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ABSTRACT  
The study presented in this paper looked at possible methods and processes involved in the 
imputation of complete missing blocks of data. A secondary aim of the study was to 
investigate the accuracy of various predictive models constructed on the blocks of imputed 
data. 
Hot-deck imputation resulted in less accurate predictive models, whereas a single or 
multiple Monte Carlo Markov Chain or the fully conditional specification imputation methods 
resulted in more accurate predictive models. 

An iterative bagging technique applied to variants of the neural network, decision tree and 
multiple linear regression improved the estimates produced by the modelling procedures. A 
stochastic gradient boosted decision tree was also constructed as a comparison to the 
bagged decision tree. 

The results indicated that the choice of an imputation method as well as the selection of a 
predictive model is dependent on the data and hence should be a data-driven process. 

 INTRODUCTION  
Missing data are frequently observed in data, even large data sets can contain incomplete 
and missing data. Many analytical procedures are unable to model or cater for incomplete 
observations and, as a result, omit such observations from the modelling procedure and any 
derived analysis (i.e. a complete case analysis approach is followed). 

Missing data imputation methods were developed for instances where the omission of 
observations with missing data would lead to a loss in information. Imputation methods, by 
definition are techniques that can be used to estimate missing data from the available data. 
The question then is: Would the model constructed on the imputed data or on the original 
incomplete data result in the best predictive model? 

The first section of this paper discusses the data source used in this study. The second 
section discusses the various missingness mechanisms that should ideally be identified prior 
to the adoption of any imputation method. This is followed by a discussion of the various 
imputation methods explored in this study. 

The third section of this paper describes the different predictive models constructed on the 
imputed blocks of data. The fourth and fifth sections of this paper discuss the results of the 
various modelling procedures with an emphasis on the effect of the imputed data 
mechanism on model accuracy. 

DATA SOURCES 
The specific data sets used in this study contained partially observed data as well as 
complete missing blocks of data (i.e. no data observed for a given observation). Since the 
data used in this study is a real-world data set. In order to preserve the confidentiality of 
the data source and the data set components, it was necessary to mask the data. This did 
not result in any loss of interpretability of the results in this paper. 

The first data set (referred to as ‘Data set 1’) contained 57517 observations and 5 variables. 
The second data set (referred to as ‘Data set 2’) contained 76637 observations and the 
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same 5 variables as well. All 5 variables, of which one was the target variable, are 
continuous type variables. 

It was found that the two original data sets each contained two separate distributions (w.r.t 
the target variable) and needed to be split to predict a specific target. The splitting of the 
data resulted in four separate data sets for implementation of the imputation and modelling 
phase of this study. These data sets will be referred to as ‘Data set 1 Split 1’, ‘Data set 1 
Split 2’, ‘Data set 2 Split 1’ and ‘Data set 2 Split 2’ in this paper. 

IMPUTATION METHODS 
Missingness within data can be identified by or related to a missingness mechanism. If the 
identification of the missingness mechanism is done prior to data imputation, then the 
selection of an appropriate imputation method to impute the missing data can be done 
appropriately. As mentioned by Little and Rubin (2002), the three missingness mechanisms 
that can be identified in the presence of missing data are: missing completely at random 
(MCAR), missing at random (MAR) and not missing at random (NMAR). Note that the 
missingness mechanisms do not assume that the occurrence of missing data is random but 
are more of an indication of the relationship between the missing data and the observed 
data. 

If the full data set of size  𝑛𝑛, containing  𝑝𝑝 variables can be expressed as  𝑌𝑌 = (𝑦𝑦𝑖𝑖𝑖𝑖), where 𝑖𝑖 =
1, 2, … ,𝑛𝑛 and  𝑗𝑗 = 1, 2, … , 𝑝𝑝 then a missing indicator matrix for this data set can be expressed 
as 𝑀𝑀 = (𝑚𝑚𝑖𝑖𝑖𝑖), where 𝑚𝑚𝑖𝑖𝑖𝑖 = 1 is indicative of 𝑦𝑦𝑖𝑖𝑖𝑖 being missing and 𝑚𝑚𝑖𝑖𝑖𝑖 = 0 been indicative of 𝑦𝑦𝑖𝑖𝑖𝑖 
being observed. 

The missingness mechanism can be expressed as the conditional distribution of the missing 
indicator matrix given the complete data set, i.e. 𝑓𝑓(𝑀𝑀|𝑌𝑌,∅), where ∅ denotes unknown 
parameters (Little & Rubin, 2002).  

If missingness is neither dependent on the observed values of the data set 𝑌𝑌 nor those of 
the missing data, then the missing mechanism is said to be MCAR and can therefore be 
expressed as (Little & Rubin, 2002): 

 

                                      𝑓𝑓(𝑀𝑀|𝑌𝑌,∅) =  𝑓𝑓(𝑀𝑀|∅) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌,∅.                                    Equation 1 

 

If the presence of missing data is dependent on only the values of the observed data of 𝑌𝑌 
the missing mechanism is said to be MAR and the missing mechanism can be described as 
(Little & Rubin, 2002): 

 

                                 𝑓𝑓(𝑀𝑀|𝑌𝑌,∅) =  𝑓𝑓(𝑀𝑀|𝑌𝑌𝑜𝑜𝑜𝑜𝑜𝑜 ,∅) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 ,∅,                                 Equation 2 

 

where 𝑌𝑌𝑜𝑜𝑜𝑜𝑜𝑜 are the observed components of 𝑌𝑌 and 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚, the missing components of 𝑌𝑌 (Little & 
Rubin, 2002). If the missing data value itself is causing the data value to be missing then 
the missing mechanism is said to be NMAR. 

If the missingness mechanism can be identified, the ensuing step would be to identify a 
possible imputation method to impute the missing values. Depending on the pattern of the 
missing data (i.e. the order of the partially observed and missing values), whether that be 
monotone or random, as shown in Table 1 and Table 2, various imputation methods are 
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available. If the data allow for it, variables with missing data can be re-arranged in such a 
manner that the missing pattern becomes monotone (Little & Rubin, 2002). 

 

 
Table 1. Monotone missing pattern 

 

 
Table 2. Random missing pattern 

 
For the data used in this study, a random missing data pattern was observed. Due to the 
nature of the variables contained in the data, the variables could also not be re-arranged to 
obtain a monotone missing data pattern. As a result of the random missing data pattern in 
the data, a hot-deck or multiple imputation method was deemed appropriate for the 
imputing of missing values. 

TRUE IMPUTATIONS 
Due to the fact that the two main data sets used in this study shared information w.r.t the 
variables contained in the data, observed values for variables contained in one data set 
could be imputed or substituted in the second data set where the value for that specific 
observation and variable was missing (in this study a time variable was also used to match 
observations in the different data sets). Figure 1 provides a depiction of this type of 
imputation method. 

The true imputation, as it is referred to in this study, is more of a substitution method than 
an imputation method. This method of imputation or substitution avoided unrealistic 
imputations by substituting observed values contained within the original data (this is not to 
be confused with the hot-deck imputation method).  
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Figure 1. True imputation depiction 

 

As was the case for the true imputation method discussed in this paper, where the use of 
the true imputation method was dependent on the fact that the two data sets shared 
information, in practice this could also be the case for other data sets and would therefore 
be dependent on specific domain knowledge. For those missing values for which the true 
imputation method did not find an observed value, either the hot-deck or multiple 
imputation method, discussed in the following sections, was followed. For the hot-deck and 
multiple imputation methods mentioned in the following sections, a total of 25 imputed data 
sets were created for each of the imputation methods. 

HOT-DECK IMPUTATION 
The hot-deck imputation method involves replacing the missing data value of an observation 
with that of a ‘donor’ observation’s (i.e. substitution of values). The relationship between 
the two variables is therefore that of donor and recipient (Fuller, 2009). 

Donors can either be selected using a ‘with’ or ‘without’ replacement sampling technique 
and this replacement technique can then either be random or non-random in nature 
(Bethlehem, 2009). The sampling of donors should ideally be done with replacement so as 
to maintain the randomness of donors being selected.  For this study, sampling of donor 
observations was done with replacement. 

As mentioned by Bethlehem (2009), the random donor selection method does increase the 
variance of the estimator due to the sampling technique and imputation method, however, 
this method does produce a slightly less biased estimator when compared to other single 
imputation techniques.  

Another use of the hot-deck imputation method, not widely covered in the literature, would 
be to look at the effect when all variable values for a specific observation are imputed or 
donated from a donor observation where all the data values are missing for the recipient 
observation (i.e. imputing complete missing blocks of data). 

MULTIPLE IMPUTATION 
An improvement on the hot-deck single imputation method mentioned previously is the 
multiple imputation (MI) method. Although the MI method is an improvement on the single 
imputation method, the single imputation method is able to impute values when all values 
for a given observation are missing (i.e. ‘donates’ all variable values) whereas the MI 
method cannot perform such imputations. 
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MI is a method of imputation more preferred by many authors as the multiple imputation 
method incorporates the uncertainty of the imputed value by imputing multiple values for 
the missing value (Schafer, 1997). Both the single imputation and MI method can be used 
in a data set that has either a monotone or random missing patterned data as the 
imputation methods themselves are not dependent on this pattern.  

The Monte Carlo Markov Chain (MCMC) is a common multiple imputation method used in 
the literature as it allows the user to set prior and posterior distributions of the missing data 
that are imputed. The main assumption underlying the MCMC method is that the data are of 
a multivariate normal distribution.  

As mentioned by Schafer, when there is a departure from the multivariate normality 
assumption, the method is still robust enough to provide good estimates (Schafer, 1997). If 
the data can be represented as a vector 𝑦𝑦𝑖𝑖 in the form (Schafer, 1997): 

 

                                              𝒚𝒚𝑖𝑖 = (𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑝𝑝)𝑇𝑇,                                             Equation 3 

 

where 𝑖𝑖 is the observation and 𝑝𝑝 is the number of variables. A prior distribution needs to be 
chosen in order to estimate the values of 𝜇𝜇, the mean vector and Σ, the covariance matrix of 
the estimated missing values of the parameters 𝜃𝜃. 

As the focus of multiple imputation is more on the uncertainty or variance of the estimate 
(i.e. the covariance matrix Σ), the use of Jeffrey’s prior (also known as a non-informative 
prior) as a starting point, given in Equation 4, is suitable when little information is known 
about the prior distribution of the missing values (Schafer, 1997, p. 155). Jeffrey’s prior can 
be represented as: 

 

                                              𝜋𝜋(𝜃𝜃) ∝ |𝚺𝚺|−(𝑝𝑝+12 ),                                                 Equation 4 

 

even though the use of Jeffrey’s prior does not provide any information regarding the mean 
vector 𝝁𝝁, the selection of any prior distribution should assist in stabilising the mean vector 
(SAS Institute Inc., 2015, p. 5905).  

By using the non-informative Jeffrey’s prior, the posterior distribution of Σ and 𝜇𝜇 becomes 
(Schafer, 1997): 

 

                                      𝚺𝚺(𝑡𝑡+1)|𝑌𝑌  ~  𝑊𝑊−1[𝑛𝑛 − 1, (𝑛𝑛 − 1)𝑆𝑆],                                    Equation 5 

 

                                      𝛍𝛍(𝑡𝑡+1)|(𝚺𝚺(𝑡𝑡+1),𝒀𝒀)  ~  𝑁𝑁(𝑦𝑦�, 1
𝑛𝑛
Σ(𝑡𝑡+1)),                                   Equation 6 

 

where 𝒀𝒀 is the data matrix and 𝑊𝑊−1 the inverted Wishart distribution. The sample mean 
vector and sample covariance matrix are expressed as 𝒚𝒚� and 𝑺𝑺 respectively. The 
expectation-maximization (EM) algorithm is used in order to compute the initial values for 𝚺𝚺 
and 𝝁𝝁, which are then used in the MCMC method. The number of iterations defined for the 
imputation method is expressed as 𝑡𝑡 (where  𝑡𝑡 = 1, 2, … ). 
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MCMC can also be specified to conduct either a single or multiple chain imputation (i.e. 
parallel runs of the estimation process) (Schafer, 1997). This study will compare the effect 
of both single and multiple MCMC chains on model accuracy. 

FULLY CONDITIONAL SPECIFICATION 
Another multiple imputation method that can be used when the data contain a random 
missing pattern, is the fully conditional specification (FCS) method, specifically the 
predictive mean matching (PMM) approach of this imputation method (Van Buuren, 2007) 
(SAS Institute Inc., 2015). 

The FCS PMM method imputes a missing value by selecting the closest fully observed 
observations and using their values to impute a value, in this instance, the mean of the 
closest observations’ values (in this study the 5 closest observations were used). This 
method also carries the assumption that a joint distribution is present in the data for all 
observations (Van Buuren, 2007) (Heitjan & Little, 1991) (Schenker & Taylor, 1996). 

The FCS method involves two steps in its process, namely; the filled-in phase and the 
imputation phase. In the filled-in phase, missing values are replaced or filled with observed 
values from the closest fully observed variables. This process is then re-run numerous times 
to create multiple filled-in data sets. At the imputation phase, the filled-in variables are used 
to impute the missing value using the specified model, in our case, the mean. These phases 
are run multiple times, depending on the number of iterations and imputations requested. 

The FCS PMM is one of the simpler MI methods to apply, from a theoretical perspective. 
However, since a unique imputation model is created for each imputation and depending on 
the number of imputations, this method generally requires a longer computational time 
when compared to the MCMC MI method. Although, with the use of a high-end or 
supercomputer, this time is negligible. 

COMBINING IMPUTATION METHODS 
Each of the imputation methods mentioned in this section were carried out on either the 
True or All data set (as shown in Table 3). Where the True data set contained imputed data 
using the true imputation method as mentioned previously and the All data set contained 
the original data plus the inserted missing blocks of data (the complete missing blocks of 
data were discarded in the original data set due to the missing values). The reason that 
each imputation method was carried out on each of these two data sets was to ensure that 
combinations of all the various imputations were available for analysis, which would then 
assist in determining which combination or which single imputation method produces more 
accurate models. 

Since the multiple imputation methods did not impute any values for the missing blocks of 
data, which was an expected outcome, the hot-deck imputation was used on these newly 
imputed data sets from the multiple imputation methods to generate complete data sets. A 
list of all the data sets created and their specific combination of imputation methods are 
listed in Table 3. A total of 17 data sets were generated for each of the four data sets (‘Data 
set 1 Split 1’, ‘Data set 1 Split 2’, ‘Data set 2 Split 1’ and ‘Data set 2 Split 2’), resulting in a 
total of 68 data sets available for the modelling process. 
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Data set Imputation methods 

1 None     
2 All     
3 True     
4 All  Hot-Deck   
5 True Hot-Deck   
6 All MCMC Single   
7 All MCMC Multiple   
8 All FCS PMM   
9 True MCMC Single   

10 True MCMC Multiple   
11 True FCS PMM   
12 All MCMC Single Hot-Deck 
13 All MCMC Multiple Hot-Deck 
14 All FCS PMM Hot-Deck 
15 True MCMC Single Hot-Deck 
16 True MCMC Multiple Hot-Deck 
17 True FCS PMM Hot-Deck 

Table 3. List of generate data sets 

MODELLING TECHNIQUES 

MULTILAYER PERCEPTRON 
The multilayer perceptron (MLP) is arguably the most commonly used neural network due to 
its simplistic architecture as compared to other neural network architectures. A graphical 
representation of the MLP and the normalized radial basis function (NRBF) used in this study 
is given in Figure 2 (SAS Institute Inc., 2015). 

 

 
Figure 2. Neural network with single hidden layer 

The output function 𝑔𝑔−1(𝑦𝑦�) of the MLP neural network is given in Equation 7 (SAS Institute 
Inc., 2015): 

                             𝑔𝑔−1(𝑦𝑦�) = 𝑤𝑤0 + ∑ 𝑤𝑤𝑖𝑖𝑔𝑔𝑖𝑖(𝑤𝑤0𝑖𝑖 + ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗
𝑝𝑝
𝑗𝑗=1 )𝑑𝑑

𝑖𝑖=1 ,                                 Equation 7 
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where 𝑤𝑤𝑖𝑖𝑖𝑖 is the weight of the input variable 𝑥𝑥𝑗𝑗. The bias of the hidden unit 𝑖𝑖 in the hidden 
layer is defined as 𝑤𝑤0𝑖𝑖 and 𝑤𝑤𝑖𝑖 the weight of the hidden unit to the output function 𝑔𝑔−1(𝑦𝑦�). The 
function 𝑔𝑔𝑖𝑖(∙) is defined as the activation function in the neural network (e.g. a sigmoidal 
function). The corresponding weight of the output unit is defined as 𝑤𝑤0. 

For the MLP neural network, the exponential function can be used as the target layer 
activation function to avoid negative numbers being outputted from the model (i.e. forced 
range from 0 to +∞). Activation functions are also used in the mapping of input variables to 
the hidden layer to achieve desirable constraints of input variables and/or output from the 
hidden layer. 

A single hidden layer was used in both the architecture of the MLP and NRBF neural network 
constructed in this study. The activation function of the hidden layer was determined 
autonomously by the proc neural procedure available in SAS. This procedure determines the 
optimal activation function based on the target and the number of hidden units in the 
hidden layer. The activation function of the target layer in the neural network was set to the 
exponential function so as to constrain the estimates of the neural network to be in the 
interval 0 to +∞.  

As mentioned by Principe et al., the number of units to include in the first hidden layer 
should be set at twice the number of inputs to the hidden layer (Principe, et al., 2000). 
Even though the number of hidden units could have been determined through some trial-
and-error tests, for comparison purposes and due to time constraints the number of units 
for both the MLP and NRBF neural networks was set at 8. 

NORMALIZED RADIAL BASIS FUNCTION 
The properties of the NRBF neural network were comparable to those of the MLP neural 
network to make comparisons in the fit statistics of the neural networks. The main 
difference between the MLP and the NRBF neural networks is the treatment of the activation 
functions of the hidden units. In the MLP architecture, no constraint was applied to these 
activation functions; however, in the NRBF architecture, the sum of the hidden unit 
activation functions in a specific hidden layer must sum to 1.  

This constraint in the NRBF architecture is handled by the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 function. As mentioned 
by Schwenker et al, the MLP is more of a ‘rule-based’ neural network and the NRBF neural 
network is more case-based (Schwenker, et al., 2001) and this allows for easier translation 
of the output generated. The formula for the output of the NRBF neural network used in this 
study is given in Equation 8 (SAS Institute Inc., 2015). 

 

                        𝑔𝑔−1(𝑦𝑦�) = 𝑤𝑤0 + ∑ 𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓. ln(𝑎𝑎𝑖𝑖) − 𝑤𝑤0𝑖𝑖2(∑ (𝑤𝑤𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑗𝑗)2𝑝𝑝
𝑗𝑗=1 )}𝑑𝑑

𝑖𝑖=1            Equation 8 

 

The 𝑓𝑓 parameter of the NRBF neural network function given in Equation 8 is determined by 
the number of inputs to a specific unit. For example, in the hidden layer, of which there are 
8 hidden units, there are 4 inputs feeding into any given hidden unit. The parameter 𝑎𝑎𝑖𝑖 is 
considered as the altitude parameter and is determined by dividing the activation function 
for a given unit by the sum of the activation functions in that specific layer.  

For both the MLP and NRBF neural networks, the number of training iterations was set at 
50. This value was selected due to the time constraints of running each neural network on 
the data sets mentioned previously. 

The use of an appropriate optimization technique to determine the weights and bias of the 
neural network functions was also considered in this study. Efficient techniques help 
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determine the minimum error of the non-linear target surface space in the most efficient 
and quickest time possible (i.e. least number of iterations). The resilient back propagation 
(RPROP) as well as the Levenberg-Marquadt (LM) optimization techniques were investigated 
in this study for both architectures mentioned. 

STOCHASTIC GRADIENT BOOSTED DECISION TREE 
Gradient boosted decision trees (GBT) combine smaller decision trees iteratively by 
constructing a new decision tree at the terminal node of some previous decision tree, with 
the objective of minimizing some loss function. GBTs have been shown to be more accurate 
than some more theoretically intensive predictive models (Persson, et al., 2017). 

GBT can be thought of as the decision tree alternative to the bagged neural network. GBT 
like bagged neural networks, iteratively update the decision tree by sequentially fitting a 
new decision tree to the decision tree of the previous iteration taking into consideration the 
residuals of the estimates of the previous iteration. This sequential updating of the decision 
can, however, lend itself to overfitting of the GBT. Therefore, the stochastic gradient 
boosted decision tree (SGBT) was developed and is often a more preferred modelling 
technique than the more common GBT (Friedman, 2002). 

At each terminal node of each iteration in the SGBT modelling process, a random sample of 
the data is taken and the next split in the decision tree is determined using this random 
sample. This characteristic of the SGBT tends to avoid over-fitting as is the case with the 
normal GBT. Both forms of the GBT use a parameter called the learning rate or shrinkage 
parameter, which controls the amount of information that the current decision tree ‘learns’ 
from the fitted decision tree of the previous steps to obtain a new fitted decision tree.  

The learning rate or shrinkage parameter as a value is constrained in the interval 0 to 1 (not 
including 0), where smaller values for the learning rate tend to lead to longer computational 
times and larger values lead to overfitting of the decision tree (Dubossarsky, et al., 2016). 
Dubossarsky et al. (2016) and Sayegh et al. (2016) mention that a learning rate value of 
0.1 is a practical value for the learning rate to be set at to avoid over-fitting, although this 
will lead to longer computational times.  

Persson et al. (2017) mention that the differences in the models when the learning rate is 
less than 0.1 is negligible after 100 iterations. As highlighted by Friedman (2002), shrinkage 
parameter values less than or equal to 0.1 should also lead to more robust estimates of the 
model. 

The formula used for the updating of the final GBT as well as the final SGBT is given in 
Equation 9 (Friedman, 2002), 

 

                                 𝐹𝐹𝑚𝑚(𝑥𝑥) = 𝐹𝐹𝑚𝑚−1(𝑥𝑥) + 𝑣𝑣 ∙ 𝛾𝛾𝑙𝑙𝑙𝑙1(𝑥𝑥 ∈ 𝑅𝑅𝑙𝑙𝑙𝑙),                                    Equation 9 

 

where 𝑚𝑚 is the iteration number and 𝑣𝑣 the shrinkage parameter. 𝐹𝐹𝑚𝑚(𝑥𝑥) is the current 
decision tree constructed by combining the results of the previous decision tree 𝐹𝐹𝑚𝑚−1(𝑥𝑥) with 
the “pseudo-residuals” 𝛾𝛾𝑙𝑙𝑙𝑙 (Friedman, 2002, p. 368), for the current disjoint region 𝑅𝑅𝑙𝑙𝑙𝑙. The 
indicator function 1( ) in Equation 9 will take on the value 1 if the variable 𝑥𝑥 falls in the 
disjoint otherwise the indicator function will take on the value 0. 

As with bagging, the choice of number of iterations and sampling size is an important 
decision to be made when constructing SGBT. The literature does not provide a clear answer 
to the number of iterations to be used as this value is also dependent on the learning rate 
value and therefore numerous combinations can be considered. The choice of sampling size, 
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as with bagging, needs to be large enough so that the sample can be considered as 
representative but small enough to avoid over-fitting. 

MULTIPLE LINEAR REGRESSION 
The multiple linear regression modelling procedure constructs models that effectively cater 
for linear relationships between input variables and a target variable. As such the MLR 
modelling procedure requires a high correlation between the independent variables and 
target variable to produce a model with high accuracy (Khademi & Behfarnia, 2016). The 
formula given in Equation 10 shows this relationship (Atici, 2011): 

 

                                         𝑌𝑌 =  𝛼𝛼 +  ∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖
𝑝𝑝
𝑖𝑖=1 +  𝜀𝜀,                                           Equation 10 

 

where 𝛼𝛼 is the intercept of the model and 𝛽𝛽𝑖𝑖 the partial coefficients of the independent/input 
variables 𝑥𝑥𝑖𝑖. The index variable 𝑖𝑖 represents a specific independent variable, of which there 
are a total of 𝑝𝑝 independent variables. The error associated with the model is represented 
as 𝜀𝜀. 

Although, the multiple regression linear (MLR) procedure is usually outperformed in terms of 
model accuracy when the data is of a non-linear nature, there are circumstances where the 
MLR procedure outperforms (in terms of model accuracy) more advanced modelling 
techniques that cater for non-linear data (Khademi, et al., 2015) (Khademi, et al., 2017).  

In a study conducted by Khademi et al. (2015), which looked at predicting the compressive 
strength of concrete, it was found that the MLR procedure was more accurate than that of 
an artificial neural network (ANN) for specific ranges of values of the independent variables. 
In the case of Khademi, the MLR procedure was found to be more accurate in prediction 
when the ratio between water and cement was greater than 0.45 (ANN was more accurate 
for ratios ≤ 0.45). The Khademi study highlighted that although the MLR procedure is a 
more basic modelling approach and is traditionally a linear type model, there are 
circumstances in which the MLR procedure can produce a model more accurate than more 
advanced modelling techniques. 
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MODELS CONSTRUCTED 
 

Model Properties 

Bagged decision tree 
• Branch split set to binary 
• Tree depth set a maximum of 6 
• Bagging procedure with 200 iterations applied 

Stochastic gradient 
boosted decision tree 

• Branch split set to binary 
• Tree depth set a maximum of 6 
• Shrinkage parameter value of 0.1 used 
• Sampling rate within the training algorithm set to 60% 
• Number of iterations set to 200 

Multiple linear 
regression 

• Only a bagging procedure with 200 iterations applied to the 
basic modelling procedure 

Neural network 

• Multilayer perceptron and Normalized radial basis function 
architectures investigated 

• Resilient back propagation and Levenberg-Marquadt 
optimization techniques used in each of the above 
mentioned architectures 

• Single hidden layer with 8 hidden units 
• Number of iterations for the training set to 50 
• Bagging procedure with 200 iterations applied 

Table 4. List of models constructed 

The various properties of each of the predictive models constructed in this study is given in 
Table 4.  Figure 3 provides a visual depiction of the diagram flow in SAS Enterprise Miner. 

 

 
Figure 3. Diagram flow of modelling procedure 

As shown in Table 4 and depicted in Figure 3, a total of 7 different predictive models were 
constructed on the 17 different data sets mentioned in Table 3. This resulted in a total of 
119 models that needed to be evaluated for each data set and split type (a total of 476 
models overall). 
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RESULTS  
The results presented in Figures 4 to 7 are those from the predictive models producing the 
best result for the different fit statistics evaluated. As shown in Figure 4, the average 
squared error (ASE) for both data set split types were relatively consistent for the more 
advanced imputation method types. Although, the ASE values for Data set 1 Split 2 did 
increase for its hot-deck and multiple imputation data sets. 

 

 
Figure 4. Average squared errors 

 

 
Figure 5. Mean absolute percentage errors 
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As shown in Figure 5, the original data sets, not employing an advanced imputation method 
produced slightly better mean absolute percentage error (MAPE) values. The models 
constructed on the hot-deck imputed data sets (including the final data sets which were a 
combination of either MCMC or FCS method with hot-deck imputation) tended to be less 
accurate than others. 

 
Figure 6. Normalized mean bias errors 

As shown in Figure 6, all models constructed tended to produce estimates that were an over prediction. 
The degree of over prediction varied based on the data set and split type. 
 

 
Figure 7. Nash-Sutcliffe Efficiency 

As can be seen in Figure 7  all data sets, regardless of the split or missing data imputation 
method produced low NSE values. An interesting observation in Figure 7 is that for each of 
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the data set and split types, higher NSE values, although still low, were reported for those 
data sets employing a hot deck imputation method either before or after having employed 
one of the other imputation methods. The data sets employing a hot deck imputation 
method after having employed one of the multiple imputation methods produced larger NSE 
values for each of the data set and split types. 

In order to determine a final best model for each vessel and its relevant catch type, the fit 
statistic values, specifically those of the test data sets, were examined. A final model was 
selected by comparing the fit statistics of the 17 different data sets’ models of each data set 
and split type and selecting that model which produced the more accurate fit statistic. The 
frequency counts of the final selected models for the test data sets for both data sets and 
each split type are represented in Table 5 and Table 6. 

 

Model  Data set 1 – Split 1 Data set 1 – Split 2 Data set 2 – Split 1 Data set 2 – Split 2 
BDT 0 12 11 51 
MLP RPROP 0 0 34 0 
MLP LM 0 0 8 5 
NRBF RPROP 0 56 12 0 
NRBF LM 0 0 3 0 
MLR 68 0 0 12 
SGBT 0 0 0 0 

Table 5. Model selection – Test data sets 

As can be seen in Table 5, each data set and split type seemed to prefer a unique modelling 
technique. For example, Data set 1 Split 1 preferred the bagged MLR modelling procedure 
and this modelling technique was, surprisingly, the only modelling technique identified, 
based on the results of the test models’ fit statistics. 

For Data set 1 Split 2, the NRBF RPROP neural network modelling procedure was selected 
more frequently compared to the other modelling techniques. Data set 2 Split 1 favoured 
the MLP RPROP modelling technique over the others while Data set 2 Split 2 preferred the 
more basic bagged decision tree. Even though these results, in terms of an overall best 
model, are not ideal, they show that for a specific data set, different modelling techniques 
were indeed needed. The final model selected for each data set and split type is 
summarised in Table 6. 

 

Data set 1 – Split 1 Data set 1 – Split 2 Data set 2 – Split 1 Data set 2 – Split 2 
MLR NRBF RPROP MLP RPROP BDT 

Table 6. Final model selection based on test data sets 

FINAL BEST IMPUTED DATA SET 
In order to determine the best overall imputation method, the fit statistics of the test data 
sets for each of the data sets were compared. As can be seen in Table 7, the selection of a 
single imputation for each data set was not consistent across the fit statistics of the test 
data (as was the case for the model selection as well). 

Especially in the case of Data set 1 Split 1, the more accurate values for the ASE and NMBE 
fit statistics were unexpectedly from the original data set for these two fit statistics. As 
highlighted previously, Data set 1 Split 1 also seemed to prefer the simpler MLR modelling 
procedure to the more advanced techniques deployed.  
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  ASE MAPE NMBE NSE 
Data set 1 – Split 1 None True None None 
Data set 1 – Split 2 All - Hot Deck All – FCS PMM All - Hot Deck All - FCS PMM – Hot Deck 
Data set 2 – Split 1 All - Hot Deck True – MCMC Multiple True - Hot Deck True - FCS PMM – Hot Deck 
Data set 2 – Split 2 All - Hot Deck All All - Hot Deck None 

Table 7. Imputation method selection 

All of the other three data set types preferred more advanced imputation methods. As 
previously mentioned, a consistent imputation method could not be identified for any of the 
data set types. Because of the nature of the imputation process it is however possible for 
the results of Table 7 to be pooled in order to determine a final best imputation method and 
therefore, a final best imputed data set. 

As also mentioned previously, imputation methods were applied sequentially during the 
imputation process in order to achieve a complete data set. This process therefore resulted 
in complete data sets that were based on a combination of imputation methods.  

 

 Final imputed data set Final model selected 
Data set 1 – Split 1 True MLR 
Data set 1 – Split 2 True – FCS PMM - Hot Deck NRBF RPROP 
Data set 2 – Split 1 All – FCS PMM / MCMC Multiple – Hot Deck MLP RPROP 
Data set 2 – Split 2 All – Hot Deck BDT 

Table 8. Final test data set and model selections 

As shown in Table 8, a final best imputation method could be determined for each data set’s 
split type by combining the imputation methods identified in Table 7. As was the case for 
the modelling techniques, each data set’s split type seemed to prefer a unique imputation 
method process. The selection of this final best imputed data set and combining it with the 
selection of the best modelling technique allowed for the extraction of imputed values in 
order to determine what value could be gained based on the imputed missing values. 

CONCLUSION 
The imputation methods used in this study to impute the missing blocks of data were 
carried out with the ultimate goal of producing a complete data set with no missing data. 
Since the original data sets contained the usual missing data patterns (i.e. at least one 
value observed per observation) and also more importantly, missing blocks of data with no 
values present, combinations of imputation methods were needed in order to achieve a final 
complete data set. 

The evaluation of the ASE fit statistic showed that all models, for a given data set and split 
type, produced similar ASE values across data sets and, in some cases, resulted in larger 
ASE values. The MAPE fit statistic provided similar information to the ASE fit statistic, but as 
a percentage, making it easier to interpret and compare the accuracy of a given model. 

As can be seen in Figure 5, the data sets employing the hot deck imputation method 
produced less accurate models based on the MAPE fit statistic, which could not be seen in 
the case of the ASE fit statistic (see Figure 4). Although the hot deck imputation method 
provided imputations of realistic values (Andridge & Little, 2010), the evaluation of the 
MAPE fit statistic showed that this imputation method, even when carried out in conjunction 
with other imputation methods (MCMC and FCS), produced models that were less accurate 
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than those models based on data sets employing either of the MCMC or FCS imputation 
methods on their own. 

Although the results of the NMBE fit statistic, as with the ASE fit statistic, were similar 
across data sets for a given data set and split type, it did report positive values for all data 
sets, which provided some insight into the predictions. As mentioned by Chandwani et al. 
(2015), the positive values of NMBE showed that the predictions of the models selected 
were an over-prediction (average NMBE value of 11.50% for all data sets), even though 
these were the more accurate models selected. This result could also be due to the 
partitioning ratio followed in this study (50:25:25 data partition used). 

The assessment of the NSE fit statistic showed that the data sets employing the hot deck 
imputation method produced more accurate models, although all NSE values produced were 
still considered to be quite low. It was also further found that the data sets employing both 
a multiple and hot deck imputation method produced the larger of the NSE values. 

An initial selection of models showed that each data set and split type seemed to prefer a 
specific modelling technique. This was also evident in the final model selection based on the 
fit statistics of the test data. As shown in Table 5, the data of each of the four different data 
and split types preferred a specific modelling technique.  

A surprising result in the final model selection process was the selection of two simpler 
modelling techniques for the four final models selected. The selection of the bagged MLR 
and BDT modelling techniques was a surprising result as it was expected that either of the 
neural network modelling techniques or the SGBT technique would be selected as a final 
model. The selection of these models could be due to the fact that these simpler modelling 
techniques were coupled with a bagging technique (although the neural networks were also 
bagged and the SGBT technique employs a boosting technique). 

Based on the selection of final models, final imputation methods were determined for each 
data set and split type. Since the selection of an imputation method was not consistent 
across all data sets as shown in Table 7, results were pooled in order to achieve a final best 
imputed data set. As shown in Table 8, each data set and split type preferred not only a 
specific modelling technique but also a specific imputation method to impute its missing 
data. 
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