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ABSTRACT 

In binary logistic regressions for credit risk and marketing applications as well as for many social science 
studies there are ordinal predictors that are considered for use in the model. The modeler faces the 
question of how to utilize these ordinal predictors. The choices include conversion to dummy variables, 
recoding as weight of evidence, or assuming an interval scale for the ordinal levels and entering the effect 
as linear (or possibly as some transformation). The use of dummies or weight of evidence add 
parameters to the model (for weight of evidence the added parameters are implicit in the recoding). This 
paper provides a procedure to aid in the decision making regarding the handling of ordinal predictors. 
First, a measure is computed of the monotonic tendency of the ordinal versus the target (the dependent 
variable). If the ordinal is nearly monotonic, then a simple numeric recoding of the ordinal is made. This 
imposes an interval scale. Is this recoding appropriate? To answer this question a model comparison test 
is made between the saturated model (all dummies) and the model with the numeric (recoded ordinal) 
predictor. Acceptance of the null hypothesis of “no difference” allows the numeric (recoded ordinal) to be 
considered for inclusion in the model. SAS® code is given which carries out the ordinal to numeric 
recoding as well as the model comparison test. This code can process many ordinal predictors using an 
efficient, data driven approach that does not require “hard coding”. 

INTRODUCTION 

Binary logistic regression models are widely used in credit risk modeling and marketing applications as 
well as for many social science studies. Here, the target (dependent variable) has two levels. In these 
models it is common to consider nominal, ordinal, or discrete1 (NOD) predictors for use in the model. 
Nominal predictors are entered into a logistic regression model as dummy variables (often via a CLASS 
statement) or as a weight of evidence (WOE) transformation. 

It is common to “bin” NOD predictors. Binning is the process of reducing the number of levels of a NOD 
predictor to achieve parsimony while preserving, as much as possible, the predictive power of the 
predictor. Binning algorithms are presented in Lund (2017). Binning is not utilized in this paper. 

An ordinal or discrete predictor can also be entered into a logistic regression model as dummy variables 
or as a WOE transformation. However, there is a third possibility in the case of an ordinal or discrete 
predictor X. This is to enter X as a linear effect (or possibly as a transformation of X, such as Log[X]). For 
a discrete predictor there is no ambiguity regarding how to do this. Simply use: MODEL Y = X.  

But for an ordinal predictor X there is a need to assign numbers to the levels of X. An approach is given in 
this paper that allows an ordinal predictor, if certain conditions are met, to be recoded as numeric and to 
be entered into the model as a “linear effect”. The expression “linear effect” begs the question as to how 
the ordinal levels are recoded to be numeric. This is explained later in the paper. 

The benefit of recoding is parsimony (fewer parameters in the model) and, hopefully, simplicity in the 
relationship between the predictor and log odds of the target.2  

If the goal of the modeling is prediction, then success is measured by validation on a holdout data set. In 
this case the use of dummies or weight of evidence could contribute to over-fitting, in contrast to recoding 
of an ordinal as a linear effect.  

                                                      
1 A discrete predictor is a numeric predictor with only ”few values”. The designation of “few” is subjective. It is used 
here to distinguish discrete from continuous (interval) predictors with “many values”. A discrete predictor is often a 
“count” (e.g. number of children in household). 
2 WOE coding also may provide “simplicity in the relationship between the predictor and log odds of the target”, but 
WOE comes at a cost of implicitly using degrees of freedom by involving the target in coding of the WOE’s. 
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This paper provides a process and supporting SAS programs to determine if and when to code an ordinal 
predictor as a linear effect for the purpose of fitting a logistic regression model.3 

INITIAL SCREENING OF NOD PREDICTORS 

INFORMATION VALUE AND WEIGHT OF EVIDENCE 

Before any time is invested in considering how to use a NOD predictor in a model, the predictor should 
first pass a preliminary screening test of its predictive power. A widely used measure of predictive power 
when screening NOD predictors is Information Value (IV). The calculation of the WOE of predictor X and 
its IV is shown in Table 1 below. Here, the WOE recoding transformed X to a numeric predictor X_woe. 

X 
Frequencies Col % 

Y=0 
“bk” 

Col % 
Y=1 
“gk” 

Log(gk/bk) 
= X_woe 

gk - bk 
IV Terms 
(gk - bk) * 
Log(gk/bk) Y = 0 Y = 1 

X1 2 1 25.0% 12.5% -0.69315 -0.125 0.08664 

X2 1 1 12.5% 12.5% 0.00000 0 0.00000 

X3 5 6 62.5% 75.0% 0.18232 0.125 0.02279 

SUM 8 8 100% 100%  IV = 0.10943 

Table 1: Illustration of the calculation of WOE and IV 

The well-known book by Siddiqi (2017, p. 179) gives an interpretation of a predictor in terms of its IV. 

IV Range Interpretation 

IV < 0.02   “Not Predictive” 

IV in [0.02 to 0.1)   “Weak” 

IV in [0.1 to 0.3)   “Medium” 

IV > 0.3   “Strong” 

Table 2: Interpretation of IV values in terms of predictive power. Siddiqi (2017, p. 179) 

If levels of a predictor are collapsed through binning, the IV is non-increasing.4 If a NOD predictor has 
many levels and its IV is “weak” in the sense of Siddiqi, then it is possible that binning would reduce the 
IV to “not predictive”. 

A MACRO TO SCREEN NOD PREDICTORS 

The SAS code below creates a data set named TestData for use in a logistic regression example. The 
target is Y with levels 0 and 1, and there are four predictors X1-X4. These predictors are coded as 
character variables but our “User” believes they have a meaningful ordering versus Y. Further, the 
character sort sequence correctly gives this ordering. There are 500 observations and no missing values. 

DATA TestData; 

Length X1-X4 $4; 

Do I = 1 To 500; 

/* N1 appears as Linear in Xbeta */ 

   If MOD(I,5) = 0 then N1 = 0; 

    Else if MOD(I,5) = 1 then N1 = 2; 

    Else if MOD(I,5) = 2 then N1 = 2.5; 

    Else if MOD(I,5) = 3 then N1 = 3; 

    Else if MOD(I,5) = 4 then N1 = 5; 

   X1 = PUT(N1,Z3.1); 

/* N2 appears as Log(N2) in Xbeta */    

                                                      
3 See the related discussion in Harrell (2001, p. 34) 
4 When two levels of X are collapsed, the IV is non-increasing. There is equality only when the odds of the target, at 
the two levels of X in the collapse, are equal. For a proof, see Lund and Brotherton (2013, p. 17) 
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   N2 = (ranuni(1)> 0.5) + 1; 

   If N2 > 1 then N2 = 2 + floor(10*(1-ranuni(1))**2); 

   X2 = PUT(N2,Z2.); 

/* N3 appears as (N3-3)**2 in Xbeta */   

   N3 = Max(Floor(rannor(1) + 3.5),1); 

   X3 = PUT(N3,Z1.); 

/* Levels of X4 appear as dummies in Xbeta (A3 and B with 0 coefficient) */ 

   Random1 = ranuni(1); 

   If Random1 < 0.50 then X4 = "A1"; 

    Else If 0.50 <= Random1 < 0.55 then X4 = "A2"; 

    Else If 0.55 <= Random1 < 0.60 then X4 = "A3"; 

    Else If 0.60 <= Random1 < 0.70 then X4 = "B "; 

    Else If 0.70 <= Random1 < 0.80 then X4 = "C "; 

    Else If 0.80 <= Random1 < 0.90 then X4 = "D "; 

    Else X4 = 'F '; 

Xbeta = 1 + 3*rannor(1) + 0.5*N1 - 0.01*LOG(N2) - 0.2*(N3-3)**2 - 

1.0*(X4="A1") - 0.25*(X4="A2") + 0.05*(X4="C") + 0.10*(X4="D") + 

1.0*(X4="F"); 

 Y = (Exp(Xbeta)/(1 + Exp(Xbeta)) > 0.75); 

 Output; 

 End; 

run; 

%CUM_LOGIT_SCREEN_2 is a SAS macro which screens NOD predictors.5 A predictor with low 
predictive power, as measured by the macro, would be eliminated from further consideration.  

For the TestData example, this macro is applied to the predictors X1-X4 with Target Y. The results are 
given in Table 3. The columns of Table 3 are discussed below. 

The C_STAT is the c-statistic between the predictor and the target.6 The C_STAT is only meaningful if the 
predictor has an ordering. The “model c” is the name for the logistic “c” which is given in a PROC 
LOGISTIC report. The model c is the c-statistic for the modelled logistic probabilities versus the target.7 
The column MONOTONIC has value YES if Prob(Y=1) is monotonic versus the predictor. This assumes 
the ordering of the predictor is meaningful. Of course, even if monotonic, the predictor can be weak. 

LIFT (per d.f.) = [( MODEL c - C_STAT) / C_STAT] / d.f.8  LIFT is zero if predictor is monotonic.9 Values 
near zero indicate the predictor is nearly monotonic. If LIFT is zero or near zero, then recoding the 
predictor as numeric (in a manner to be discussed) may be effective. Although LIFT is indicative, the true 
TEST of whether to recode is given in the sections that follow. 

From Table 3, X1 is monotonic and, based on LIFT, X4 is close to monotonic. Predictors X2 and X3 have 
low monotonic tendency.10 Due to monotonic tendency of X1 and X4, they are prime candidates for 
recoding (in a manner to be discussed) to be numeric. Predictors X2 and X3 probably are unsuitable for 
recoding. The IV of X2 is 0.101 (barely within the “medium” of Table 2) and there are 11 levels. It is 
possible that binning of X2 would reduce the IV of the binned X2 to a value which would be unacceptably 
low. But in this paper binning will not be performed.  

                                                      
5 %CUM_LOGIT_SCREEN_2 is written for the cumulative logit model. TARGET is character or numeric with 2 or 
more ordered levels. The macro produces the columns of TABLE 3 for each binary split of ordered levels of TARGET. 
If levels of TARGET are A, B, C, then there is a row in TABLE 3 for A vs. B,C and for A,B vs. C for each predictor. 
6 Here are the steps to compute the c-statistic for ordered predictor X and binary Y: 

• IP [“Informative Pairs”] are the pairs of observations (r, s)  where Targets Yr ≠ Ys  
• If Yr > Ys and Xr > Xs, then then IP is CONCORDANT 
• If Yr > Ys and Xr < Xs, then then IP is DISCORDANT 

• Else TIE …. And c-Statistic = {CONCORDANT + 0.5*TIE} / IP 
7 See Lund and Brotherton (2013) for a study of association between IV and model c (called X_STAT in that paper).  
8 d.f. = number of levels of X minus 1. 
9 Predictor X is monotonic with respect to Y if C_STAT = MODEL c. (Otherwise, C_STAT < MODEL c). 
10 “Near zero” depends on number levels of X. See APPENDIX for discussion and examination of the lift of X2-X4. 
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Considering the “weak” IV for X3 of only 0.061, this predictor might be eliminated now as part of the 
screening. However, for sake of illustration it will be kept for further analysis. 

Obs 
VAR_ 
NAME 

Levels 
CHAR-
ACTER 

MONO-
TONIC 

C_STAT MODEL c 
LIFT  

per d.f. 
IV 

(Info Value) 

1 X1 5 YES YES 0.610 0.610 0 0.177 

2 X2 11 YES   0.543 0.576 0.0061 0.101 

3 X3 6 YES   0.517 0.567 0.0193 0.061 

4 X4 7 YES   0.601 0.604 0.0008 0.172 

Table 3: %CUM_LOGIT_SCREEN_2 (TestData, Y,  , X1 X2 X3 X4, YES, ); 

HOW TO ENTER X1, X2, X3, X4 IN THE LOGISTIC MODEL? 

The reader may fit the model below and find that CLASS X1 and CLASS X4 are strongly significant. 
Meanwhile, CLASS X3 is only borderline and CLASS X2, with 10 degrees of freedom, is not significant. 
The model c is modestly strong at 0.690.  

PROC LOGISTIC DATA = TestData; 

CLASS X1 X2 X3 X4; 

MODEL Y = X1 X2 X3 X4; 

run; 

There are 25 parameters (excluding intercept). Can adequate model fit still be obtained if one or more of 
the CLASS effects were replaced with “LINEAR effects” and thereby reduce the number of parameters? 

THE RECODING FOR A LINEAR EFFECT 

However, the expression “LINEAR effect” begs the question as to how the ordinal levels are to be 
recoded to be numeric. The simple solution that is given in this paper is to replace the lowest level of the 
predictor with “1” and then to add “1” for each successive level.  

So, ordinal levels A, B, T, U become 1, 2, 3, 4. 

Now the question arises as to how to judge the adequacy of the replacement of a CLASS effect with this 
recoded LINEAR effect.  

THE TEST TO DETERMINE WHETHER TO RECODE 

Suppose X was originally ordinal but has been recoded as numeric X_n. Suppose X_n has k levels and 
the target is Y. Four steps are needed. The first two steps utilize the “score chi-squares” of X_n and of 
CLASS X from the fit of a logistic model.11 The four steps are: 

1. Compute 𝛸2
Linear, the score chi-square for X, from MODEL Y = X_n; 

2. Compute 𝛸2
Class, the score chi-square for CLASS X from the model: CLASS X; MODEL Y = X; 

3. Compute the model comparison chi-square as Χ2
Compare = Χ2

Class - Χ2
Linear. This is approximately a 

chi-square with k-2 degrees of freedom. 
4. Compute the right tail probability for Χ2

Compare. A significant value accepts the alternative 
hypothesis that there is a difference between the CLASS Effect and the LINEAR Effect. 

For example, for the case of X1 in TestData, the recoded X1 is called X1_n and has levels 1, 2, 3, 4, 5. 
The score chi-squares and test statistic are shown below (and in table 5 near the end of the paper): 

Χ2
Compare = 21.578 - 18.615 = 2.963 with 3 d.f. 

                                                      
11 Why not use the likelihood ratio chi-square (which is approximated by the score chi-square)? The reason is that 
score chi-squares are available in an ODS OUTPUT data set from PROC LOGISTIC. This data set enables the 
programming of an efficient method to compare a large number of recoded ordinal (or also actual numeric) predictors 
against their CLASS equivalents. More detail is given in SAS coding sections of the paper that follow. 
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The right tail probability equals 0.397 and is insignificant. On this basis, X1_n can be used in the model to 
carry forward the information from predictor X1. This is a saving of 3 parameters versus CLASS X1. 

SAS PROGRAM TO RECODE ORDINAL X AS NUMERIC X_n 

Data set TestData is used in this discussion. The goal is to create a new data set with numeric predictors 
X1_n, X2_n, X3_n, X4_n which are recodings of the ordinal variables X1 X2 X3 X4. Additionally, this data 
set must be structured as input to PROC LOGISTIC. The desired recordings are shown below: 

 X1: “0.0”, “2.0”, “2.5”, “3.0”, “5.0” recoded as 1, 2, 3, 4, 5 
 X2: “01”, “02”, “03”, “04”, “05”, “06”, “07”, “08”, “09”, “10”, “11” recoded as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 
 X3: “1”, “2”, “3”, “4”, “5”, “6” recoded as 1, 2, 3, 4, 5, 6 
 X4: “A1”, “A2”, “A3“, “B “, “C “, “D “, “F “ recoded as 1, 2, 3, 4, 5, 6, 7 

There are three main steps to achieve these recodings. The data set TestData is used to illustrate. 

Step 1: 

In PROC SUMMARY the COMPLETETYPES creates an output observation for every combination of 
levels of X1 X2 X3 X4 even if such a combination does not exist in the data. If such a combination does 
not exist in the data, the value of _freq_ is 0. The output data set Summout is sorted by X1 X2 X3 X4. 

/* Step 1 */ 

PROC SUMMARY DATA = TestData COMPLETETYPES;  

CLASS X1 X2 X3 X4 ;  

OUTPUT OUT = Summout; 

TYPES X1 * X2 * X3 * X4; 

run; 

Step 2: 

In this DATA Step the recoding is accomplished. The recoded predictors have suffix “_n”. Recoding is 
performed even when _freq_ = 0. 

/* Step 2 */ 

DATA Convert; SET Summout;  

 BY X1 X2 X3 X4; 

RETAIN X1_n X2_n X3_n X4_n 0; 

If first.X4 then X4_n + 1; 

If first.X3 then X3_n + 1; 

If first.X2 then X2_n + 1; 

If first.X1 then X1_n + 1; 

OUTPUT; 

If last.X3 then X4_n = 0; 

If last.X2 then X3_n = 0; 

If last.X1 then X2_n = 0; 

run; 

Step 3: 

The PROC SUMMARY in step 3 creates unique combinations of levels of X1 X2 X3 X4 and Y. The output 
Summout2 is sorted by X1 X2 X3 X4.  

In the MERGE Step, only the observations from Convert that match to an observation from Summout2 
are output. This is a 2 to 1 merge for cases where, for a combination of X1 X2 X3 X4, there is both an 
observation where Y=0 and an observation where Y=1.  

The version of the variable _freq_ from Summout2 overwrites _freq_ from Convert.  

The desired recoding X1_n, …, X4_n now exists in Convert2. 
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/* Step 3 */ 

PROC SUMMARY DATA = TestData ;  

CLASS X1 X2 X3 X4 Y;  

OUTPUT OUT = Summout2; 

TYPES X1 * X2 * X3 * X4 * Y; 

run; 

DATA Convert2; MERGE Convert Summout2(IN=summout2);  

BY X1 X2 X3 X4; 

If summout2; 

run; 

SAS CODE FOR MODEL COMPARISON: RECODED ORDINAL V. CLASS 

Now the score chi-squares for each recoded predictor versus the target, as well as for the CLASS version 
of each recoded predictor, can be generated by PROC LOGISTIC. These score chi-squares are output to 
a data set named EffectNotInModel via the ODS OUTPUT statement.12 The ODS EXCLUDE ALL 
eliminates printout from PROC LOGISTIC. 

In PROC LOGISTIC the DETAILS option in the SELECTION statement is required in order to create 
EffectNotInModel. The score chi-square for every predictor being considered for entry at each step of 
FORWARD is saved in EffectNotInModel. But since STOP=1, only the predictors and their score 
chi-squares for the first step are saved.  

ODS EXCLUDE ALL; 

ODS OUTPUT EffectNotInModel = EffectNotInModel; 

PROC LOGISTIC DATA = Convert2; 

CLASS X1 X2 X3 X4; 

MODEL Y = X1_n X1  X2_n X2  X3_n X3  X4_n X4 

/ SELECTION = FORWARD SLE = 1 STOP = 1 DETAILS; 

FREQ _freq_; 

run; 

ODS EXCLUDE NONE; 

PROC PRINT DATA = EffectNotInModel; 

run; 

Obs Step Effect DF ScoreChiSq ProbChiSq 

1 0 X1_n 1 18.6151 <.0001 

2 0 X1 4 21.5781 0.0002 

3 0 X2_n 1 1.5375 0.2150 

4 0 X2 10 12.1026 0.2782 

5 0 X3_n 1 0.2256 0.6348 

6 0 X3 5 7.5899 0.1803 

7 0 X4_n 1 18.3148 <.0001 

8 0 X4 6 20.2135 0.0025 

Table 4: Print out of EffectNotInModel 

                                                      
12 For computation efficiency of PROC LOGISTIC, the “predictor to enter” at each step of FORWARD is the one with 
the largest score chi-square at this step. The “ideal” criterion would be to take the largest likelihood ratio chi-square 
but this is computationally unavailable. The score chi-square is usually a good approximation to likelihood ratio 
chi-square and is used instead. 
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In Table 4 the score chi-square for each recoded predictor X1_n, …, X4_n, as well as for the CLASS 
variable usage of X1 - X4, is printed. (Notice that the effects appear in Table 4 in the same order as in the 
statement MODEL Y = X1_n X1 X2_n X2 X3_n X3 X4_n X4. This fact is used by the DATA Step below.) 

Neither X2_n or CLASS X2 is significant and could now be dropped. Also, X3_n is not significant and the 
significance of CLASS X3 is no better than borderline. But for illustration all four predictors X1_n, …, 
X4_n are analyzed further in the next step.  

CODING THE MODEL COMPARISON TEST 

The model with predictor X1_n is a nested model within the saturated model having predictor CLASS X1. 
A model comparison test, using score chi-squares, can be used to compare whether CLASS X1 is 
statistically different than X1_n. The test statistic is shown: 

Test-Statistic = Χ2
Compare = Χ2

Class - Χ2
Linear 

For large samples this difference is a chi-square with k-1 - 1 = k-2 degrees of freedom when X1_n has k 
levels.  

The same model comparison tests are applied to X2_n, X3_n, and X4_n. In the DATA Step below the 
EffectNotInModel data set is processed. 

DATA Report; SET EffectNotInModel; 

LABEL MODEL_Compare = “MODEL_Compare / Significance“; 
RETAIN  

Var_Name Effect2 DF1 DF2 ScoreChiSq1 ScoreChiSq2 ProbChiSq1 ProbChiSq2; 

If MOD(_N_,2)=1 then Do; /* Odd numbered Observations = Linear effects */ 

   Var_Name=Effect; DF1=DF; ScoreChiSq1=ScoreChiSq; ProbChiSq1=ProbChiSq; 

   End; 

If MOD(_N_,2)=0 then Do; /* Even numbered Observations = Class effects */ 

   Effect2=Effect; DF2=DF; ScoreChiSq2=ScoreChiSq; ProbChiSq2=ProbChiSq; 

   MODEL_Compare = 1 - probchi(ScoreChiSq2-ScoreChiSq1, DF2-DF1); 

   OUTPUT; /* One output observation for each input pair */ 

   End;  

run; 

PROC PRINT DATA = Report LABEL SPLIT = "/"; 

VAR Var_Name DF1 DF2 ScoreChiSq1 ScoreChiSq2 MODEL_Compare;  

run; 

Obs Var_Name DF1 DF2 ScoreChiSq1 ScoreChiSq2 MODEL_Compare 
Significance 

1 X1_n 1 4 18.6151 21.5781 0.3974 

2 X2_n 1 10 1.5375 12.1026 0.3067 

3 X3_n 1 5 0.2256 7.5899 0.1178 

4 X4_n 1 6 18.3148 20.2135 0.8630 

Table 5: Model Comparison - Class Effect vs Recoded Linear Effect 

Inspecting the column “MODEL_Compare Significance”, the conclusion is reached that predictors X1_n 
and X4_n may replace the class usage of X1 and X4. But CLASS X3 is preferred to X3_n (with borderline 
significance of 0.1178). The decision to drop X2_n and CLASS X2 was discussed earlier. Only 7 
non-intercept parameters are needed to fit the model with X1_n, CLASS X3, X4_n. 

PROC LOGISTIC DATA = Convert2; 

CLASS X3; 

MODEL Y = X1_n X3 X4_n; 

FREQ _freq_; 

run; 
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The model c for this simplified model is 0.669 versus 0.690 for the original model with CLASS predictors 
X1 - X4. This is a noticeable reduction in model c but it comes at the considerable improvement in 
measures of parsimony such as AIC and SBC (where lower is better) as shown below: 

MODEL AIC SBC MODEL c 

CLASS X1 - X4;  MODEL Y= X1 - X4; 679.25 788.83 0.690 

CLASS X3;  MODEL Y = X1_n   X3   X4_n; 660.71 694.43 0.669 

Table 6: Model c versus Parsimony - Class Effect vs Recoded Linear Effect 

Of course, the simpler model is also more likely to be validated on a hold-out sample since overfitting 
would be avoided. 

The SAS programming steps given above can be easily modified to extend the processing to more than 
four predictors.  

These steps also provide a skeleton for developing a macro program. More functionality might be added 
to a macro program by adding a macro parameter which allows the user to perform other recodings of the 
ordinal, such as “quadratic”, “square root”, “logarithmic”, and to test each of these recodings against the 
dummy variable coding. 

SGF Dallas 2019, v04 
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APPENDIX 

The purpose of this appendix is to give a quantitative relationship of Lift (per d.f.) versus monotonicity. An 
external measurement of monotonicity is Spearman rank correlation. A simulation study was conducted to 
compare Spearman rank correlation to Lift. Here is an outline of the methodology. 

 The population to be sampled is the “K by 2 Tables” where total table cell count is set at N = 5000. 
The two columns in a table represent the “0’s” and the “1’s” of the Target. The number of levels of X 
equals K. 

Here is one example of a 3 by 2 table where N = 5000. 

 Y=0 Y=1 

X=1 500 800 

X=2 1200 500 

X=3 900 1100 

 TOTAL = 5000 

 For each table, Lift (per d.f.) and Spearman were computed. For the table given above, Lift and 
Spearman are reported below. Here, LIFT is far from zero (0.1392) and the Spearman rank 
correlation is negligible. 

Predictor K C_STAT MODEL c LIFT (per d.f) Spearman 

X 3 0.5008 0.6402 0.1392 -0.0015 

 All tables with model c > 0.75 were deleted from the simulation. These deletions were made on the 
grounds that predictors X with model c > 0.75 would be unusual (too strong) for models used in 
quantitative marketing or credit risk. The number of tables in the sample is an input to the simulation 
program. For values of K < 10 the number of tables was set at 100,000. After removal of tables with 
model c > 0.75, there were about 75,000 usable tables. For K ≥ 10 the number of tables must be 
increased as explained in the outlined dot-points below. 

 LIFT (per d.f.) was divided into narrow ranges as shown: 

if Lift < 0.00001 then Lift_range = "00. 000 - .00001"; 
else if Lift < 0.001 then Lift_range = "01 .00001 - .001"; 
else if Lift < 0.002 then Lift_range = "02 .001 - .002"; 
else if Lift < 0.003 then Lift_range = "03 .002 - .003"; 
else if Lift < 0.004 then Lift_range = "04 .003 - .004"; 
else if Lift < 0.005 then Lift_range = "05 .004 - .005"; 
else if Lift < 0.006 then Lift_range = "06 .005 - .006"; 
else if Lift < 0.007 then Lift_range = "07 .006 - .007"; 
else if Lift < 0.008 then Lift_range = "08 .007 - .008"; 
else if Lift < 0.009 then Lift_range = "09 .008 - .009"; 
else if Lift < 0.010 then Lift_range = "10 .009 - .010"; 
else if Lift < 0.011 then Lift_range = "11 .010 - .011"; 
else if Lift < 0.012 then Lift_range = "12 .011 - .012"; 
else if Lift < 0.013 then Lift_range = "13 .012 - .013"; 
else if Lift < 0.014 then Lift_range = "14 .013 - .014"; 
else if Lift < 0.015 then Lift_range = "15 .014 - .015"; 
else if Lift < 0.016 then Lift_range = "16 .015 - .016"; 
else if Lift < 0.017 then Lift_range = "17 .016 - .017"; 
else if Lift < 0.018 then Lift_range = "18 .017 - .018"; 
else if Lift < 0.019 then Lift_range = "19 .018 - .019"; 
else if Lift < 0.020 then Lift_range = "20 .019 - .020"; 
else if Lift < 0.021 then Lift_range = "21 .020 - .021"; 
else if Lift < 0.022 then Lift_range = "22 .021 - .022"; 
else if Lift < 0.023 then Lift_range = "23 .022 - .023"; 
else if Lift < 0.024 then Lift_range = "24 .023 - .024"; 
else if Lift < 0.025 then Lift_range = "25 .024 - .025"; 
else Lift_range = "26 .025 - up"; 
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Pearson correlation of 0.30 or less is characterized as “Little if any correlation” by Hinkle, Wiersma, and 
Jurs (2003). Of course, for this simulation Spearman rank correlation is used, but the 0.30 is still be 
utilized for the discussion which follows. 

 For values of K (i.e. number of levels of X) the average absolute Spearman was computed for each 
Lift_range. Also computed were the percent of absolute Spearman’s with value above 0.30 as well as 
the average value of absolute Spearman (approximated by using first LIFT range) for those cases 
where X was monotonic for that table.  

 The Lift_ranges for X2, X3, and X4 are shown in Table 6. The average absolute Spearman, percent 
absolute Spearman above 0.30, and the average value of absolute Spearman if monotonic were 
reported. See Table 6. 

Predictor 
Lift_range  

from TABLE 3 
for predictor 

K 
Number of 
Tables in 
simulation 

Ave  
|Spearman| 

% 
|Spearman|  

> 0.30 

Approx. 
|Spearman|  
if monotonic 

X2 .006 - .007 11 1,044,477 0.235 19.9% 0.321 

X3 .019 - .020 6 72,574 0.179 5.6% 0.304 

X4 .00001 - .001 7 71,566 0.308 55.9% 0.318 

Table 6: Lift_range versus Spearman Rank Correlation for X2, X3, X4 

Using this guideline, average absolute Spearmen of 0.308 for X4 exceeds the 0.30 threshold and, 
moreover, the average absolution Spearman, if monotonic, is 0.318 which is close to 0.308. (It is 
possible, however, for an individual non-monotonic absolute Spearman to greatly exceed the 0.318.) 

In the cases of X2 and X3 the average absolute Spearman does not come close to the 0.30 threshold and 
the percentage of the sample exceeding 0.30 is low. 

It is interesting that the right-most column is fairly stable over K = 6, 7, 11. 

On the basis of this simulation it seems fair to characterize X4 as “near monotonic” and X2, X3 as not 
“near monotonic”. 

By running this simulation for K = 3, …, 20 it would be possible to create an association between 
“Lift_range” and “Near monotonic”. One issue in running the simulation for K ≥ 10 is that the number of 
tables in the simulation must be large in order to populate the lower “Lift_range” categories. At K = 20 the 
number of tables needed for the simulation would be well into the many millions. 

Contact the author for the SAS code used in this simulation. 


