algorithm is capable of accurately detecting vessels in more recent

camera feeds with high accuracy. The weights and the model are afterwards saved to a

sashdat file. These files can be used to load the trained model for scoring in other sessions.

Figure 3: Object detection results on test data

9

Scoring and producing the results to Kafka

After training the YOLOV2, the model components (Yolov2.sashdat,

Yolov2_weights_attr.sashdat and Yolov2_weights.sashdat) were stored on the AWS® Viya®

server.

Within python, we defined the following functions to handle the scoring:

def viyaStartUp():

 s= CAS('xx.xxx.xxx.xxx',5570,'username','password')

 s.loadactionset('image')

 s.loadactionset('deepLearn')

 model_load = Model(s)

 model_file = '/root/fullModel/Yolov2.sashdat'

 model_load.load(path=model_file)

 test = ImageTable.load_files(conn=s, caslib='dnfs',

path='/data/xxx/validation')

 test.resize(height=416, width=416, inplace=True)

 prd = model_load.predict(data=test)

 return [s,prd]

def getTableName(predict_model_object):

 return

CASTable(predict_model_object.get('OutputCasTables').Name[0],coord_type='yolo

')

def kafkaStartUp():

 return ProducerApp(kafkaparameters= KafkaParameters(),

avroSchema=deloitte_kafka_schema, topic="kafka")

def produce_object_detections(conn, table, coord_type, producerApp):

 '''

 Plot images with drawn bounding boxes.

 conn : CAS

 CAS connection object

 table : string or CASTable

 Specifies the object detection castable to be plotted.

 coord_type : string

 Specifies coordinate type of input table

 max_objects : int, optional

 Specifies the maximum number of bounding boxes to be plotted on an

image.

 Default: 10

 num_plot : int, optional

 Specifies the name of the castable.

 n_col : int, optional

 Specifies the number of column to plot.

 Default: 2

 fig_size : int, optional

 Specifies the size of figure.

 '''

 conn.retrieve('loadactionset', _messagelevel = 'error', actionset =

'image')

 input_tbl_opts = input_table_check(table)

 input_table = conn.CASTable(**input_tbl_opts)

 det_label_image_table = random_name('detLabelImageTable')

 num_max_obj = input_table['_nObjects_'].max()

 with sw.option_context(print_messages=False):

10

 res = conn.image.extractdetectedobjects(casout = {'name':

det_label_image_table, 'replace': True},

 coordtype=coord_type,

 maxobjects=num_max_obj,

 table=input_table)

 if res.severity > 0:

 for msg in res.messages:

 print(msg)

 outtable = conn.CASTable(det_label_image_table)

 #imageRecordList = list()

 in_df = input_table.fetch()['Fetch']

 out_df = outtable.fetch()['Fetch']

 if len(out_df) == len(in_df):

 print(str(len(out_df)) + " equal table length assumption is met,

producing message buffer")

 for i in range(len(out_df)):

 imageId = str(uuid4())

 t = datetime.now()

 timestamp = round((t-datetime(1970,1,1)).total_seconds())

 nbrOfBoats = int(in_df['_nObjects_'][i])

 imgStr = out_df['_image_'][i]

 nparr = np.frombuffer(imgStr, np.uint8)

 #img_np = cv2.imdecode(nparr, cv2.IMREAD_COLOR)

 base_img = str(base64.b64encode(nparr))

 occupancy_rate = 0

 if nbrOfBoats > 0:

 surface_list = list()

 index = 5

 for ix in range(nbrOfBoats):

surface_list.append(in_df.iloc[i,index+4]*in_df.iloc[i,index+5])

 index = index + 6

 occupancy_rate = round(sum(surface_list),4)

#imageRecordList.append(ImageRecord(imageId,timestamp,nbrOfBoats,occupancy_ra

te,base_img))

 producerApp.produce(preparedMessageArray=

[ImageRecord(imageId,timestamp,nbrOfBoats,occupancy_rate,base_img)])

 with sw.option_context(print_messages=False):

 conn.table.droptable(det_label_image_table)

 from viya_utils import viyaStartUp, kafkaStartUp, produce_object_detections,

getTableName

def main():

 viya_params = viyaStartUp()

 producer = kafkaStartUp()

 produce_object_detections(viya_params[0],table=

getTableName(viya_params[1]),coord_type='yolo',producerApp=producer)

if __name__ == '__main__':

 main()

11

The main() method will connect to AWS® Viya®, load our model and predict the locations of

Vessels in the picture. Then we return the connection and predictions for later use. The

getTableName() method returns the reference of the CASTable that contains the

predictions. KafkaStartUp() will start a configured producer. Produce_object_detections is

based on the dlpy function display_object_detections [13]. We retrieve the detected objects

as a CASTable and convert the CASTable with predictions as well as the one with detected

objects to a dataframe. Then we iterate over them in order to get the number of boats, the

occupancy rate, which is the surface taken by all bounding boxes on the picture and the

image as base64 string. These are put into an ImageRecord and produced to our Kafka

cluster.

So far, the focus is on streaming an image, together with kpi’s and metadata over Kafka.

Images get scored using SAS® Viya’s CAS server in combination with python’s dlpy library.

We then retrieve the estimated bounding box coordinates, the number of recognized objects

(boats) and we approximate the occupancy rate. These KPIs are then put with the image, a

timestamp and a unique identifier (metadata) into an AVRO message. The message is then

produced and pushed towards the Kafka cluster.

In a production environment, it would be advised to send the pictures on a separate topic

solely as a byte array. We first thought of defining the image as a byte array within the

AVRO schema, but ran into conversion issues when creating a JSON file out of our AVRO

message. In order to cope with this, we convert the image into her base64-string

representation. This definitely has limitations but was sufficient of proving the purpose of

this paper.

KAFKA TO SAP HANA®

GENERAL OVERVIEW

In order to link Kafka to SAP®, we make use of the open source Apache Kafka connect

framework. This framework ensures connectivity towards external systems such as

databases, file systems, key-value stores and search indexes [14]. We use a sink connector

to ingest data from a Kafka topic towards an external system. A source connector will

stream data from an external system towards a Kafka topic.

SAP® provides an out-of-the-box connector towards HANA®. The source code is available on

GitHub [15]. By building the jars and providing the correct configuration (see below), we

can successfully ingest data into Hana. With only a trial account available on the SAP® Hana

cloud platform [16], we required some extra steps to make the connection work.

PRACTICAL SETUP

We create a Hana table within the trial version of SAP® cloud platform [16] and ensure that

the trial instance is up and running. In order to connect and modify the Hana instance, we

use the Hana “on-demand” tools, more specifically, the Java EE7 web profile SDK [17]:

Sh neo-javaee7-wp-sdk-1.40.15/tools/neo.sh open-db-tunnel

-h hanatrial.ondemand.com

-a <trialaccount>

-u <username>

-i <hanaTable>

-p <password>

12

Which results in opening a db tunnel and a usable JDBC URL:

Opening tunnel...

Tunnel opened.

Use these properties to connect to your schema:

 Host name : localhost

 Database type : HANAMDC

 JDBC Url : jdbc:sap://localhost:30015/

 Instance number : 00

Use any valid database user for the tunnel.

This tunnel will close automatically in 24 hours on 10-mrt-2019 at 13:44 or

when you close the shell.

Press ENTER to close the tunnel now.

This command is executed in a screen on our AWS Kafka cluster, and so we ensure the

connection for a 24 hour period.

In order to make SAP’s® connector work, clone the current version from GitHub and build

the project. Subsequently, create the directory confluent-5.0.0/share/java/kafka-connect-

sap and move the kafka-connect-hana.jar there. The SAP® HANA JDBC driver (jar) is also

required. Download the ngdbc-2.3.55.jar from the internet [18] and copy the jar into the

same directory. Move the configuration (sink.properties) to confluent-5.0.0/etc/kafka-

connect-sap/.

The used properties can be examined below:

name=hana-sink

connector.class=com.sap.kafka.connect.sink.hana.HANASinkConnector

tasks.max=1

topics=deloitteKafka

connection.url=jdbc:sap://localhost:30015/

connection.user=SYSTEM

connection.password=<password>

auto.create=false

schema.registry.url=http://XX. XXX.XXX. XXX:8080

deloitteKafka.table.name="SYSTEM"."KAFKA_HANA_TABLE"

The name hana-sink is used as the consumer group. We did not use the option to auto

create the table. Normally, this is a sufficient option as the table is then based on the

schema that is given by the schema registry:

CREATE COLUMN TABLE "SYSTEM"."DUMMY_TABLE" ("imageId" VARCHAR(1000) NOT

NULL, "timestamp" TIMESTAMP NOT NULL, "numOfBoats" INTEGER NOT NULL,

"occupancyRate" DOUBLE NOT NULL, "image" VARCHAR(1000) NOT NULL)

13

Although this looks convenient for auto creation, this can also cause issues. The base64

string image will often create a VARCHAR that exceeds the 1000 characters, In order to

solve this, we created the table manually by using the pyhdb API [19] in Python:

import pyhdb

connection = pyhdb.connect(

 host="localhost",

 port=30015,

 user="SYSTEM",

 password=<password>

)

cursor = connection.cursor()

cursor.execute('CREATE COLUMN TABLE "SYSTEM"."KAFKA_HANA_TABLE" ("imageId"

VARCHAR(1000) , "timestamp" TIMESTAMP , "numOfBoats" INTEGER,

"occupancyRate" DOUBLE, "image" VARCHAR(5000))')

cursor.execute("SELECT SCHEMA_NAME, TABLE_NAME FROM TABLES WHERE

SCHEMA_NAME = 'SYSTEM' AND TABLE_NAME = 'KAFKA_HANA_TABLE'")

cursor.fetchall()

[('SYSTEM', 'KAFKA_HANA_TABLE')]

In this way, we are able to ingest some of the images, when the base64 string is not

exceeding the limit of 5000 characters. This setup ensures that the connector will still ingest

the record and pass the image as “None” when the base64 string is exceeding the character

length. The connector is launched in a screen (in production, this should be running on the

worker node and preferably be distributed):

bin/connect-standalone etc/schema-registry/connect-avro-

standalone.properties etc/kafka-connect-sap/kafka-connect-sink.properties

In context of this proof of concept, this demonstrates streaming data from Kafka into a

SAP® table. In a production environment, we would suggest creating a separate producer

and schema for this case. When producing image-records by using the Python pyhdb API,

we are able to see ingested records:

cursor.execute("SELECT * FROM SYSTEM.KAFKA_HANA_TABLE ")

cursor.fetchall()

[('7fd41f50-dbd8-49d6-be8a-2a9c644ee511',

 datetime.datetime(1970, 1, 1, 0, 0, 23),

 1,

 0.5,

 None),…

cursor.execute("SELECT count(*) FROM SYSTEM.KAFKA_HANA_TABLE ")

cursor.fetchall()

[(18,)]

14

KAFKA TO SALESFORCE®

In order to make use of Salesforce®, we created an account on the EU lightning cloud

platform® [20]. The demo environment is fairly complete and we are able to make proper

use of the Salesforce components. Within Salesforce®, we created a Salesforce® object

(comparable to a table) and a Salesforce® app so we are able to connect to our Salesforce®

instance.

As there is currently no connector available to synch data from Kafka to Salesforce®, we

wrote our own solution in Scala. Our program can consume messages from Kafka,

process/filter the data and pass the fields we are interested in to salesforce by using the

Salesforce REST API. We essentially wrote a tiny framework, based on the org.apache.http

library [21], that is able to authenticate and handle the different requests in context of our

use case. The SalesforceConsumer() will consume the messages and convert them from a

JSON to a case class that only contains the relevant fields:

def salesForceConsumer(): Unit = {

 val consumer = new KafkaConsumer[String, GenericRecord](props)

 //subscribe to producer's topic

consumer.subscribe(util.Arrays.asList(KafkaParameters.DELOITTE_KAFKA_TOPIC)

)

 while(true) {

 val records: ConsumerRecords[String, GenericRecord] =

consumer.poll(2000)

 println(s"message count: ${records.count()}")

 //print each received record

 import scala.collection.JavaConversions._

 for (record <- records.iterator()) {

 //println(s"Here's your ${record.value()}")

 import DeloitteKafkaProtocol._

 val jsonTransaction =

DeloitteKafka(record.value.get("imageId").toString,

record.value.get("timestamp").asInstanceOf[Long],

record.value.get("numOfBoats").asInstanceOf[Int],

record.value.get("occupancyRate").asInstanceOf[Double]).toJson.toString()

 OathConnectAPI.postRequest("services/data/v44.0/sobjects/",

"Kafka_Salesforce__c", jsonTransaction, oathCreds)

 }

 //commit offsets on last poll

 consumer.commitSync()

 counter = counter + 1

 println(counter)

 } }

For every (successful) POST request, we log the timestamp and unique salesforce ID, so we

can find the records back by using the REST API in for example Postman [22]. Later on, we

created a view in Salesforce® we can see all the ingested records (figure 4). Currently the

timestamp is in Unix epoch. In a production context, it would be advised to convert the

timestamp into a real date.

15

Figure 4. Screenshot of the Object (table) in salesforce

KAFKA TO WEB-APPLICATION (FLASK)

It is relevant to show our boat detection in real time. In this way, real time monitoring can

occur upon the current status of the berth. For this, we use a Python flask app that is

picking up our messages and serves them real time to a Flask app. The architecture of this

solution can be examined in figure 5.

Flask is a micro framework for making web applications in python. We base us on the flask-

video app [23] as a start and extended the framework to make a streaming like approach

possible. The consumer app consumes the AVRO messages from Kafka, extracts the base64

string out of the message, converts it back to an image and stores the image in the shared

directory. At the same moment, an instance of our “Directory Handler” will scan the

directory, pick up the images and pop them into a queue. When an image is read from the

queue and passed to the Flask app, the image is removed from the directory. In this way,

we ensure that a streamed picture is only showed once and that the image is deleted after

passing it.

The current setup can still be improved. For example, images are currently picked up

randomly, this means that the order of showing is determined by the order of reading their

paths. This could be improved by taking the modification date into account or revising the

filename to ensure a chronological pick up. Nevertheless, we prove the feasibility of

ingesting images and show them after consumption on a web application. The code can be

examined here [2].

16

Figure 5: Architecture of the Flask web application

CONCLUSION

This paper proves the feasibility of using Kafka for integrating multiple vendor applications

into the corporate IT landscape. It proves that SAS Viya® is an excellent backend for image

recognition and other advanced analytics, while other applications can benefit from the

gained insights. We also demonstrated the feasibility of configuring connectors or finding

workarounds if they are not available. Kafka is a reasonable choice for integrating different

applications, while handling high volumes and real time streaming.

17

REFERENCES

[1] “Apache Kafka,” Apache Kafka. [Online]. Available: https://kafka.apache.org/documentation/#zk. [Accessed:
03-Mar-2019].

[2] othierie, Supporting code of Embracing the open API ecosystem to give analytics an organizational operational
landing spot SAS Paper 3725-2019, https://github.com/othierie/SGF-Viya-Streaming-Integration. 2019.

[3] “Confluent Platform on AWS - Quick Start,” Amazon Web Services, Inc. [Online]. Available:
https://aws.amazon.com/quickstart/architecture/confluent-platform/. [Accessed: 03-Mar-2019].

[4] “Apache ZooKeeper.” [Online]. Available: https://zookeeper.apache.org/. [Accessed: 03-Mar-2019].
[5] “Running ZooKeeper in Production — Confluent Platform.” [Online]. Available:

https://docs.confluent.io/current/zookeeper/deployment.html. [Accessed: 03-Mar-2019].
[6] “Kafka Architecture.” [Online]. Available: /blog/kafka-architecture/index.html/. [Accessed: 03-Mar-2019].
[7] “Apache AvroTM 1.8.2 Documentation.” [Online]. Available: http://avro.apache.org/docs/current/. [Accessed:

08-Mar-2019].
[8] “Schema Registry — Confluent Platform.” [Online]. Available: https://docs.confluent.io/current/schema-

registry/docs/index.html. [Accessed: 03-Mar-2019].
[9] “SAS Viya on AWS - Quick Start,” Amazon Web Services, Inc. [Online]. Available:

https://aws.amazon.com/quickstart/architecture/sas-viya/. [Accessed: 09-Mar-2019].
[10] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” ArXiv161208242 Cs, Dec. 2016.
[11] “SAS Software,” GitHub. [Online]. Available: https://github.com/sassoftware. [Accessed: 21-Mar-2019].
[12] “SAS Deep Learning Python Interface — DLPy 1.0.1 documentation.” [Online]. Available:

https://sassoftware.github.io/python-dlpy/index.html. [Accessed: 21-Mar-2019].
[13] The SAS Deep Learning Python (DLPy) package provides the high-level Python APIs to deep learning methods in

SAS Visual Data Mining and Machine Learning, https://github.com/sassoftware/python-dlpy. SAS Software,
2019.

[14] “Kafka Connect — Confluent Platform.” [Online]. Available:
https://docs.confluent.io/current/connect/index.html. [Accessed: 09-Mar-2019].

[15] Kafka Connect SAP is a set of connectors, using the Apache Kafka Connect framework for reliably connecting
Kafka with SAP systems: https://github.com/SAP/kafka-connect-sap. SAP, 2019.

[16] “Home [Europe (Rot) - Trial] > Home - SAP Cloud Platform Cockpit.” [Online]. Available:
https://account.hanatrial.ondemand.com/cockpit/#/home/trialhome. [Accessed: 21-Mar-2019].

[17] “SAP Development Tools.” [Online]. Available: https://tools.hana.ondemand.com/. [Accessed: 09-Mar-2019].

[18] “Download ngdbc JAR 2.3.55 ➔ With all dependencies!” [Online]. Available: https://jar-
download.com/artifacts/com.sap.cloud.db.jdbc/ngdbc/2.3.55/source-code. [Accessed: 21-Mar-2019].

[19] SAP HANA Connector in pure Python, https://github.com/SAP/PyHDB. SAP, 2019.
[20] “Home | Salesforce.” [Online]. Available:

https://eu16.lightning.force.com/lightning/setup/SetupOneHome/home. [Accessed: 21-Mar-2019].
[21] “Apache HttpComponents – Apache HttpComponents.” [Online]. Available: http://hc.apache.org/. [Accessed:

21-Mar-2019].
[22] “Postman,” Postman. [Online]. Available: https://www.getpostman.com. [Accessed: 25-Mar-2019].
[23] M. Grinberg, Supporting code for my article on video streaming with Flask,

https://github.com/miguelgrinberg/flask-video-streaming. 2019.

18

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Olivier Thierie

Deloitte Belgium

othierie@deloitte.com

Wouter Travers

Deloitte Belgium

wtravers@deloitte.com

Andrew Pease

Deloitte Belgium

apease@deloitte.com

SAS and all other SAS Institute Inc. product or service names are registered
trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ®

indicates USA registration.
Other brands and products names are trademarks of their respective companies.

