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ABSTRACT  

SAS/ACCESS® Interface to Hadoop is a critical component of integrating 
SAS® environments to the increasing amounts of data available in Apache 
Hadoop.  Although SAS® Viya® has enhanced features for data lift to memory, there are 
many day-to-day tasks that will continue to leverage SAS®9 technologies for analytics. 
Therefore, the reliance on an optimal integration to Hadoop with SAS/ACCESS is critical, 
especially for larger data and user volumes. This paper highlights best practices and 
experiences over and above the standard SAS documentation by sharing real-life 
experiences from a large financial institution and close work with SAS Research and 
Development. This paper focuses on using Apache Hive and the Hadoop Distributed File 
System (HDFS).  Other SAS and open source technologies are mentioned when and if they 
are better choices to meet performance or business requirements.  

The author is a long-time SAS and financial institution architect and administrator with 
extensive experience in SAS and Hadoop performance tuning and hardware. 

INTRODUCTION  

It’s important to note that SAS 9 technologies are still an important part of many IT 
software portfolios despite the introduction and adoption of newer technologies such as SAS 
Viya®.  Even though there are lots of different documentation notes covering setup and 
configuration for SAS ACCESS to Hadoop, there is a big hole around best practices related 
to strategies, use cases, debugging methods and performance improvements. This paper is 
mainly focused on Cloudera due to the fact many large financial institutions use it. However, 
all tips and methodologies should be applicable to MapR, Hortonworks and vanilla Apache 
Hadoop.  The goal of this paper is to provide admin and power users with tips and tricks to 
help augment their SAS ACCESS to Hadoop experience.   

It is important to have some level of understanding of Hadoop and SAS ACCESS Engine 
components before reading this document.    

SETUP & USAGE CONSIDERATIONS 

There is no sense in re-sharing the technical detail found in installation and configuration 
guides for SAS ACCESS to Hadoop.  However, it is important to consider several topics you 
won’t find in a typical installation guide or user guide.   In this section we will cover a few of 
those. 

UNDERSTAND HOW IT WORKS, AND HOW FAST IT CAN REALLY GO 

SAS ACCESS works pretty much like any other ACCESS Engine technology from SAS.  In 
this case SAS uses java to communicate with the HDFS and/or HIVE APIs in Hadoop.  When 
setting up SAS to talk to Hadoop you must provide jar (java archive) and Hadoop XML 
configuration files from the Hadoop cluster to enable SAS as a Hadoop client.   Details 
regarding this setup can be found in the resource links provided at the bottom of this paper.  
HDFS is the underlying file system in Hadoop and is spread across many machines.  SAS 
ACCESS can and does talk to all these machines, but it does not do that in parallel.  Read 
and Write speeds (not including the read query complexity) from SAS via the Java based 
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communication mechanism to or from Hadoop can be slow.  If you need to read or write 
data faster than the single threaded mechanism can sustain, you will need to look at other 
options.  Strategies on this are provided later in the document.    

HIVE IS NOT A SUBSTITUTE FOR AN RDBMS 

It is a very common mistake to think Hive will replace your extremely optimized SQL engine 
found in a typical RDBMS.  Hive has its place in attacking very large and un-organized data.  
However, it is no substitute for a SQL engine that has the benefit of many years of maturity 
and the advantage of many highly skilled people doing SQL optimization.  There have been 
improvements to Hive (i.e. edition of SPARK and other optimizations).  However, if you 
really need to run traditional SQL as fast as possible for Online Transaction processing and 
building analytic tables from traditional data, use the right tool for the job.  These other 
options are tools like an RDBMS or newer technologies like Snowflake and maybe even 
Hadoop enhancing products such as Impala.   

It has been a common mistake to dump data from an RDBMS into Hive and expect the 
same results and easy code migration.  If you don’t take the time to carefully port data, size 
Hadoop properly, deal with format issues, modify code, tune table and data structures, and 
optimize Hadoop/Hive for certain queries, you will fail.  It is easy to ignore the true 
migration cost of these actions only to later realize you spent more in the conversion than 
just leaving the data in the RDBMS.  Yes, Hadoop has its strengths and advantages over 
traditional RDBMS, but be honest with the true cost of Hive and its capabilities.  It’s easy to 
get caught in the new open source trends, just be sure to evaluate all the costs and set your 
expectations properly. 

SENTRY AND KERBEROS 

In a financial institution, you won’t find many Hadoop clusters without enhanced security 
turned on.  Cloudera uses Sentry to control role-based authorization to data and metadata 
stored in Hadoop.  There are a few important settings related to file permissions inside 
HDFS for SAS to operate properly.  In a Sentry enabled environment pay close attention to 
permissions and ownerships for temporary space inside HDFS for SAS ACCESS or you will 
have access issues.  Review the SAS documentation in the resources section for explicit 
directions. 

Kerberos is the typical “gate keeper” for access to Hadoop clusters in financial institutions.   
Proper setup is critical for users outside the SAS environment before any attempt at 
connecting to Hadoop is made with SAS.  See the Diagnosing Problems section below for 
strategies to help determine where security problems are. 

FIREWALL FUN 

Network configuration and firewalls can be a common setup hurdle when trying to connect 
SAS To Hadoop.  Be sure to get a list of required ports (i.e. Hive port 10000, data node 
50010) and make sure they are open between the two systems.  There are good lists 
provided by SAS Technical Support and the documentation on which ports need to be 
available.  Firewall issues are very common setup issues.  Don’t forget 
authentication/access services like LDAP and Kerberos also have port requirements.  
Sometimes firewall restrictions to those services can cause issues.  Keep your network 
engineer’s instant message address handy and make sure you know their favorite beverage 
or snack. 

A common issue for a financial customer was the addition of new data nodes into the 
Hadoop cluster after the initial setup and the configuration of SAS and Hadoop.  Because of 
the timing, firewall rules for the new Hadoop data nodes were not implemented and the 
customer was having random job failures of data query jobs from SAS.  It was discovered 
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that the failures only occurred when data was needed by SAS from the newly added data 
nodes.  When SAS tried to talk to these new nodes, the job would fail unless the data was 
replicated to another non-firewalled node.  Because the query occasionally worked, it was a 
difficult situation to diagnose. 

STRING AND OTHER VARIABLE FORMATS 

SAS 9 doesn’t know what to do with a STRING value when it’s reading from Hadoop. This 
can be horribly inefficient as it causes the SAS result table to have a Character 
variable/column 32K in size.  In a recent example, a financial customer had over 100 
STRING variables in their PARQUET table stored in Hadoop.  The resulting table was many 
times larger than the source and caused issues on the Hadoop side (size and processing of 
the temporary table created for extraction in YARN) and on the SAS side (size of the table).  
To avoid this, you can add extra metadata to the Hive table to guide SAS to a more 
acceptable column width.  This is still not optimal as it leads to heavily padded variables 
(extra spaces), but significantly reduces the extra “blank” space overhead.   Future versions 
of SAS address this issue by introducing the STRING value, but unfortunately it has not 
been introduced in SAS 9 only SAS Viya. 

There are other formats in Hadoop which might need to be converted.  Date/times 
occasionally have translation or formatting issues.  It’s important to carefully examine the 
date formats in Hadoop and ensure you are properly translating them to an equivalent 
format in SAS for processing.  Although this is painful, this is typical for many data 
migrations when moving between different storage formats or storage systems. 

MAKE FRIENDS 

As with any larger financial Information Technology (IT) organization, the networking, 
security and Hadoop teams are all critical contacts you will need to work with as you 
integrate SAS into the Hadoop ecosystem.   It is very important to make friends with these 
folks as you will need their help and access to make the changes you need to integrate 
effectively.  As mentioned earlier, find out their favorite snacks and beverages. 

READ/WRITE AND GENERAL PERFORMANCE  

Reading and Writing to Hadoop is no different than reading and writing from a Relational 
Data store with SAS.  Typically, the mantra “Minimize, then Analyze” is still very viable 
when working with data in Hadoop.  The more processing you can do inside Hadoop before 
extracting data can significantly enhance performance.  However, if you need to repetitively 
transfer data out to SAS, it might be worth creating a small DataMart in SAS to reduce 
constant pulling from Hadoop.  You can also push more processing into Hadoop itself (Hive, 
SQL pushdown, etc.) or look at other mechanisms (see OTHER TECHNIQUES section below) 
to drive more processing into Hadoop and reduce how much data you bring back to SAS.  In 
the meantime, here are some helpful hints and thoughts to improve your overall 
performance. 

PROFILING, WHERE IS MY BOTTLENECK? 

SAS ACCESS to Hadoop is not a fast mechanism to extract or write data into SAS. This is 
because it can only do single threaded reads or writes.  The runtime of a query in Hive 
varies depending on the query complexity and volume of data its processing. You can 
always tweak the logic of your query to improve things.  However, the resulting extraction 
back to SAS is highly dependent on the size of that result set and is usually takes more time 
than the query itself (especially with large analytic tables).  The larger the result set, the 
longer the SAS PROC SQL runtime.   This transfer back to SAS can be very lengthy and it is 
important to plan the time for it or try to avoid it.  Therefore, the motto to remember is, it’s 
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more efficient to do all the work possible in Hadoop before pulling data/results back to the 
SAS server – “Minimize in Hadoop then Analyze in SAS”.  As mentioned earlier, if possible 
use the push down technologies of certain PROCS and other techniques to execute logic in 
Hadoop versus back in SAS when you can. 

Below is a simple example of a query to show you how to profile your SAS job.  In this 
example, an SQL query is run from SAS against a 200 million row Hive table with a 10 
million table result set landed back in SAS.   In this case, the return of data is only 2 
minutes of the 5-minute runtime.  However, with larger datasets, the time spent pulling 
data back will be much worse.  Plan for this or avoid it as mentioned earlier. 

Code Example 

libname lhive Hadoop server="mycoolserver.bigbank.com" 

schema=myschema port=10000 SUBPROTOCOL=Hive2; 

libname fdisk “/data/junk”; 

proc sql; 

        create table fdisk.filebackinsas as 

        select * from lHive.file1 x, lHive.file2 as y 

        where x.custid = y.custid2;  

quit; 

SAS Log 

Summary Statistics for HADOOP are: 

Total row fetch seconds were:                           0.003535 

Total SQL execution seconds were:                       0.129411 

Total SQL prepare seconds were:                       187.653832 

Total SQL describe seconds were:                        0.003568 

Total seconds used by the HADOOP ACCESS engine were   321.311573 

  

NOTE: PROCEDURE SQL used (Total process time): 

      real time           5:22.03                     

      user cpu time       2.49 seconds 

      system cpu time     3.64 seconds 

 

Data Transfer Time back to SAS for small result:   ~134 seconds 

PARALLEL CODING 

If you need to read/write data quickly from Hadoop, you will typically need to roll up your 
sleeves and write custom SAS code, or use a different tool (more on that later).  Reading 
data in parallel with SAS ACCESS to Hadoop can easily be done if your data is properly 
partitioned.  However, you will have to have a good understanding of the data to do this.  
As an alternative, tools such as Data Integration Studio provide a drag and drop interface to 
aid in this step and write code for you.  For parallel reads and writes using SAS, you will 
need to leverage SAS CONNECT and the rsubmit feature.  At a high level, you launch a 
series of a parallel tasks to read or write data based on a range of values in a variable or set 



5 

of variables.  To write data, you can drop files into a folder in HDFS and use an optional 
command to register the data (in Hive) and/or merge the partitioned files you have loaded.  
For reading, you will need to merge the data once it has landed back in SAS or ensure your 
next processing step can handle reading multiple data partitions stored in different 
SAS7bdat formats/files.   

There are other options with SAS such as Scalable Performance Data Server (SPDS). 
Although this is not discussed in this paper it could be a viable target file format when 
extracting a partitioned dataset out of SAS as it allows for quickly merging/snapping results 
back together once it’s extracted to SAS.  For larger projects, it is worth looking options like 
SPDS and Data Integration Studio because they can drastically reduce long runtimes.  If 
you are going to go with customer code, it’s a good idea to give your customers/users a 
template to help them get started with parallel code.  The author’s company (D4t4 
Solutions) has provided a lot of consulting in this area. 

QUERY OPTIMIZATIONS AND PASSTHROUGH TO HADOOP 

SAS has put a lot of resources in R&D to ensure both SAS Procedures like MEANS, FREQ, 
TABULATE as well as SQL queries are pushed down into Hadoop for processing.  It is 
important to pay close attention to the SAS logs to monitor how well things are being 
processed and how many passes are being made through the data inside Hadoop.  
Restructuring your queries to be more optimal is a typical exercise in Relational Datastores.  
However, Hadoop does not have advanced Query estimators like an RDBMS.  This means 
optimizing queries will rely on best practices for HiveQL (SQL for Hive).  There are a good 
number of blogs and papers with suggestions on query optimization.  Many of these use 
special Hive settings which may be added to a SAS libname or inside a PROC SQL query.    

Example libname code with option to use SPARK in the Hive execution: 

libname hdp hadoop 

READ_METHOD=HDFS 

schema=myschmea 

HDFS_TEMPDIR="/data/myproject/work/hive/project_work" 

server="mycool.hadoopserver.com" 

uri="jdbc:hive2://mycool.hiveserver.com:10000/myschema;principal=hive/m
ycool.hiverserver.com@MYDOMAIN;ssl=true?hive.execution.engine=spark"; 

 

IMPLICIT OR EXPLICIT SQL WITH SAS AND HADOOP 

It is also important to note that with SQL, there is both implicit and explicit SQL.  Implicit is 
where PROC SQL parses through the SQL command and works in concert with the RDBMS 
or Hive to optimize the query.  This can cause some level of rewrite to execute some things 
in Hive and/or some things back in SAS.  This can have significant performance issues as 
things not translatable to Hadoop are then forced to run back on SAS and this can cause a 
significant amount of data to be accidently brought back to SAS.  However, Implicit SQL in 
some cases can be very beneficial as it can help overcome things like functions in standard 
SQL that won’t run in FedSQL (Hadoop SQL).  SAS does its best to translate the SQL to be 
something more palatable for Hive.  This is very nice early on when you just need the code 
to work until you have time to optimize it. 

Explicit SQL basically tells SAS to not modify the code and push everything down to Hadoop 
to run.  This is okay as long as all of the code the user writes in the SQL statement is fully 
supported in FedSQL.  If the code is not 100% FedSQL compliant, it will fail. 
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It is recommended for new SAS ACCESS to Hadoop users to use implicit SQL unless it 
causes issues with performance. 

DIAGNOSING ISSUES 

When there are problems with SAS ACCESS to Hadoop, it is important to do initial tests 
using Hadoop client tools outside of SAS before continuing any further diagnostics inside 
SAS.  SAS leverages Hadoop technologies like Hive and HDFS to connect to Hadoop to 
access data.  If a user cannot execute a command in the low-level Hadoop component, it 
doesn’t make sense to test inside of SAS until the issue for the user is resolved.   

ELIMINATE COMPLEXITY WHEN TESTING 

Another reason to start testing using Hadoop client tools like Hive and HDFS on the Hadoop 
edge (client node) is to eliminate lower level issues first (i.e. Hive service unavailable).  
Keep it simple by starting at the lowest level and then add layers (i.e. firewalls, network 
hops, etc.).  After initial tests work on the Hadoop edge node, you can move back to the 
SAS server to test.  Testing as close to the Hadoop cluster at first and moving up the layers 
can eliminate a lot of wasted time and frustration. 

Sample diagnostic steps when you have SAS connection or query issues: 

1. Do Hive/beeline and HDFS work on the Hadoop Edge Nodes with your query? 

a. If not, fix Hadoop / client tools 

b. Only move to next step once this is fixed! 

2. If possible, does SAS run on the Edge Node properly with your query? 

a. If not, check SAS configuration and client jars 

b. Only move to next step once this is fixed! 

3. Run SAS back on the original SAS server as a user 

a. If not working, could be network or config 

LOGGING IN SAS 

Turn on every log option available in your code. These are typically more verbose logging 
options and are especially useful when trying to get more details out of SAS ACCESS to 
Hadoop when using PROC SQL and other SAS code talking to Hadoop.  

options SASTRACE=",,,ds" sastraceloc=saslog nostsuffix; 

options source source2 mprint fullstimer notes fmterr; 

options msglevel=i; 

With the above options you get detailed info on how long and where SQL 
execution/processing happens in Hive while using PROC SQL.  This can be useful when you 
are optimizing execution and ensuring your code is passing through and executing more 
optimally inside Hadoop/Hive versus back in the SAS engine.  It is not optimal when data is 
pulled back in its entirety to SAS for processing (as mentioned earlier).  It’s more efficient 
when all the possible work can occur in Hadoop before pulling data/results back to the SAS 
server (Minimize then Analyze – as mentioned earlier). 

OTHER TECHIQUES 
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Although these options are outside the scope of SAS ACCESS to Hadoop, they are options 
that could help when working with data in Hadoop. 

SAS EMBEDDED PROCESS  

SAS created a framework called the Embedded Process (EP) to install inside of Hadoop.  It 
runs inside the YARN framework and can be used to parallel read, process or write data that 
is inside of Hadoop.  It was designed to work mainly with SAS’s older in-memory 
technologies (Lasr / High Performance Procedures / Visual Analytics).  However, it is now 
supported with the newer in-memory analytics system, SAS Viya®.  The EP is used to 
access (read/write/process) of tables stored in Hive or HDFS (file formats: CSV, Parquet, 
ORC, Control-A delimited, etc.).  Since it runs inside of YARN, it cooperates with other 
applications running in the Hadoop cluster and also reduces the time it takes to get data to 
the analytics in-memory. 

SAS VIYA® AND HDAT 

HDAT is a SAS binary format that can be used on disk, S3 or HDFS for high speed mapping 
into and out of memory.  It is mentioned here as it is another optional (although 
proprietary) way to store data in Hadoop for use with SAS’s Viya product.  It is extremely 
efficient when working with very large data volumes when SAS in-memory analytics are 
running alongside Hadoop.  Again, this is for SAS Viya or SAS High Performance Analytics 
only. 

SAS SPARK READER 

A new capability added recently to SAS is the ability to read data created by SPARK.   
SPARK is an in-memory open source software tool that is typically installed along with 
Hadoop on the cluster and controlled by YARN.  SAS can now access the data created by 
SPARK and read it into its in-memory analytic application SAS Viya.  This is a newer 
capability for SAS, please contact your favorite SAS contact for more details. 

CONCLUSION 

Hadoop can be a very powerful tool in the financial world for helping prepare and analyze 
large amounts of disparate data.  However, if you don’t remember anything from this paper, 
just remember that making friends with your network and Hadoop administrator(s) are 
critical in the success of integrating SAS with Hadoop.  Most importantly be honest with 
yourself on the true capabilities and costs of converting to SAS ACCESS to Hadoop for your 
desired tasks versus using other data storage types.  Hopefully these tips will help you 
better plan for a successful environment where SAS and Hadoop co-exist nicely for your 
customers. 
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