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ABSTRACT  

The Arkansas All-Payers Claims Database (APCD) contains claims from multiple payer 

sources, as well as other available data sources. It does not have direct personal identifiers 

(DPI), such as name or date of birth (DOB). Instead it contains a hashed version of the 

concatenated last name and DOB which allows linkage of individuals across payers and 

other data sources in the APCD. An expected match rate was derived for matching birth and 

death certificates to claims in the APCD. DPI are contained on birth and death records, as 

well as Medicaid claims in the Health Data Initiative (HDI) data warehouse that is housed at 

the Arkansas Center for Health Improvement (ACHI). Hashed IDs were created for 

individuals contained in these data sources. 

To calculate a match rate, a denominator of “true linkages” was determined using the 

known DPI contained on the HDI data sources. The match scoring algorithm compared first 

and last names, DOB, and gender between these sources. The SPEDIS and COMPGED 

functions were used to compare first and last names and because lower SPEDIS and 

COMPGED scores represent good matches, exact matches for gender and DOB were set to 

0. A rubric was developed based on the scores and visual inspection to determine the true 

linkages. The numerator consisted of linkages that had a single hashed ID for each record 

linkage. This rate from this numerator and denominator gave us an estimate of true 

linkages we could expect when linking hashed IDs in the APCD. 

INTRODUCTION  

An APCD is a large-scale database that systematically collects healthcare data from a 

variety of healthcare payer sources. APCDs are tools that can be used to support state 

health system transformation efforts, increase healthcare transparency, and better 

understand and address healthcare costs, quality, and utilization. The Arkansas Center for 

Health Improvement (ACHI), in partnership with Arkansas Insurance Department (AID), has 

developed the Arkansas APCD, which contains healthcare data from a variety of sources. 

Direct personal identifiers, or DPI, are not collected (e.g., names, addresses, and Social 

Security Numbers). However, in order to maximize the use of such a large database, the 

ability to link data from a single individual across sources is a necessity. In the Arkansas 

APCD, this linkage is possible using a securely hashed version of the last name, 

concatenated with the date of birth of an individual. This “hashed ID” makes it possible to 

link individuals across different payer entities or with other data sources that have been 

stripped of DPIs, such as birth or death certificates. There are some known limitations to 

using the hashed ID:  

 Collisions can occur where one hashed ID is the same for more than one individual. In 

other studies we have shown this to be about 2-3 percent of the population, depending 

on the overall size of the population of interest. 

 If the last name is recorded differently across sources, the hashed ID will be different 

(e.g., when someone changes their last name).  

These limitations raise the question: How successful will we, or anyone else subscribing to 

the Arkansas APCD, be when using the hashed ID to link individuals across the various data 
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sources available? The opportunity to answer this question became available while studying 

infant mortality using the Arkansas Health Data Initiative (HDI) data warehouse. 

The Arkansas HDI is a comprehensive system that integrates data sets from a variety of 

state sources and is used to inform a comprehensive understanding of public health in 

Arkansas. In 2003, the Arkansas General Assembly passed Act 1035, which authorized ACHI 

to maintain the HDI to support work on data-driven health policy issues — for example, 

studying healthcare utilization, including prenatally, prior to infant mortality. This type of 

study is possible using the HDI because it contains the Arkansas Health Department Birth 

and Death Certificates and the Arkansas Department of Health Services Medicaid claims, 

along with their corresponding DPI. Besides providing an opportunity to identify areas for 

possible intervention to decrease infant mortality, this study also gave us the opportunity to 

determine an expected match rate when using de-identified data in the APCD. We took 

advantage of this opportunity by matching records across death certificates, birth 

certificates, and Medicaid enrollment files for both infants and mothers using DPI. Then we 

evaluated whether or not the created hashed ID matched for each record. During our first 

attempt to match infant DPI across birth and death certificates in the HDI, we discovered 

how frequently names can be spelled differently or, especially in the case of last names, 

how they can completely change in the course of one year. For this reason, we developed a 

scoring algorithm using both the SPEDIS and COMPGED functions to produce sub-scores 

based on first and last names. 

The use of SPEDIS and COMPGED functions to make fuzzy matches between text variables 

is not a novel idea. These functions have been applied singularly or in combination with 

each other or other functions to many situations (Schreier, 2004; Dunham, 2016; Cadieux 

and Bretheim, 2014; Mullins, 2013; and many others). The COMPGED function [syntax: 

COMPGED(string-1, string-2 <, cutoff><,modifiers>)] returns values based on the edit 

distance between two strings using a generalization of the Levenshtein edit distance. At its 

most basic level, the function works by assigning a certain score for each type of edit (e.g., 

deletions, insertions, replacements, etc.) required to transform string-1 into string-2. The 

function returns values in multiples of 10. The SPEDIS function [syntax: SPEDIS(query, 

keyword)] determines the likelihood of two words matching. This function calculates a “cost” 

for converting the keyword to the query, but the final score that is returned by the function 

is also dependent on the length of the query. For instance, a change in the first character 

costs 200, if the query is only two characters long, then the score will be 100, but if the 

query is 20 characters long the final score will be 10. For both functions, the lower the 

returned value the better the match, and 0 indicates a perfect match. 

Many SAS users recommend using the COMPGED function instead of the SPEDIS function 

because it requires less processing time; however, in our experience and others (see 

Cadieux and Bretheim, 2014), it is difficult to set a cutoff value to indicate consistent 

matches. As discussed in Cadieux and Bretheim’s (2014) paper, it was difficult to find a 

COMPGED score that included objectively correct matches without including many matches 

that were too loose. They chose to include a SPEDIS score, as well, which made it possible 

to fine tune their matches. Ultimately, their goal was to include more matches — which 

included imperfect matches — because they were using it to match postal addresses. Their 

paper compares the match rate outcomes of different cut-off scores while they were 

calibrating their scoring rubric. In this application our goal was to produce as many one-to-

one matches for individuals as possible using SAS®, since all individuals with multiple 

record matches would have to be examined manually. For this paper we will only include 

our final scoring criteria.  
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APPROACH 

We believe it is important to preface our approach with a disclaimer that this paper came 

about as an ancillary concern to our primary project goal, which was to develop healthcare 

utilization profiles of deceased infants. We were aware that we needed to link the records in 

the HDI using DPI, and we would have needed our scoring algorithm for that purpose alone. 

But we also want to share our findings on the validity of our hashed IDs, which may be 

beneficial to other users with similar data structures. 

INITIAL PLANNING AN DEVELOPMENT 

For our infant mortality study, we extracted death records for all infants that died between 

2013 and 2016 based on the age at death on the death certificates (n=1,156). Our 

approach to determine healthcare utilization for each deceased infant and the prenatal care 

of the mother is outlined in Figure 1, where the circled numbers represent a linkage that 

was made. Table 1 lists the DPI for each data source, according to the person to which the 

linkage is related. Our initial extraction of the birth certificates for the infants identified in 

the death certificates attempted to use only the DPI listed in Table 1 where the first and last 

names sounded alike (using =*), the dates of birth were the same, and the sex was the 

same. Unfortunately, and in hindsight, unsurprisingly, this resulted in very few records 

being extracted. So to increase the number of potential true matches we added two 

additional criteria. One was to create the hashed ID before identifying the true matches and 

the other was to use a non-identifiable ID, or PID, that already existed in the HDI.  

HDI Data Source Infant Mother 

Death Certificate 
First and Last Name, DOB 

and Sex 

N/A 

Birth Certificate First and Last Name, DOB 

and SSN Medicaid Enrollment 

Table 1. DPI Used to Link Across Data Sources 

Initially, we planned to apply the APCD hashing methodology only to the records that were 

linked as true matches based on the DPI. However, we decided to initiate the hashing 

process prior to finding the true matches so that we could use the limitations of the hashed 

ID to our advantage. The limitation that was particularly helpful was that some hashed IDs 

are assigned to multiple individuals, which is frequently is the case with twins. For the death 

certificates we only hashed the 1,156 infants that we identified. For the birth certificates, on 

Death Certificate 
Mother 

Medicaid 

Enrollment File 

Birth Certificate 
Infant 1 

2 

3 

Figure 1. Flow diagram of the process of linking across data sources. Number 

in circles indicate a linkage that was created. 
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the other hand, we created hashed IDs for infant and mother on all records from 2012 to 

2016. Lastly, we created hashed IDs for all individuals for all years available in the Medicaid 

enrollment file. 

We also took advantage of a non-identifiable personal ID, or PID, that is applied to all 

records in the HDI. The PID is created using all available DPI from every available HDI data 

source. The more records that exist for an individual, the stronger the PID becomes. The 

PID is updated yearly after all state entities have submitted their data, so the DPI on every 

new record for an existing individual is added to the knowledge repository and is used to 

generate new PIDs. When there are many records for an individual in the knowledge 

repository, individuals who have changed their names on different records can still be 

linked. PIDs that are created for individuals who have only a couple of records in the HDI — 

primarily the case for deaths of infants — typically have derived PIDs that do not match to 

any other record. With this limitation in mind we did not plan on using the PID, especially 

when we attempted to match death certificates to birth certificates. However, after such a 

limited number of records with our first attempt, we realized that it would not hinder us to 

include the PID. 

Our final criteria to create our subset of possible matched records included the DPI criteria 

listed above, OR a PID match, OR a matching hashed ID. For the 1,156 infants we 

identified, we found 1,408 possible birth certificate matches. This gave us something to 

work with (spoiler alert: after using our scoring algorithm we found that we truly matched 

91 percent of the death certificates to the birth certificates, which according to the Arkansas 

Department of Health was very reasonable). We also applied this criteria to linkage 2 shown 

in Figure 1. For the 1,156 infant death certificates, we pulled a subset of 1,005 possible 

linkages to Medicaid enrollment records. Of the 1,049 birth records that were true matches, 

we made 813 possible birth certificate mother-to-Medicaid-enrollment-record linkages.  

DEVELOPING OUR SCORING ALGORITHM 

At last we had three very manageable subsets of possible linkages, so it was time to 

develop our scoring algorithm to narrow down the list of questionable linkages that would 

require a visual inspection. For each linkage we removed exact matches, which were defined 

as exact matches between the DPI for each of the linkages listed in Table 1. We expected 

the highest number of true matches between death certificates and birth certificates, 

because both data sets were submitted by the Arkansas Department of Health. So, we 

started with these linkages. From our death-certificate-to-birth-certificate linkage, we 

immediately removed the exact matches (985), which were defined as having an exact 

match for first and last names, date of birth, and sex. We were also able to exclude some 

clear mismatches after a brief visual inspection. This left us with 306 linkages that would 

have needed a thorough visual inspection without our scoring algorithm.  

SUB-SCORES  

Initially, we based our algorithm solely on the SPEDIS and COMPGED return values for first 

and last names between death and birth records. We created separate SPEDIS and 

COMPGED sub-scores by adding the output for first and last names, and we created a total 

score by adding those two sub-scores. We flagged linkages that had SPEDIS sub-scores less 

than 50 or COMPGED scores of less than 200. When we reviewed the output, we discovered 

that by using these sub-score cut-offs to indicate possible matches, we would have been 

including matches with either mismatched sex or mismatched dates of birth. When we tried 

flagging only those that also had exact matches of date of birth and sex, we ended up 

excluding linkages where the sex or date of birth might have just been a typo — but based 

on all the other information in the record they should would have been assigned as a true 

match on a visual inspection. Because the COMPGED sub-score could be in the hundreds, 
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we created a sub-score for sex with 0 for an exact match or 100 for a non-match. 

Originally, we thought that differences in dates of birth might be a typo (perhaps off by a 

day or two), but in reality, there was no discernable pattern so we did not include date of 

birth in our final algorithm. The application of SPEDIS and COMPGED to develop sub-scores 

and the creation of the sex sub-scores are as follows: 

proc sql; 

 create table comparison_table as 

  select distinct death_pid  

  , birth_pid, death_apcd_hash_id, birth_apcd_hash_id 

  , death_fname, birth_fname   

  , spedis(death_fname, birth_fname) as fname_spedis_sc 

  , compged(death_fname ,birth_fname) as fname_comp_sc 

  , death_lname, birth_lname 

  , spedis(death_lname, birth_lname) as lname_spedis_sc 

  , compged(death_lname, birth_lname) as lname_comp_sc 

  , death_sex, birth_sex 

  , death_dob, birth_dob 

  , case   

    when death_sex = birth_sex  then 0 

    else 100 

  end as sex_score 

 from bddiff0; 

quit; 

 

Initially, we tried to use only a total score that was a sum of all sub-scores. While we found 

that total scores under 200 were solid matches and scores over 300 clearly were not 

matches, we couldn’t consistently determine whether there was a match or not between 

scores of 200 to 300. For this reason, we re-introduced the use of separate SPEDIS and 

COMPGED sub-scores that consisted of the returned value for each function on the first and 

last names. We also included the sex sub-score in each of these. The final scoring was 

completed using the following code: 

proc sql; 

create table comp_table_scored as 

  select * 

  ,sum(fname_spedis_sc,fname_comp_sc,lname_spedis_sc,lname_comp_sc 

 ,sex_score) as total_scores 

  ,sum(fname_spedis_sc,lname_spedis_sc,sex_score) as sped_scores 

  ,sum(fname_comp_sc,lname_comp_sc,sex_score) as comp_scores 

  from comparison_table 

  order by total_scores; 

quit; 

SCORING ALGORITHM 

Our final scoring algorithm assigned a true match, designated by the variable “group” being 

equal to “a” whenever the total score was less than 200. When the score was between 201 

and 300, the match was dependent on either the SPEDIS sub-score being less than 25 or 

the COMPGED score being less than 200. The SPEDIS sub-score was checked first for a few 

reasons. The first was because when we visually inspected the output we realized there 

were several cases of hyphenated names in some records and not in their likely matches. 

Hyphenated names can be costlier in SPEDIS than in COMPGED, depending on which 

variable is the query in the SPEDIS function. Because if it was the most restrictive and we 

knew that if a SPEDIS sub-score was less than 25, then either the total score was much 

higher, not because of a mismatch of sex, but likely because the first letter of one of the 
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names was double-typed or had some other error that was very costly in COMPGED. But the 

rest of the information indicated a true match. If the SPEDIS score was greater than 25, but 

the COMPGED score was less than 200 there was likely a difference in the sex variable and 

everything else matched. Finally, records that did not meet the criteria were assigned to 

group “b.” The code below shows the assignment of each record to the match (“a”) or non-

match (“b”) groups: 

proc sql; 

 create table comp_table_flagged as 

  select * 

 ,case  

  when total_scores < 200 then "a" 

  when total_scores between 201 and 300 then  

   case  

    when sped_scores < 25 then "a" 

    when comp_scores < 200 then "a" 

   end 

  else "b"  

 end as group 

  from comp_table_scored 

   order by death_lname; 

quit; 

 

The records and their assignments were scanned to see how appropriately the algorithm 

assigned matches or non-matches, and we found very few cases when the algorithm was 

incorrect. Very few cases required us to visually inspect all of the variables of the record, 

but these cases were quickly identified thanks to the scoring algorithm. This was especially 

important when we were working with the Medicaid enrollment file since the data sources 

were from two separate state agencies. 

HASHED ID VALIDATION 

Our scoring algorithm helped us identify our true matches more quickly than visually 

inspecting all possible matches. Table 2 shows the number of true matches that we found 

across the three linkages (identified as Step A). These were our “truth” and denominator. 

We then excluded linkages using our typical methodology when linking records with hashed 

IDs. When we extract records using a hashed ID, we always concatenate with the sex or 

gender field to protect us from non-identical twins or other multiple births. So we excluded 

records that did not have matching concatenated hashed ID and sex (Step B). After we 

extract data with a concatenated hashed ID and sex, we exclude any hashed ID and sex 

combinations that have more than one individual’s record associated with it. We typically 

determine this if the records contain conflicting information — for example, if a single 

hashed ID has more than one insurance IDs for the same payer (Step C). This leaves us 

with the records we would typically include in an analysis (Step D), which is our numerator.  
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  Infant Mother 

Step 

 Death 
↕ 

Birth 

Death  
↕ 

Medicaid 

Birth  
↕ 

Medicaid 

A Truth (individuals linked with DPI) 1,049 720 764 

Linkages excluded from the Truth 

B Hashed ID (+ sex) ≠ between records 35 24 88 
C Colliding Hashed IDs 134 94 157 

D Matching, non-colliding Hashed IDs 880 602 519 

 Rate of truly linked records that would have 
been found  using  our typical methodology 

83.9% 83.6% 67.9% 

Table 2. The rate of true matches that we would have found using the hashed ID. 

CONCLUSION 

Based on another study looking at collision rate that we completed, we initially expected our 

rate of truth to be in the upper 90s. That study aligned with the expected rate of same sex 

twin births in Arkansas which is not quite 2 percent (CDC Wonder, 2019). However, after 

further consideration, it is not surprising that we had higher collision rates — greater than 

10 percent — because this particular study population is going to have a higher rate of 

collisions due to its higher rate of twins and multiple birth siblings (being part of a multiple 

birth increases the risk of infant mortality). We had hoped the birth-certificate-to-mother 

linkage would have been higher, but we really had no way of knowing prior to this study 

because it was a first look. Ultimately, this tells us that any study using the APCD that 

requires linking women across data sources needs to be very aware that they could lose at 

least 10 percent because of different names (see Step B). 

Regarding the use of the scoring algorithm using the SPEDIS and COMPGED functions, we 

have already started applying that to other linkages. Particularly when studying provider 

information in the APCD. We are working on building a master provider table that will draw 

information from a variety of sources. Not all sources include the providers National Provider 

Identifier, however, so in those cases we use provider names. Our scoring algorithm has 

also been adapted slightly to apply to matching addresses across claim sources which has 

proven very effective. 
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