
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Creating Lists! Using the Powerful INTO Clause with PROC SQL to Store
Information in Macro Lists

Julie Melzer
Educational Testing Service

Abstract & Overview

Methods

Methods 2

Methods 3

Conclusion

Lists can be invaluable for numerous operations in SAS® including dropping or altering many
columns in a data set or removing all rows containing particular values of a variable. However,
typing a long list of values can be tedious and error prone. One potential solution is to use the
INTO clause with the SQL procedure to assign a single value or multiple values to a macro
variable and thereby reduce this manual work along with potential typographical errors or
omissions. The INTO clause even has additional benefits such as the ability to retrieve and store
data set characteristics into a macro variable and the ability to easily customize formats, which
makes this a great tool for a wide variety of uses.

Topic overview
• Storing a single value
• Storing multiple values
• Storing column values
• Storing row values

INTO:

Abstract

Abstract & Overview

Methods

Methods 2

Methods 3

Conclusion

Julie Melzer
Educational Testing Service

Creating Lists! Using the Powerful INTO Clause with PROC SQL to Store
Information in Macro ListsINTO:

Options

• Information about the dataset can be gathered and stored
into a macro variable with the use of a summary function.

• The INTO clause in combination with the Count function is
used to find the number of records in the file. The macro
variable ‘Number_Rows’ is created and contains the
number of rows in the Sashelp.Cars dataset.

• The value of the macro variable is printed to the log using
%put.

• This is not exclusive to ‘Count’ and any other similar
summary function will also work in its place.TRIMMED – Used to trim

any leading and trailing
blanks from the stored
value.

DISTINCT – Retrieves only
unique values.

Storing Multiple Values

Storing a Single Value

• Multiple features of the data can be summarized through
the use of several summary functions.

• Characteristics of the Sashelp.Cars dataset are extracted
by using the Count, Mean, and Max functions.

• Options are used to put the results into a useful format.
‘Trimmed’ will remove any leading and trailing blanks
from the stored values. The ‘distinct’ keyword will pull
only unique values.

• The stored values are global macro variables that can be
called upon at any time throughout the program.

proc sql;
select Count(*)
into :Number_Rows trimmed
from Sashelp.Cars;

quit;

%put &Number_Rows;

LOG
428

proc sql;
select Count(distinct Make), Mean(MSRP) format DOLLAR9.2,

Max(Horsepower)
into :Count_Make trimmed, :Mean_MSRP trimmed,

:Max_Horsepower trimmed
from Sashelp.Cars;

quit;

%put "The dataset represents &Count_Make brands of cars with average
MSRP of &Mean_MSRP and max horsepower of &Max_Horsepower..";

LOG
"The dataset represents 38 brands of cars with average MSRP of $32774.86
and max horsepower of 500."

Sample Code

Sample Code

Abstract & Overview

Methods

Methods 2

Methods 3

Conclusion

Julie Melzer
Educational Testing Service

Creating Lists! Using the Powerful INTO Clause with PROC SQL to Store
Information in Macro ListsINTO:

• A range of macro variables each with a distinct value can
be created by separating the names of the variables with
a hyphen.

• When unsure of the upper bound of the range, a number
larger than the actual value can be specified or the upper
bound left blank.

• The unique values of Origin from the Sashelp.Cars dataset
are assigned to macro variables. The number of origins
represented in the data is unknown, so an upper bound of
99 is used (a value larger than the actual value). The 3
origin values are stored in Origin1, Origin2, and Origin3.

Storing Multiple Values (Continued)

Storing Column Values

• Dictionary tables can be used to gather a list of variables
based on fields such as variable name or variable format.

• A list of numeric variables that are written with a leading
$ sign can be obtained. Column names where the format
is DOLLAR are extracted and inserted into macro variable
‘Column_List.’

• The list is formatted into values separated by a comma.
The ‘separated by’ option separates stored values by a
specified character and trims leading/trailing blanks.

• The macro variable can be easily called to perform further
manipulation of the DOLLAR formatted columns.

proc sql noprint;
select name
into :Column_List separated by ' , '
from dictionary.columns
where libname="SASHELP" and memname="CARS" and

format contains("DOLLAR");
quit;

%put &Column_List;

LOG
MSRP , Invoice

%macro Origin;
proc sql;
select distinct(Origin) into :Origin1 - :Origin99
from Sashelp.Cars;

quit;
%do i=1 %to &sqlobs;
%put &i &&Origin&i;

%end;
%mend Origin;
%Origin;

LOG 1 Asia
2 Europe
3 USA

Options

SQLOBS – Automatic
macro variable that
contains the number of
rows produced by the SQL
procedure.

SEPARATED BY – Separates
stored values by specified
character (automatically
trims leading and trailing
blanks unless specify
NOTRIM).

Sample Code

Sample Code

Abstract & Overview

Methods

Methods 2

Methods 3

Conclusion

Julie Melzer
Educational Testing Service

Creating Lists! Using the Powerful INTO Clause with PROC SQL to Store
Information in Macro ListsINTO:

• Rows containing particular values of a variable can be
dropped or kept.

• In the example, there is a list of 4 car models in the
MyCars dataset. The INTO clause is used to create macro
variable ‘Model_List’ with a list of the 4 car models.
Afterwards a data step is used to limit the larger file to
only rows pertaining to those specific models.

• If the INTO statement results in multiple values then the
‘separated by’ option can be used to separate those
values into a desired format.

• As with the other examples shown, this method allows
the data to speak for itself and does not require input
from the user. This saves time and is far less risky than
manual entry.

• This code is flexible and does not need to be revised if the
list of car models in the MyCars dataset changes.

Storing Row Values
data MyCars;

input @1 Make $13. @14 Model $40.;
datalines;

Honda Accord LX V6 4dr
Chevrolet Malibu LT 4dr
Subaru Legacy GT 4dr
Toyota Camry LE V6 4dr

;
run;

proc sql noprint;
select quote(trim(Model))
into :Model_List separated by ','
from MyCars;

quit;
%put &Model_List;

data MyCars_Stats; /*Limit dataset to only Models in MyCars list*/
set Sashelp.Cars;
where strip(Model) in (&Model_List);

run;

LOG
"Accord LX V6 4dr" , "Malibu LT 4dr" , "Legacy GT 4dr" , "Camry LE V6 4dr"

Options

SEPARATED BY – Separates
stored values by specified
character (automatically
trims leading and trailing
blanks unless specify
NOTRIM).

QUOTE – Separates stored
values by quotations.

Honda Accord LX V6 4dr
Chevrolet Malibu LT 4dr
Subaru Legacy GT 4dr
Toyota Camry LE V6 4dr

Resulting
MyCars_Stats

dataset

Sample Code

Abstract & Overview

Methods

Methods 2

Methods 3

Conclusion

Julie Melzer
Educational Testing Service

Creating Lists! Using the Powerful INTO Clause with PROC SQL to Store
Information in Macro ListsINTO:

Benefits

• The INTO clause easily assigns values to one or more macro variables for use later in the
program by a DATA or PROC step.

• This process is flexible enough that it can store a wide variety of information including data
set characteristics, column values, and row values.

• Many values can be gathered into a list without needing to type out all of the values. This
saves time and reduces tediousness, as well as eliminates the risk of typographical error or
omission of a value.

• The formats of the lists created can be easily customized using options such as TRIMMED,
QUOTE, and SEPARATED BY.

• This approach produces global macro variables which can be called upon at any time
throughout the program.

• Less hard coding of values is needed with this method, leading to greater flexibility and
simpler code.

• The INTO clause used with the SQL procedure allows for quick and efficient manipulation to
large datasets.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

