
1

Paper 3645-2019

Making your Way through the Metadata Maze
Frank Poppe, Laurent de Walick, PW Consulting

ABSTRACT
SAS® metadata contains extensive information about all elements of a SAS site.
Important parts of that metadata are surfaced through clients such as SAS®
Management Console and SAS® Data Integration Studio.

But a lot is not accessible that way. For example, SAS Data Integration Studio does not
tell you if another table has a foreign key relation to a table you might delete.

A good understanding of the relations between different elements in the metadata can
be acquired only by browsing through the metadata. You might want a list of all logins
and the persons that use them.

This paper describes an easily installed SAS® Stored Process that enables the user to
navigate through the entire metadata of a SAS®9 installation, using only the web
browser. The metadata is also available for people who do not have any of those SAS
clients (dependent on authorization, of course).

Information about jobs, transformation steps, tables read and written, users and their
group memberships, and so on, are presented in a structured way.

This Metadata Explorer is available in the public domain, through www.pwconsulting.nl,
and can be installed without any preconditions.

This paper describes the way the SAS Stored Process is organized and explains several
technical tricks, like the STREAM procedure to create HTML and XML files on the fly; the
XSL procedure to transform the XML results of a metadata query into a more easily
processed form; a new ODS tagset for the REPORT procedure to produce folding tables
using Bootstrap CSS, and so on.

INTRODUCTION
This paper describes an easily installable SAS Stored Process that enables the user to
navigate through the entire metadata of a SAS v9 installation, using only the web
browser.

The metadata is the central repository of everything of a SAS v9 site. Important parts of
that metadata are surfaced through clients as the SAS Management Console and DI
Studio. But there is a hoard of other information that is not directly accessible. Often a
good understanding of the relations between different elements in the metadata can only
be acquired by browsing through the metadata. The metadata also stores a wealth of
statistical information on your jobs and tables that can only be extracted if you have a
good understanding of its relations.

To make it possible to browse the metadata without any requirements (except access to
it, of course) we developed the web based PW Metadata Explorer, an easily installable
SAS Stored Process.

The Stored Process is available in the public domain, through
https://www.pwconsulting.nl/metadata-explorer-en/.

WHAT’S THE POINT?
Anything and everything that makes up a SAS version 9 implementation is stored in the
metadata. Which servers there are and what functions they have, the users that are
defined and what authorizations they have, the tables that exist and where they

2

physically reside, the jobs that have been created and the transformations that make
them up, etcetera. Everything is stored in metadata objects, and the objects all are
associated to other objects. The next paragraph describes the concepts and the
organization of the SAS metadata.

Much of that information can be viewed and changed through the different SAS client
applications, through desktop applications as DI Studio and the SAS Management
Console and web clients like SAS Studio and the SAS Environment Manager. But there
also is a lot of information that cannot be viewed that way. It often can be useful to
browse the metadata freely, in order to understand how different objects relate to each
other.
And questions can arise that cannot be answered using the SAS clients. We will describe
two such examples, but first we want to explain how the idea for a metadata explorer
started.

With the first versions of SAS version 9 also came an unsupported Web Application that
enabled users to navigate the metadata from a web browser. With the release of new
versions of SAS, with changes in the metadata, this application at some point stopped
working.

But the questions that could be answered with the tool continued to exist, of course.

At some point one of us decided to put together his own set of Stored Processes that
provided that functionality. Later we joined forces, and this evolved in the current
application, with more attention to the user interface and maintainability.

METADATA: WHAT IS IT, AND HOW DO OBJECTS HANG TOGETHER?
Metadata is data that provides information about other data. In the SAS context
metadata provides information about the configuration of the SAS Platform and location
and structure of enterprise data. SAS provides common metadata services across SAS
applications through the SAS Open Metadata Architecture. Using the metadata
architecture different SAS applications can use and exchange the same metadata;
making it easier to work together.

The metadata architecture consists of a metadata model, an API and a metadata server.

The metadata model provides classes and objects that define different types of
application metadata. This information is stored in a repository. The metadata model
defines valid relationships between metadata types (associations), uses the inheritance
of attributes and associations to affect common behaviors, and uses subclassing to
extend behaviors.

The SAS Open Metadata Interface (OMI) provides methods for reading and writing
metadata and administering the SAS Metadata Server. The PW Metadata Explorer uses
SAS procedures to access the API and present the metadata information.

The SAS Metadata Server is a server that provides centralized controlled access to SAS
Metadata [SAS-3]

Figure 1. Basic concept of the SAS Metadata

3

The SAS Metadata Model is an object-oriented, hierarchical model. As hierarchical model
every metadata type has a set of inherited and unique properties. The SAS Metadata
Model provides metadata types in two namespaces: SAS and REPOS.

This paper will only focus on the SAS namespace which describes application elements,
defined in about 160 metadata types [SAS-2].

Only a subset of the objects is visible as such in the SAS clients. These objects have the
PublicType attribute set. The value of the PublicType attribute refers to a PublicType
object of that name. The PublicType object describes the role of the object, and which
icon should be used to show it.

Most objects types only have a single role, so they always have the same value for the
PublicType attribute. An object of type Column e.g., has the PublicType attribute always
set to Column. But some objects can have different roles, like the JFJob object, which
can serve as a DeployedJob but also as a DeployedFlow.

PublicType objects themselves have the PublicType attribute set as well, not surprisingly
to the value PublicType. They can be seen in the Systems folder.

Objects function that do not have the PublicType attribute set, function in the
background, often containing properties of the objects that are shown, or defining the
nature of the relation between public objects.

USE CASES
In this paper we discuss two use cases of information that can be extracted from the
SAS Metadata, but which are not readily available through standard SAS applications.
For each use case we explain how to find the right starting point and understand how to
browse through the objects and associations to uncover the requested information.

CASE 1: WHERE IS A JOB USED?
We want to modify a job and want to know what processes are impacted by the change.
We are certain this job is used in multiple flows. We also suspect that the job has been
embedded in another job.

There is no easy method to determine all places where the job is used from the SAS
Management Console (SMC) or DI Studio (DIS). In SMC we need to check every flow
separately to see if the job is included in a flow and if that flow is a subflow of another
flow. In DIS we need to open each job to see if the job has been embedded in another
job.

The starting point
Any object can be found by name or ID. For jobs we can select them in the metadata
tree in DIS and view the basic properties. Both the Name and Metadata ID are available
as attribute.

4

Display 1. Basic Properties in DI Studio

The Objects and Associations
Next we discuss the objects and associations in a bit more detail, which will also give an
impression of how the objects you see in your clients are represented by metadata
objects in the background. The relations are shown schematically in Figure 2. Objects
are represented by shaded boxes, the associations by light boxes surrounded by dashed
lines. Associations always have two names, one for each direction. For example, the top
right Job object has a JFJobs relation to the JFJob object, and that object has an
AssociatedJob association back to the Job.

Figure 2. Relation diagram for Job and Flow

The right sequence show what metadata objects make up the deployment of a job. The
job (A) is represented by a Job object, and after deployment the job has a JFJobs

5

association to a JFJob object with the PublicType attribute set to “DeployedJob”.
This is the Deployed Job object you see in the folder pane of DI Studio and the SAS
Management Console.
From that object there is a Steps association to a TransformationStep object. This is the
job node you see in the flow diagram in the Schedule Manager of the SAS Management
Console.

There then remain two steps: an Activities association to a TransformationActivity
object, and a Jobs association to a JFJob object with the PublicType attribute set to
“DeployedFlow”. This last object is the Flow you see in the folder structure, and which
you can schedule.

The left sequence shows in what way that job is made up out of transformation steps.
There is a CustomAssociations link to a CustomAssociation object with a Name attribute
value of “ControlOrder”. This object has an AssociatedObjects association to all steps in
the job (this is one of the few cases where the order of associations is relevant). These
steps are represented by TransformationStep objects, and they link through a
Transformations association to the transformation itself. These are the SQL Joins, the
Table Loaders, etc., but they can also be a Job, as shown here.

Note that the included Job (B) is not deployed, but will be part of the code that will be
executed through the flow (bottom right in the figure).

Note also that nor in DI Studio, nor in the SAS Management Console, you can trace the
relation from Job (B) to its inclusion in Job (A), or can you establish if the DeployedJob
object for job (A) has been included in one or more flows.

CASE 2: IS A COLUMN USED AS A FOREIGN KEY?
In DI Studio you can define primary and foreign key relations between tables. You then
can use the standard options of the Table Loader transformation to enforce the
constraints for those relations.

Sometimes a table may seem obsolete. DI Studio has the Analyze function to check the
impact of a table, both forward and reverse. If a table is not used in any job it seems
obvious that it can be deleted from your repository. But primary-foreign key relations do
not show up in the analysis that DI Studio gives you. So e.g. a reference table, that is
not read in any job, and is not populated through a job, might still serve foreign key
restrictions for other tables. If the table is being deleted the Table Loader code for those
jobs will end in error.

But, as anything, these relations are stored in the metadata, and can be traced with the
PW Metadata Explorer.

The relations are stored both at the table level and at the column level. The quickest way
to find if such relations exist is through the table relations. If necessary one can always
go a level deeper to the columns involved.
Figure 3 shows the relations.

6

Figure 3. Foreign key relations

Tables are represented by PhysicalTable objects. If a primary key has been defined this
will be a UniqueKeys association to a UniqueKey object. Now, if that key serves as a
foreign key for another table, there will be ForeignKey association to a ForeignKey
object.

If you then also want to know which table is involved, there will be Table association to
the other table object.

HOW DO YOU USE THE PW METADATA EXPLORER?
The PW Metadata Explorer functions in general as follows:

At the start the user is shown a form with a list of all the object types in the SAS
metadata. In this screen shot the object type Job is selected. The two tables at the
bottom will show the attributes and associations valid for the selected object.

7

Display 2. Opening screen of the PW Metadata Explorer

The associations also display the cardinality of an association. Many associations have a
cardinality of 0-∗, meaning that in that direction the object can have zero to multiple
associations to the partner type mentioned. A 1-∗ cardinality means that there should be
at least one associated object of that type.

The cardinality can (and often is) different in the reverse direction: A Column object has
a 1-1 association with a Table object: it cannot exist without a table, and can only
belong to one table. But a Table has a 0-∗ association to Column objects: it can even
exist without any coiumn.

Usually one will add a filter as well, and after clicking <OK>, a list will be shown of all
objects of that type (with Id, Name and Description).

Display 3. Result of a query for objects

8

When clicking on any of those objects the next screen will show all attributes, and all
associations to other objects.

Display 4. Information for a specific object

The associations are grouped per type, and the groups can be expanded one at a time.

One can click on any of those associated objects, and that will show similar information
for that object, ad infinitum.

For jobs so called enhanced information is available, showing all notes added to the job
and the steps in the jobs, and showing all the steps in order of execution with the source
and target tables for each step.

Display 5. Enhanced information on Jobs, showing all tables read and written

9

As on the DI Studio canvas, temporary tables are shown in green, while persistent, registered, tables
are shown in orange.

ORGANIZATION OF THE STORED PROCESS
In order to facilitate an easy installation process, we organized all the functions in a
single stored process. Although the whole application consists of more than a dozen files
with SAS code (plus several SAS data sets and other supporting files), there is only one
file that has to be defined as ‘the’ Stored Process: PW_MDE_UI.sas. The combination of
parameters that is used in calling the Stored Process will determine which other SAS files
will be included.

The main task of this primary file thus is to determine, from the parameters, the
combination of files to include. In general, the processing of a call consists of three
phases:

• Collecting information using the METADATA procedure;

• Processing that information;

• Presenting the results.

Therefor the code of this first file ends with three %include statements, which refer to
macro variables that have been assigned values based on the type of request. The code
looks like this (a bit simplified here):

%include "&stpPath\&phase1..sas" ;
%include "&stpPath\&phase2..sas" ;
%include "&stpPath\&phase3..sas" ;

It can happen that in one of the first two phases things have to be changed. The code
then just reassigns the macro variable. This is e.g. the case when the filter on the
request for metadata objects does not return a result: there then is nothing to process,
nor present.

The macro variable &stpPath is the physical location of the starting file PW_MDE_UI.sas,
where also all the other files can be found.

Since SAS version 9.4M5 this location is known during execution through the automatic
macro variable &SYSINCLUDEFILEDIR, but we did not develop in that version. And the
application should work under older versions as well. So we needed some initial
metadata requests to get at that location.

As the name of the Stored Process is known, the metadata object for the Stored Process
can be found, and from there the metadata object that represents the source code, and
eventually the name of the physical directory for that source code, which contains the
full path and thus can be used as the value of &stpPath.

At various moments in the whole process pieces of HTML code may be produced that will
become part of the page that is presented as result in the user’s browser. These pieces
are written to different temporary fileref’s, which are included in the final result that is
written to the fileref _webout. This is the fileref that is standard available to receive the
HTML code that should be returned to the browser.

Combining these different fileref’s is done using the PROC STREAM. This is the subject of
the next paragraph.

TECHNICAL DETAILS

USING PROC STREAM

10

What PROC STREAM does, does not look very sensational: it takes the character stream
following the BEGIN keyword on the PROC statement and copies everything to the
designated file destination, until four semi-colons are found [SAS-1].

But while doing that the macro processor executes on the character stream, and that
makes it a very flexible and powerful tool. Not only references to macro variables are
resolved, also macro calls are being executed before resuming the processing of the
character stream.

And those macro calls can have far reaching effects: within a macro SAS data sets can
be opened and read and using the %sysfunc macro function also Data Step functions can
be executed. Macro variables that are created that way will be passed back to the main
process.

In this application PROC STREAM is used mainly for two purposes:

• It is used to collect the pieces of HTML that have been produced and present
them orderly on the page that is being send back to the browser.

• At various point utility files have to be produced with slight variations depending
on the query being processed, like an XML file containing a request for PROC METADATA,
or an XML map to interpret the XML-code that Proc METADATA returns.

Collect HTML pieces
PROC STREAM has two ways to include code from another source.

The macro function %INCLUDE will read the designated file, and it will be processed as if
it were part of the character stream. I.e., macro references will be resolved, and macro’s
will be executed.

The directive READFILE on the other hand will insert a file without processing the
content.

Both methods have been used.

Creating utility files on the fly
The code to produce XML-maps, depending on the kind of result to be processed, looks
like in the following example.

Proc Stream outfile=request ; BEGIN
<GetMetadataObjects>
 <ReposId>$METAREPOSITORY</ReposId>
 <Type>Job</Type>
 <Objects/>
 <Ns>SAS</Ns>
 <Flags>2436</Flags>
 <Options>
 <Templates>
 /* … template code not reproduced here */
 </Templates>
 <XMLSelect search="Job[@Id='&gObject']" />
 </Options>
</GetMetadataObjects>
;;;;

The macro variable (marked in the code), which contains metadata-id of the object for
which information is requested, will be resolved by PROC Stream before writing to the
output file.

11

USING PROC XSL
The communication with the metadata through PROC METADATA works with XML: you
define a request in XML, and an XML file with the results is returned. SAS offers the XML
libname engine as solution to read data from XML files. An XMLMap can be provided to
the XML engine, where it’s defined how the XML should be interpreted into one or more
SAS datasets and columns [SAS-4].

To use an XMLMap the structure of the XML that needs to be interpreted, must be known
and fixed. The contents of the XML return by the PROC METADATA however, will vary
depending on the query. This would require a very extensive XMLMap and lots of SAS
code. To simplify the XML, we rely on Extensible Style Sheet Language (XSL). XSL is a
W3C standard that offers the ability to transform an XML document into another XML
document [W3C]. SAS provides out-of-the-box support for XSL through PROC XSL [SAS-
1]. The simplification consists of turning the various elements (XML tags) for each object
into an attribute for a standard element, in our case the objects element.

We use the following stylesheet. The relevant part of our stylesheet is as marked and
will be explained below.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>
<xsl:strip-space elements="*"/>
<!-- identity transform -->
<xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
</xsl:template>
<xsl:template match="Objects/*">
 <Object>
 <xsl:attribute name="ObjectType">
 <xsl:value-of select ="name(.)"/>
 </xsl:attribute>
 <xsl:apply-templates select="@*|node()"/>
 </Object>
</xsl:template>
</xsl:stylesheet>

The match directive instructs PROC XSL to apply it to all elements found under the
Objects element. For each element found a new element Object is created. A new
attribute is added to the Object element containing the name of the element it is
replacing. All other attributes are also copied into the new element.

The other directives make sure that all other elements are copied unchanged.

The resulting XML file now always contains elements named Object, regardless of the
different object types in the original result.

If the original result contained the tag sequences (as a simplified example):

 <Objects>
 <Job name="some job">
 <JFJob name="some deployed job">
 </Objects>

After application of the stylesheet with PROC XSL this will result in:
<Objects>
 <Object ObjectType="Job" name="some job">
 <Object ObjectType="JFJob" name="some deployed job">

12

</Objects>

Now it is possible to use a straightforward XML map to interpret the results of a query,
regardless of the objects being returned.

BOOTSTRAP PACKAGE AND ODS TAGSETS
The basic lay-out of the web pages our application returns is set up with the Bootstrap-
package [GetBootstrap]. In order to get everything set up properly we relied a lot on the
examples and tutorials of W3Schools.com [w3schools].

The Bootstrap package supplies several themes that you can use and adjust to create a
similar look and feel to all the elements that make up a web page (tables, buttons, etc.).
The package also makes it possible to define a hierarchical grid of rows and columns
which you can use to align the different parts of the web page. It is flexible, will adjust to
resizing of the browser, and will take into account the properties of the different devices
(pc, tablet, etc.).

The package offers the possibility of have collapsible elements. They can be grouped
together, so that when one element is expanded, the other elements of the group are
collapsed. This makes it possible to provide a large amount of information on a page
while giving the user the opportunity to focus only a specific part of it. This would be
useful on our pages, in at least two situations:

• The result of a query for objects can result in a long list of objects of different
types;

• The list of associations for an object also can be long, and will almost always have
several association types.

We use the Report procedure to generate the tables, using the features of that
procedure to supply the clickable links and a BY statement to group the rows of the
table. So we looked for a way to keep using PROC Report, but in such a way that the BY
statement would produce these collapsible portions.

We found the solution in the ODS Tagsets. That is, we did not find a tagset that could be
used, but we used the TEMPLATE procedure to create such a tagset. We took the CHTML
tagset as basis, and changed different parts as needed. It is beyond the scope of this
paper to explain in detail how tagsets operate, and how we applied it to create HTML
code that uses the bootstrap functionality. We mention a few noteworthy points (the full
code that creates the tagset is part of the downloadable zip-file).

A tagset operates on events. Events are the start and the end of a document, the start
and the end of a table, the start and the end of a row, etcetera. For each start and for
each end the tagset describes what should be done. That will be a combination of writing
to the file destination, and some internal housekeeping.

The start of a table will, for an HTML destination, involve the writing of a <TABLE> tag,
with all necessary information, and the end will produce a </TABLE> tag, a.o.

For the collapsible bootstrap elements two categories of events are important:

• The start and the end of a BY group, which will become the container for a set of
a collapsible elements

• The start of a BY line, which signals the beginning of a new collapsible element
within that container.

Two variables are used within the tagset to create identifiers in the HTML for the
container and for the elements within that container: $accordion for the container, and
$bygroup for the elements. The variable $accordion is initialized at the start of the
document to a random value. This is because it is very well possible that a single HTML

13

page will be made up of several tables created using this code, and using random values
the chance that they interfere is minimized.

The definition for the bygroup events is as follows.
define event bygroup ;
 start:
 eval $accordion $accordion +1 ;
 putl
 '<div class="panel-group" id="accordion'
 $accordion
 '">' ;
 eval $bygroup 0 ;
 finish:
 putl '</div>' ;
end ;

(The difference between the PUT and the PUTL statement is that the latter starts a new
line at end of the output. A PUT statement does not.)

At the start first $accordion is incremented (so that different by groups within this
document do not interfere), and then that value is used in the Id attributed of a <div>
element. The variable $bygroup is initialized to 0.
The end event just closes the element with </div>.
The class attribute “panel-group” activates the Bootstrap functions.

The definition for the byline events looks a bit more complicated, because more HTML
code has to be produced.

define event byline;
 start:
 eval $bygroup $bygroup +1 ;
 putl '<div class="panel panel-default">' ;
 putl '<div class="panel-heading">';
 put '<button type="button" class="btn btn-primary btn-sm acc"
 data-toggle="collapse" ' ;
 putl 'data-parent="#accordion' $accordion '" href="#bygroup'
 $accordion '_' $bygroup '">'
 VALUE '</button>' ;
 putl "</div>" ;
 put '<div id="bygroup' $accordion '_' $bygroup
 '"class="panel-collapse collapse' ;
 put ' in' / $bygroup = 1;
 putl '">' ;
 putl '<div class="panel-body">' ;
end;

First the variable $bygroup is incremented.

Two <div> elements are being produced. The first one is the line that will always be
visible, with the <button> element that expands and collapses the next <div> with the
actual content. The variable VALUE is the automatic variable that will contain the actual
value of the By variable, and that is the value that will be displayed on the button
(Display 4 shows how that works out).

The button is linked to the next <div> by constructing an id value using the $accordion
and $bygroup values.

When the $bygroup value equals 1 the class “in” is added, meaning that it will be shown
expanded initially (tagset code after a slash functions as an if statement).

There was one other aspect in the tagset that we had to take care of for this application:
making sure that the ampersands and the less than and greater than symbols (& < >)

14

end up in the proper way in the resulting HTML. Some have to act in the HTML as such,
so should remain &, < and >, while others have to be displayed as such, so should end
up in the HTML as & < and &rt;. But if those strings are not introduced in the
right way the characters will be encoded automatically once again, and the result will not
be (.e.g.) < but &lt; On the web page the user will see < where < was
intended.

CONCLUSIONS
The SAS metadata contains powerful information, and there is much more beyond the
information that can be seen in the SAS clients. That information can be important for
developers and other users.

The PW Metadata Explorer opens the SAS metadata for everybody authorized, without
the need to install a client.

REFERENCES
Bootstrap (n.d.). Retrieved from https://getbootstrap.com/

PW Consulting. (n.d.). Metadata Explorer. Retrieved from
https://www.pwconsulting.nl/metadata-explorer-en/

SAS-1. (n.d.). Base SAS 9.4 Procedures Guide, Seventh Edition. Retrieved from
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=proc
&docsetTarget=titlepage.htm

SAS-2. (n.d.). SAS 9.4 Metadata Model: Reference. Available at
http://support.sas.com/documentation/cdl/en/omamodref/67417/HTML/default/viewer.h
tm#titlepage.htm

SAS-3. (2018). SAS 9.4 Open Metadata Interface: Reference and Usage, Third Edition.
Available at
https://documentation.sas.com/api/docsets/omaref/9.4/content/omaref.pdf?locale=en

SAS-4. (2018). SAS 9.4 XMLV2 and XML LIBNAME Engines: User’s Guide. Available at
https://documentation.sas.com/api/docsets/engxml/9.4/content/engxml.pdf

W3C. (n.d.). Available at https://www.w3.org/Style/XSL/

W3Schools (n.d.). Bootstrap Tutorial. Available at
https://www.w3schools.com/bootstrap/default.asp

Wikipedia. (n.d.). Metadata. Retrieved from https://en.wikipedia.org/wiki/Metadata

CONTACT INFORMATION
Your comments, questions and suggestions are valued and encouraged. Contact the
authors at:

Frank Poppe
PW Consulting
+31 6 2264 0854
Frank.Poppe@PWconsulting.nl
www.pwconsulting.nl

Laurent de Walick
PW Consulting
+31 6 2631 4544
Laurent.de.Walick@PWconsulting.nl
www.pwconsulting.nl

	Abstract
	Introduction
	What’s the point?
	Metadata: what is it, and how do objects hang together?
	Use cases
	Case 1: Where is a job used?
	The starting point
	The Objects and Associations

	Case 2: Is a column used as a Foreign Key?

	How do you use the PW Metadata Explorer?
	Organization of the Stored Process
	Technical details
	Using Proc Stream
	Collect HTML pieces
	Creating utility files on the fly

	Using Proc XSL
	Bootstrap package and ODS Tagsets

	Conclusions
	References
	Contact Information

