
1

Paper SAS3616-2019

SAS® Enterprise Miner™ and SAS® Visual Data Mining and
Machine Learning Hand Shake

Jagruti Kanjia, Dominique Latour, and Holly Sweeney, SAS Institute Inc.

ABSTRACT

SAS® Enterprise Miner™ and Model Studio are two solutions that you can use to create
predictive and classification models. In this paper, we show that although these applications

have different architectures and run in different environments, we can integrate models
generated in one environment and compare them with models produced in the other. In
SAS Enterprise Miner, we show how the SAS® Viya® Code node can be used to create
models based on SAS® Visual Data Mining and Machine Learning and integrate them into a
SAS Enterprise Miner project. For Model Studio, we describe how models generated in SAS
Enterprise Miner can be integrated into a Model Studio pipeline for the purpose of

comparison. We also discuss how you can use the SAS® code node in Model Studio to
produce user-defined models. We hope that a better understanding of these capabilities can

help users to fully use the rich functionality and flexibility of these products.

INTRODUCTION

SAS Enterprise Miner, and SAS Visual Data Mining and Machine Learning in Model Studio
and SAS® Visual Analytics, are powerful visual tools that take you through the data prep,
data exploration, modeling, and scoring stages of an analytics project. SAS Enterprise Miner

has been a proven data mining workbench for over 20 years and currently runs on the SAS®
9.4 platform. SAS Visual Data Mining and Machine Learning runs on SAS Viya, which
leverages the cloud-enabled, in-memory analytics engine of SAS® Cloud Analytic Services

(CAS), allowing for better processing and greater flexibility.

The SAS Enterprise Miner Graphical User Interface (GUI) is a point-and-click interface where
each step in the data mining process is represented by a node in the diagram process flow.
The GUI enables analysts with little statistical expertise to easily navigate through the data
mining process. More experienced users can go “behind the scenes” and write their own

code and customize the process.

SAS Visual Data Mining and Machine Learning is a collection of algorithms and utilities for
data preparation and modeling that run via CAS actions in a distributed, in-memory

infrastructure. There are multiple interfaces to SAS Visual Data Mining and Machine
Learning. You can analyze your data using SAS procedures, use an open-source
programming language to access SAS® Analytics, and interactively explore and model your

data in both SAS Visual Analytics reports and Model Studio pipelines.

Model Studio presents a modern approach to data mining that is specifically designed to
serve as an extensible and open framework that can access data from a variety of common
sources. By using CAS actions, you can invoke in-memory analytics not just with SAS, but

also with Python, R, and Java.

Model Studio enables you to visually assemble, configure, build, and compare data mining
models and pipelines for a wide range of analytic data mining tasks. Model Studio pipelines

have a similar structure to SAS Enterprise Miner process flow diagrams. All pipelines begin
with a Data node that inserts the project data into the pipeline and performs the specified
data partitioning. Each step of the pipeline flow is represented by a node in one of the

following categories:

• Data Mining Preprocessing: Nodes for exploring the data and for manipulating and

2

prepping the data for modeling.

• Supervised Learning: Nodes to build predictive models for your specified target.

• Postprocessing: Nodes to perform operations on models after they are built in

upstream nodes. Currently this category is dedicated to building ensemble models.

• Miscellaneous: Nodes with additional capabilities. This category includes creating
summary statistics and graphs to explore your data, saving data exported from the

previous node in the pipeline, and writing your own SAS code or open-source code (R or

Python).

The complete list of nodes available to create your pipeline in Model Studio 8.3 are shown in

Table 1.

Node Category Nodes

Data Mining

Preprocessing

Anomaly Detection Clustering Feature Extraction

Filtering Imputation Manage Variables

Replacement Text Mining Transformations

Variable Clustering Variable Selection

Supervised

Learning
Batch Code Bayesian Network Decision Tree

Forest GLM Gradient Boosting

Linear Regression Logistic Regression Neural Network

Quantile Regression Score Code Import SVM

Postprocessing Ensemble

Miscellaneous Data Exploration Open Source Code SAS Code

Save Data

Table 1. Nodes Available in Model Studio 8.3

The Score Data node and the Segment Profile node are two new nodes that will be added in

Model Studio 8.4.

Model Studio also provides a selection of pre-built beginner, intermediate, and advanced
node and pipeline templates that enable you to quickly prototype, test, and enhance

models. You can create, modify, and save your templates and model score codes. You can
also write your own custom SAS code or open-source code to integrate in the pipeline.
Model Studio expedites and simplifies model assessment and model pipeline comparisons

when evaluating competing analytic models.

This paper discusses the integration between SAS Enterprise Miner, Model Studio, and SAS
Visual Analytics, and how you can generate models in one environment and compare them

with models generated in another.

The sample data used in this paper can be downloaded from the SAS Visual Analytics
documentation page
(http://support.sas.com/documentation/onlinedoc/va/index.html#viya81). Click Example
Data for Getting Started with Analytical Models, unzip, and save the

insightToyDemo.sas7bdat data file in an accessible location.

The specific business problem you are trying to solve in this example is increasing company

profits at Insight Toy Company. Your IT department has provided you with two years of

http://support.sas.com/documentation/onlinedoc/va/index.html#viya81

3

data on all aspects of the business. The data includes information about what products are
sold, to which vendors they are sold, the manufacturers and distributors of the products,
the associated costs, and some metrics about the sales representatives and the vendors.

The goal is to determine which features are most likely to predict whether a product was

returned.

BUILD MODELS IN SAS ENTERPRISE MINER

To determine which features are most likely to predict whether a product has returned, we

first build a forest model and a rule induction model in SAS Enterprise Miner.

BUILD A FOREST MODEL IN SAS ENTERPRISE MINER

We first generate a forest model using the High Performance (HP) Forest node. The diagram
flow in Figure 1 illustrates the data mining flow that you can use to create partition data

sets, pre-process data, create the Forest model, and export the model.

Figure 1. SAS Enterprise Miner HP Forest Model Diagram Flow

The insightToyDemo table is pre-populated with a Partition variable that contains two
values: T for training observations and V for validation observations. SAS Enterprise Miner

has a Data Partition node that you can use to partition your data if your table does not have
a partition variable. You can include following code in the SAS Code node to create a

training and validation partition data sets based on the Partition variable:

data &EM_EXPORT_TRAIN (drop=Partition);

 set &EM_IMPORT_DATA;

 where Partition = 'T';

run;

data &EM_EXPORT_VALIDATE (drop=Partition);

 set &EM_IMPORT_DATA;

 where Partition = 'V';

run;

The observations with Partition = T are assigned to the training data set and observations

with Partition = V are assigned to the validation data set. The partition variable was created

so that each data set contains 50% of the total data.

You can use the Transform Variables node to create a new variable called TotalCost using

the formula or expression shown below:

TotalCost = OrderDistributionCost + OrderMarketingCost + OrderProductCost +

OrderSalesCost;

TotalCost is used in the analysis and the four other cost variables used in the calculation are

excluded from the analysis.

The HP Forest node creates predictive models by using a random forest ensemble
methodology. We used the default property settings to create a forest model. The HP Forest
model creates an analytic store, a binary file called score.sasast. The Score node creates an

associated DATA step 2 (DS2) score file, epscore.sas, which will be used to score new data.

The epscore.sas file contains a string that identifies the following items:

4

• The setkey method identifies the analytic store with the specified key.

• The preCode method block. This contains the code to transform input variables.

• The postCode method block. This contains the code to process output variables.

The Score node creates predicted variables that have fixed names. These variables can be

used for further analysis and reporting.

The Score Code Export node exports files that are necessary for score code deployment.
The epcode.sas and the score.sasast files are exported to the location that you specify in

the Output Directory property in the Score Code Export node.

The HP Forest node results in Figure 2 display the assessment statistics. In the Fit Statistics
table you can see that the misclassification rate for the training partition is 0.052248 and

the misclassification rate for the validation partition is 0.060341.

Figure 2. SAS Enterprise Miner HP Forest Model Results

BUILD A RULE INDUCTION MODEL IN SAS ENTERPRISE MINER

We now want to generate a rule induction model. The diagram flow in Figure 3 illustrates
the process flow to generate a rule induction model and save the model as batch processing
code. To import this model into Model Studio, you are required to create a batch file from a
Score node to ensure that the flow score code is properly created. Right-click the Score
node in your diagram and select Export Path as SAS Program. Ensure that Run this path is

enabled in the Export Path as SAS Program window. Specify a location to save the batch

code that is available to your Model Studio client.

5

Figure 3. SAS Enterprise Miner Rule Induction Model Diagram Flow

SAS Enterprise Miner batch processing is a SAS macro-based interface to the SAS
Enterprise Miner client/server environment that operates without running the SAS
Enterprise Miner user interface. This batch code generates several data sets such as the
workspace data set, the nodes data set, the actions data set, the connections data set, and
the node properties data sets. These components data sets configure different settings,

provide relational information, and provide individual node settings to SAS Enterprise Miner.

All this information is required to run a valid process flow diagram.

CREATING SAS VIYA MODELS IN SAS ENTERPRISE MINER

As discussed in “Make SAS® Enterprise Miner™ Play Nicely with SAS® Viya®”, you can
generate models based on SAS Viya procedures within SAS Enterprise Miner. Using the SAS
Viya Code node, you can run procedures in the CAS engine and have the results displayed
in SAS Enterprise Miner. Models generated in the SAS Viya Code node can also be compared

to other models based on traditional SAS Enterprise Miner nodes.

We use a SAS Viya Code node to generate and compare a variety of data mining and
machine learning procedures. These models will be assessed in SAS Viya and the best of
those models will be selected and exported for successor nodes to consume. Figure 4

illustrates the process flow for this example.

Figure 4. SAS Enterprise Miner SAS Viya Code Diagram Flow

The Training Code editor in the SAS Viya Code node consists of a template with a section

where you can enter you custom SAS code.

We first need to provide the name and port of the SAS Viya machine, the CAS library

(CASLIB), and the name of the CAS user:

/*---*

*

* Setup the CAS information

*

* Note that the cashost and casport can be specified in the EM project

* startup code using the em_casHost and em_casPort macro variables.

*

--/

 %let em_cashost = dmcasrh-18w30.aatesting.sashq-r.openstack.sas.com;

 %let em_casport = 5570;

 %let caslib = CASUSER;

 %let casuser = emduser4;

If the CAS server is Transport Layer Security (TLS) enabled, you need to install certificates
to the trusted Certificate Authority (CA) bundle. You can use SAS® Deployment Manager to
add your root and intermediate certificates to the trusted CA bundle and validate

certificates. For more information, you can refer to the SAS® 9.4 and SAS® Viya®

programming documentation.

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=secref&docsetTarget=n195f3avox8na8n1mo2hfrygshqh.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=secref&docsetTarget=n195f3avox8na8n1mo2hfrygshqh.htm&locale=en

6

We wish to display some results in the node, so we need to register the associated results
tables. This will ensure that the results tables get downloaded from the SAS Viya machine to
the SAS Enterprise Miner diagram and node folder. The CAS argument is used to indicate

that these tables are in CAS as opposed to on the SAS Viya client :

%em_register(key=varImportance1, type=DATA);

%em_register(key=varImportance2, type=DATA);

%em_register(key=forestOutmodel, type=DATA, cas=y);

%em_register(key=GBOutmodel, type=DATA, cas=y);

In this example, we will run four models in our SAS Viya session. All models will be
assessed in SAS Viya using the em_viya_assess macro. The name argument is used so that
we can clearly identify the models when comparing the assessment results. This macro

must be called after each model is run.

A neural network model is generated using the NNET procedure:

proc nnet data=&em_casdata

 printtarget

 standardize=MIDRANGE;

 target %em_target /level=&em_dec_level;

 hidden 3;

 input %em_interval_input / level=interval;

 input %em_nominal_input %em_binary_input/ level=nominal;

 train outmodel=&em_caslib..outmodel seed=12345 numtries=1

 stagnation=5 validgoal=0;

 architecture MLP;

 hidden 50 / act=TANH;

 optimization algorithm=LBFGS maxiters=300 regl2=0.1;

 autotune maxiters=5 maxevals=5 maxtime=200 popsize=2;

 &em_partition_statement;

 code file="&em_file_scorecode";

 score out=&em_casout copyvars=(%em_target &em_partitionvar);

run;

%em_viya_assess(name=Neural);

The score code file that is identified by the em_file_scorecode macro contains DS1 code that

will be used to score the training table.

A forest model is generated using the FOREST procedure:

/* Forest */

proc forest data=&em_casdata outmodel=&em_user_forestoutmodel

 minleafsize=5 seed=12345 loh=0 numbin=20 binmethod=QUANTILE

 maxbranch=2 assignmissing=USEINSEARCH

 minuseinsearch=1

 ntrees=100

 maxdepth=20

 inbagfraction=0.6

 vote=PROBABILITY printtarget;

 target %em_target /level=&em_dec_level;

 input %em_interval_input / level=interval;

 input %em_nominal_input %em_binary_input / level=nominal;

 grow IGR;

 &em_partition_statement;

 savestate rstore=&em_data_rstore;

 ods output variableImportance=&em_user_varimportance1;

7

run;

%em_viya_assess(name=Forest);

We use the ODS statement to create the varimportance1 table that will be used to display a

report in the node results. The FOREST model produces an analytic store using the
SAVESTATE statement. This analytic store will be used to score the training table. This
remote analytic store table will be downloaded to SAS Enterprise Miner in the form of a

binary file.

A gradient boosting model is generated using the GRADBOOST procedure:

/* Gradient Boosting */

proc gradboost data=&em_casdata outmodel=&em_user_GBOutmodel

 earlystop(tolerance=0 stagnation=5)

 numBin=50 binmethod=QUANTILE

 maxdepth=4

 maxbranch=2

 minleafsize=5

 assignmissing=USEINSEARCH minuseinsearch=1

 ntrees=100 learningrate=0.1 samplingrate=0.5 lasso=0 ridge=1

 seed=12345

 printtarget;

 target %em_target / level=&em_dec_level;

 input %em_interval_input / level=interval;

 input %em_nominal_input %em_binary_input / level=nominal;

 &em_partition_statement;

 code file="&em_file_scorecode";

 savestate rstore=&em_data_rstore;

run;

%em_viya_assess(name=GB);

The OUTMODEL option in the PROC GRADBOOST statement is used to produce the
GBoutmodel table, which will be displayed in the results. The SAVESTATE statement is again

used to create the analytic store for this model.

A decision tree model is generated using the TREESPLIT procedure:

/* Decision Tree */

proc treesplit data=&em_casdata

 maxdepth=10 numbin=20

 nsurrogates=0 minleafsize=5 maxbranch=2

 assignmissing=USEINSEARCH binmethod=QUANTILE

 minuseinsearch=1

 pruningtable;

 grow IGR;

 target %em_target /level=&em_dec_level;

 input %em_interval_input / level=interval;

 input %em_nominal_input %em_binary_input / level=nominal;

 prune costcomplexity;

 &em_partition_statement;

 code file="&em_file_scorecode";

 ods output variableImportance=&em_user_varimportance2;

run;

%em_viya_assess(name=Tree);

We create the variable importance table, VARIMPORTANCE2, to display in the results. This

procedure also produces a DS1 code as its score code representation.

8

The em_viya_modelselection macro will select the best model based on the Model Selection

properties displayed in the property sheet of the node:

%em_viya_modelselection;

Finally, we use the em_report macro to define reports to be displayed in the results viewer

of the node. In this example, we simply display tabular reports:

/*---*

*

* The em_viya_report macro processes assessment tables, score code, as

* well as table and files specified via the em_register macro and downloads

* them from the SAS Viya machine to the EM diagram and node folders.

*

--/

 %em_report(key=varImportance1, viewtype=DATA, description=Variable

Importance Forest, Block=SAS Viya Reports);

 %em_report(key=varImportance2, viewtype=DATA, description=Variable

Importance Tree2, Block=SAS Viya Reports);

 %em_report(key=forestOutmodel, viewtype=DATA, description=Forest model

data set, Block=SAS Viya Reports);

 %em_report(key=GBOutmodel, viewtype=DATA, description=Gradient Boosting

model dataset, Block=SAS Viya Reports);

 %em_viya_report;

The Results window contains many reports used to compare the various models (Figure 5).

These are based on the data that was assessed in SAS Viya using the ASSESS procedure.

9

Figure 5. SAS Viya Code Node Results

The report titled SAS Viya Model Selection (Figure 6) identifies the model selected based on
the specified criteria. In this example, the Kolmogorov-Smirnov (KS) statistic was used and
Neural, the model generated by the NNET procedure, was chosen to be the best model of
the four. This is the model that will be exported by the node including its score code to be

used downstream in the process flow.

Figure 6. SAS Viya Code Node Model Selection Table

The SAS Viya Output Report contains the HTML output produced by the procedures that ran

(Figure 7).

10

Figure 7. SAS Viya Code Node Output Report

To see the custom report that we requested using the em_report macro, select View, and

then select SAS Viya Reports (Figure 8). The four reports that we created are listed.

11

Figure 8. SAS Viya Code Node Custom Report Selection

Select Variable Importance Forest to display the variable importance for the forest model

(Figure 9).

Figure 9. SAS Viya Code Node Variable Importance Forest Table

INTEGRATE MODEL STUDIO WITH SAS VISUAL ANALYTICS

We want to create a Forest model in SAS Visual Analytics by using the SAS Visual Data

Mining and Machine Learning add-on. We will then import the model into Model Studio.

12

In SAS Visual Analytics, you can start by identifying the data that you want to model. You
can then adjust certain characteristics of that data and create new data items. The

insightToyDemo data must be loaded into CAS before we can begin our analysis.

Open SAS Visual Analytics and click the Data button. Use the Import tab to import the
insightToyDemo data. We want to create a partition column based on the partition variable
already existing in the table. In the Data pane, right-click the z Partition category and select

New partition. In the New Partition window, specify V for Validation data value and specify T

for Training data value.

To create the Total Cost variable, select New data item in the Data pane, and then select

Calculated item (Figure 10). Replace the text with the following expression:

'Order Distribution Cost'n + 'Order Marketing Cost'n + 'Order Product

Cost'n + 'Order Sales Cost'n

Figure 10. Create the Total Cost Variable in SAS Visual Analytics

From the Objects pane, drag a Forest object onto the canvas. In the Data Roles pane, select
Order Returned as the response variable. Select Total Cost, Vendor Distance, Vendor
Rating, Vendor Satisfaction, Product Line, and Vendor Type as the Predictors. Select z
Partition as a Partition ID variable. Notice that the Error Plot, Variable Importance chart,

and Lift plot are displayed in the canvas (Figure 11).

13

Figure 11. SAS Visual Analytics Forest Model Results

To copy this model from SAS Visual Analytics to Model Studio, select Create pipeline, and
then select Add to new project. This action copies the variable roles, the model, and all data

preparation steps to Model Studio and then Model Studio will automatically open. The Model
Studio project is named Interactive Project and the created pipeline will contain four nodes

as shown in Figure 12.

14

Figure 12. Model Studio Interactive Project Pipeline

The Interactive Data Preparation node handles the role assignments that you made in SAS

Visual Analytics when you run the pipeline. In this example, all variables other than the
response variable, the partition variable, and the variables selected as the predictors are
rejected by the Interactive Data Preparation node. The Interactive Forest node runs the
Forest score code generated in SAS Visual Analytics. In the same pipeline, a Forest node
can be added from the Supervised Learning nodes group. The new Forest model can then be

compared with the Interactive Forest model created in SAS Visual Analytics as shown in
Figure 13. The models created in SAS Visual Analytics and Model Studio can be different.
SAS Visual Analytics is an interactive environment, so the default options are set so that
models will run faster. In Model Studio, the default options are set to generate the best

possible model.

15

Figure 13. Model Studio Forest Model Pipeline

IMPORT A SAS ENTERPRISE MINER MODEL INTO MODEL STUDIO

We now want to compare the three Forest models that we created in SAS Enterprise Miner,
SAS Visual Analytics, and Model Studio. We first need to import the Forest model that we

built in SAS Enterprise Miner into Model Studio. The Score Code Import node enables you to
import the score code of external models that have a representation in DS1 SAS code or in
an analytic store. To import the model built in SAS Enterprise Miner into Model Studio, the
analytic store and the score code file exported by the Score Code Export node need to be

copied to a directory accessible by Model Studio.

UPLOAD AN ANALYTIC STORE TO CAS

To import an analytic store model in Model Studio, the analytic store in the form of a binary
file (sasast extension) must be uploaded to CAS first. You can use the ASTORE procedure to
upload an analytic store from the local file system into a data table in CAS. You can use the

CASUTIL procedure with the promote option to load the analytic store into global-scope so
that it can be found by Model Studio. Global-scope tables can be seen publicly and are not

dropped when the CAS session is terminated.

You can use the SAS Code node to run PROC ASTORE to upload the analytic store. A new

pipeline shown in Figure 14 is created in the Model Studio project.

16

Figure 14. Model Studio SAS Code Pipeline to Upload Analytic Store

The following code uploads the analytic store to CAS and promotes it into global-scope:

/* Create CAS session */

proc cas;

/* Create SAS librefs for all existing caslibs */

caslib _all_ assign;

/* The UPLOAD statement moves an analytic store from the local file system

into a data table in CAS */

proc astore;

 upload store="/demo/hpforestmodel/hpforest_score.sasast"

 rstore=Models.hpforeststore_ast;

run;

/* Promote the Analytic Store to global scope so that it is available to

all sessions */

proc casutil;

 promote casdata="hpforeststore_ast"

 casout="hpforeststore"

 incaslib="Models"

 outcaslib="Public";

quit;

Note that the analytic store does not reside on your client, but must reside in a path

available to the SAS client (the SAS Viya session).

IMPORT THE SAS ENTERPRISE MINER HP FOREST MODEL

To import the HP Forest model that you created in SAS Enterprise Miner, add the Score
Code Import node to the Interactive Pipeline created earlier (located in the Supervised

Learning node group). The updated pipeline is shown in Figure 15.

17

Figure 15. Model Studio Pipeline with Forest Models from SAS Visual Analytics,

Model Studio, and SAS Enterprise Miner

In the Score Code Import node properties pane, click Open. Select the analytic store code

File Type radio button. Under Score code file, c lick Browse, navigate to the
hpforest_epcode.sas file that you saved earlier, and select OK. Under analytic store table,
click Browse to select an analytic store table. Select hpforeststore from the Public library
and select OK. Select Import to import the HP Forest model. The score code that you

created in SAS Enterprise Miner is opened in the code editor.

A snapshot of the DS2 score code file below shows the variable declaration, and the init(),

preCode(), astoreScore(), and postCode() methods:

dcl nchar(4) "_WARN_" having label n'Warnings';

dcl nchar(1) U_ORDERRETURNED;

dcl double EM_EVENTPROBABILITY;

dcl double EM_PROBABILITY;

dcl nchar(32) EM_CLASSIFICATION;

dcl nchar(200) _FORMAT200;

dcl double _P_;

varlist allvars [_all_];

method init();

sc.setvars(allvars);

sc.setkey(n'1175CA1F805D85652BEE789C4F4D5507F51F8F30');

end;

18

method preCode();

 TOTALCOST = ORDERDISTRIBUTIONCOST + ORDERMARKETINGCOST + ORDERPRODUCTCOST

 + ORDERSALESCOST;

end;

method astoreScore();

sc.scoreRecord();

end;

method postCode();

 _FORMAT200 = ' ';

 P = 0.0;

 if P_ORDERRETURNEDY - _P_ > 1E-8 then do ;

 P = P_ORDERRETURNEDY;

 _FORMAT200 = 'Y';

 end;

 if P_ORDERRETURNEDN - _P_ > 1E-8 then do ;

 P = P_ORDERRETURNEDN;

 _FORMAT200 = 'N';

 end;

 I_ORDERRETURNED = DMNORM(_FORMAT200, 32.0);

 ;

 if I_ORDERRETURNED = 'Y' then U_ORDERRETURNED = 'Y';

 if I_ORDERRETURNED = 'N' then U_ORDERRETURNED = 'N';

 EM_EVENTPROBABILITY = P_ORDERRETURNEDY;

 EM_PROBABILITY = MAX(P_ORDERRETURNEDY, P_ORDERRETURNEDN);

 EM_CLASSIFICATION = I_ORDERRETURNED;

end;

method run();

 set SASEP.IN;

 preCode();

 astoreScore();

 postCode();

end;

The preCode() method contains pre-processing score code from the Transform Variables
node and the postCode() method contains code from the Score node in the SAS Enterprise
Miner flow (Figure 1). The sc.setkey() in the init() method block contains a string identifier
or key for the analytic store created by HP Forest model which we uploaded as hpforeststore

in the Public library. Note that the epcode selected must refer to a key that matches the

analytic store or the scoring will fail.

Click Save to save the code and then click Close. Run the pipeline. The Score Code Import
node runs PROC ASTORE to score the imported Forest model using the DS2 score code and
the analytic store provided earlier. The assessment results will be calculated from the entire

project table.

Open the Score Code Import node results. The Node results tab contains the Score Inputs
and Score Outputs tables, and the Path EP Score Code. The Assessment tab in Figure 16

19

displays the assessment reports: Lift Reports, ROC Reports, and the Fit Statistics table. The
Fit Statistics table shows that the misclassification rate for the training partition is 0.0522
and the misclassification rate for the validation partition is 0.0603. In Model Studio 8.4, a

misclassification report will also be created that displays a classification bar chart across all

data partitions.

The score code in the Score Code Import node is static, so if you rerun the pipeline, the

associated score code or analytic store will not change.

Figure 16. Score Code Import Node Results

BATCH CODE NODE

The Batch Code node in Model Studio enables you to import batch processing code or batch
scripts that were created in SAS Enterprise Miner. When the Batch Code node runs, a
sample of the input data is provided to the SAS client . The batch processing code that
represents the SAS Enterprise Miner process flow diagram is run on that sample. When the
batch code node reruns, the score code associated with the SAS Enterprise Miner flow will
be regenerated and assessed in Model Studio. The results can differ from the results in SAS

Enterprise Miner because the project has changed. This differs from the Score Code Import

node where the score code or analytic store is static when you rerun a pipeline.

Add a Batch Code node (located in the Supervised Learning node group) to the Interactive

Project Pipeline created earlier. The updated pipeline is shown in Figure 17.

20

Figure 17. Model Studio Pipeline with the Rule Induction Model from SAS

Enterprise Miner

In the Batch Code node properties pane, click Open and navigate to the batch code file for
the rule induction model that you saved earlier. The batch processing code that you created

in SAS Enterprise Miner is opened in the code editor:

--;

* EM Version: 15.1;

* SAS Release: 9.04.01M6P110718;

* Host: larry;

* Project Path: C:\temp;

* Project Name: SGF2019;

* Diagram Id: EMWS8;

* Diagram Name: Rule Induction model;

* Generated by: jakanj;

* Date: 21FEB2019:13:39:43;

--;

--;

* Macro Variables;

--;

%let EM_PROJECT =;

%let EM_PROJECTNAME =;

%let EM_WSNAME =;

%let EM_WSDESCRIPTION =Rule Induction model;

%let EM_SUMMARY =WORK.SUMMARY;

%let EM_NUMTASKS =SINGLE;

%let EM_EDITMODE =R;

%let EM_DEBUGVAL =;

%let EM_ACTION =run;

The header at the top of the program provides information about the SAS Enterprise Miner
project and diagram from which this batch code file was created. In this example, the
EM_PROJECT, EM_PROJECTNAME, and EM_WSNAME macro variables are not set. This

21

indicates that when the batch code runs it will create a temporary project in the WORK
directory of the SAS Viya client session. In some cases, those macro variables might have
been predefined to specific values; this is useful in SAS Enterprise Miner if you want to

rerun an existing diagram or create a project and diagram at a specific location. However,
when running the batch code in Model Studio those macro variables are ignored because in

most cases the SAS Viya client will not be able to access that location.

The workspace data set uses the macro variables to set the configuration properties:

--;

* Create workspace data set;

--;

data workspace;

length property $64 value $200;

property= 'PROJECTLOCATION';

value= "&EM_PROJECT";

output;

property= 'PROJECTNAME';

value= "&EM_PROJECTNAME";

The batch code file contains information about the data source that was used when the
process flow was created in SAS Enterprise Miner and which table should be used when
running the batch file. When the Batch Code node runs, the CAS data or a sample will be

used instead of what is specified in the batch file:

%macro em_usedatatable;

%if ^%symexist(EM_USEDATATABLE) %then %do;

%let EM_USEDATATABLE = Y;

%end;

%if "&EM_USEDATATABLE" ne "N" %then %do;

%global Ids_data Ids_newdata;

--;

* Data Tables;

--;

%let Ids_data = INSIGHT.INSIGHTTOYDEMO;

%let Ids_newdata =;

--;

%end;

%global Ids_source;

%if "&Ids_newdata" ne "" %then %do;

%let Ids_source = USERTABLE;

%end;

%else %do;

%let Ids_source = DATASOURCE;

%end;

%mend em_usedatatable;

%em_usedatatable;

The file also contains the start-up code associated with the project from which the batch
code was created. In many cases this code contains references to paths that might not be
accessible to the SAS Viya session. This code is therefore ignored when the Batch Code

runs:

--;

* Run Startup and Property Code;

--;

%macro em_runstartupCode;

22

%if ^%symexist(EM_RUNSTARTUP) %then %do;

%let EM_RUNSTARTUP = Y;

%end;

%if "&EM_RUNSTARTUP" ne "N" %then %do;

data _null_;

if symget('sysscp')=:'WIN' then dsep='\';

else if symget('sysscp')=:'DNT' then dsep='\';

else dsep = '/';

filepath = pathname('work')!!dsep!!"RUNSTARTUP.sas";

call symput('DSPATH', filepath);

run;

data _null_;

filename dspath "&dspath";

file dspath;

put '*--* ;';

put '* Project Startup Code';

put '*--* ;';

put ' ';

put ' ';

put 'libname DemoData ''\D:\SGF2019'';';

put ' ';

run;

%end;

%mend em_runstartupCode;

%em_runstartupCode;

The nodes data set defines nodes that are used in the process flow diagram. In this
example, Transform, Rule Induction, and Score nodes were used in the process flow

diagram:

--;

* Create nodes data set;

--;

data nodes;

length id $12 component $32 description $64 X 8 Y 8 diagramID $32 parentID

$32;

id= "Trans";

component="Transform";

description= "Transform Variables";

diagramID="_ROOT_";

parentID="";

X=462;

Y=66;

output;

id= "Score";

component="Score";

description= "Score";

diagramID="_ROOT_";

parentID="";

X=858;

Y=66;

output;

id= "Rule";

component="RuleInduction";

description= "Rule Induction";

diagramID="_ROOT_";

parentID="";

23

The connections data set indicates directional flow from predecessor nodes to successor

nodes:

--;

* Create connections data set;

--;

data connect;

length from to $12;

from="Rule";

to="Score";

output;

from="Trans";

to="Rule";

output;

from="EMCODE";

to="Trans";

output;

The batch code file contains the metadata associated with the Input Data node of the flow.

When the Batch Code node runs, this metadata will be replaced by the metadata of the
Model Studio project that is displayed in the Data tab. This ensures that the same target

and input variables are used:

--;

* Variable Attributes for Ids;

--;

data WORK.Ids_VariableAttribute;

length Variable $64 AttributeName $32 AttributeValue $64;

Variable='DistributorCityLat';

AttributeName="LEVEL";

AttributeValue='NOMINAL';

Output;

Variable='DistributorCityLon';

AttributeName="LEVEL";

AttributeValue='NOMINAL';

Output;

Variable='DistributorLat';

AttributeName="LEVEL";

AttributeValue='NOMINAL';

Output;

Variable='DistributorLon';

AttributeName="LEVEL";

AttributeValue='NOMINAL';

Output;

The actions data set defines actions to be taken by each node in the process flow diagram.
In this example, the run action is invoked from the Score node, which means that this node

and all its predecessors will run. Note that REPORT is also a supported action. The REPORT
action creates an SPK file that contains the SAS Enterprise Miner results of each node in the
diagram. However, when running in Model Studio the results of that action are simply

ignored:

--;

* Create actions to run data set;

--;

%macro emaction;

24

%let actionstring = %upcase(&EM_ACTION);

%if %index(&actionstring, RUN) or %index(&actionstring, REPORT) %then %do;

data actions;

length id $12 action $40;

id="Score";

%if %index(&actionstring, RUN) %then %do;

action='run';

output;

%end;

The EXECUTE operation of the %em5batch macro submits the flow stream to SAS for
program execution. The %em5batch macro uses the previously defined workspace, nodes,

connect, nodeprops, and actions arguments:

--;

* Execute the actions;

--;

%em5batch(execute, workspace=workspace, nodes=nodes, connect=connect,

datasources=datasources, nodeprops=nodeprops, action=actions);

Click Save and then click Close. Run the pipeline. The data is downloaded to the SAS client
and the data mining batch processing code shown above will be submitted in a SAS batch
job. If the training data is very large, it is recommended that you download a sample of the
training data to the SAS client to use to train the model. You can specify a sampling method
and the number or percentage of observations in the properties panel under the Data

Sample group. Although the training might be using only a sample of the training data, the

assessment results will be calculated from the entire project table.

Open the Batch Code node results. The Node results tab contains the Score Inputs and

Score Outputs tables, the EM Batch Code, and the Path Score Code. The Assessment tab in
Figure 18 displays the assessment reports: Lift Reports, ROC Reports, and the Fit Statistics
table. The Fit Statistics table shows that misclassification rate for the training partition is

0.1060 and the misclassification rate for the validation partition is 0.1059.

25

Figure 18. Batch Code Node Results

USE SAS ENTERPRISE MINER AND HIGH-PERFORMANCE DATA
MINING PROCEDURES IN MODEL STUDIO

You can also leverage code that uses SAS Enterprise Miner or SAS High-Performance Data
Mining (HPDM) procedures by integrating them into a SAS Code node in Model Studio. This
enables you, similarly to the Batch Code node, to retrain a SAS Enterprise Miner model with

new data. This also allows you to also add custom reports to the node results.

We illustrate how this can be done through two examples. The first example uses a SAS
Enterprise Miner procedure that produces DS1 score code. The second example uses an
HPDM procedure that produces a model based on an analytic store. Because these
procedures do not run in a CAS environment, the data will get downloaded to the SAS

client. Therefore, if the training data is very large, it is recommended that you download a
sample of the training data to the SAS client to use to train the model. This can be done by
using the PARTITION CAS procedure. Although the model might be trained using only a
sample of the training data, the assessment results will be calculated from the entire project

table.

Figure 19 shows the final pipeline after completing these last two examples.

26

Figure 19. Model Studio Pipeline with All Six Models

BUILD A LOGISTIC REGRESSION MODEL USING THE DMREG PROCEDURE

In this first example, we fit a logistic regression model to the OrderReturned binary target
variable. In a logistic regression, observations with missing values are ignored. This reduces

the size of the training data set, which can weaken the predictive power of the model. To
impute missing values, right-click the Interactive Data Preparation node in your pipeline and
add an Imputation node (located in the Data Mining Preprocessing group). By default, the
Imputation node imputes class variables with the most frequent class and imputes interval
variables with the mean. Add a SAS Code node below the Imputation node. Right -click the

SAS Code node, select Move, and then select Supervised Learning. This moves the node to
the Supervised Learning swim lane so that it gets treated as other modeling nodes. Right-

click the SAS Code node and rename the node “DMREG.”

Unlike HPDM and CAS-based procedures, SAS Enterprise Miner procedures such as DMREG
require separate data sets for the training, validat ion, and/or test data. Therefore, we first
create local training and validation tables by applying WHERE clauses to the CAS training
table. Note that by using the dm_partitiontrainwhereclausenlit and

dm_partitionValidWhereClauseNlit macro variables the code is dynamic and could be

reused in other projects based on different data sources or partition variables:

/* Create the training and validation data sets */

data work.train;

 set &dm_data;

 where &dm_partitionTrainWhereClauseNlit;

run;

data work.validate;

 set &dm_data;

 where &dm_partitionValidWhereClauseNlit;

run;

The DMREG procedure requires the creation of a Data Mining Database (DMDB) catalog,

which is created using PROC DMDB:

proc dmdb batch data=work.train dmdbcat=work.dmdbcat maxlevel = 513;

 class %dm_dec_target %dm_class_input;

27

 var %dm_interval_input;

 target %dm_dec_target;

run;

We then fit the logistic regression model with the following code:

proc dmreg data=work.train dmdbcat=work.dmdbcat

 validata = work.validate

 outterms = &dm_lib..outterms

 namelen=200;

 class %dm_dec_target %dm_class_input;

 model %dm_dec_target = %dm_interval_input %dm_class_input

 / error=binomial link=LOGIT coding=DEVIATION nodesignprint;

 code file="&dm_file_scorecode" group=_&dm_labelid;

run;

Because we want to display a plot of our parameter estimates, we create the OUTTERMS
data set. The DMREG procedure produces DS1 score code and we use the code statement to
create the Model Studio system file &dm_file_scorecode. This file will be used to assess

this model on the entire CAS table and produce assessment reports. Note that the group
option is used to prevent label collision if we were to decide to ensemble this model with

others.

Finally, we create a custom report that display the t-values associated with the various
parameter estimates using a bar chart. The dmcas_report macro is used to describe the bar

chart to be displayed:

data &dm_lib..outterms;

 length sign $1 effect $65;

 set &dm_lib..outterms;

 if coefficient<0 then sign='-';

 else sign='+';

 if Variable ne 'Intercept' and classLevel ne '' then

 effect=ktrim(variable)!!'-'!!ktrim(classLevel);

 else

 effect = ktrim(variable);

 abstvalue = abs(tvalue);

run;

%dmcas_report(dataset=outterms, reportType=BarChart, category=Effect,

 Response=abstvalue, sortDirection=descending,

 sortBy=abstvalue, group=sign,

 description=%nrbquote(T Value));

Run the SAS Code node and examine the results. Figure 20 displays a bar chart of the t-
values ordered in descending order with the bars colored by the sign of the parameter

estimates.

28

Figure 20. Parameter Estimates for the DMREG Model

The Path Score Code contains the transformations from the Interactive Data Preparation

node that was created in SAS Visual Analytics and from the Imputation node:

--;

* DMCAS Release: 1.0;

* SAS Release: V.03.04M0P012919;

* Site Number: 70180938;

* Host: sasdzl2.emd.sashq-d.openstack.sas.com;

* Encoding: utf-8;

* Java Encoding: UTF8;

* Locale: en_US;

* Project GUID: dc803dcd-af32-45bb-9b82-7321010c33b0;

* Node GUID: c1ab2265-fbc6-488e-a2ac-b2850dc74f05;

* Generated by: sasdzl;

* Date: 19FEB2019:15:37:40

--;

--;

*Nodeid: _2YXXM5J7R0BDWTM7K8CHIH920;

--;

'_va_d_TotalCost'n=('OrderDistributionCost'n + 'OrderMarketingCost'n +

'OrderProductCost'n + 'OrderSalesCost'n);;

--;

*Nodeid: _91H3E88L3KP8UNOAW3BKDBLZM;

--;

--;

*Nodeid: _50YL9LD3XZYLSLEY3WADI97XU;

29

--;

* Imputation Method = MEAN ;

Label 'IMP_VendorRating'n = 'Imputed Vendor Rating';

Length 'IMP_VendorRating'n 8;

if missing('VendorRating'n) then do;

 'IMP_VendorRating'n = 0.5704505088;

end;

else 'IMP_VendorRating'n = 'VendorRating'n;

The Node results tab contains all the other reports included in supervised modeling nodes:
Score Inputs and Score Outputs tables, Properties table, and the Output Delivery System

(ODS) output that was generated by the DMREG procedure.

The Assessment tab (Figure 21) contains the same reports included in the output of the
supervised learning models with a binary target: Lift reports, ROC reports, and the Fit

Statistics table. The Fit Statistics table shows that misclassification rate for the training

partition is 0.0565 and the misclassification rate for the validation partition is 0.0561.

Figure 21. DMREG Model Results

Because this SAS Code node is a supervised learning node, you can add it as a challenger
model (if not chosen by the Model Comparison node) in the Pipeline Comparison tab; you
can use it to score a holdout table; or you can register it to SAS® Model Manager. In Model
Studio 8.4, you will be able to publish a model to SAS® Micro Analytic Service (MAS). For

more information, refer to the paper “Unleashing SAS® Visual Data Mining and Machine

learning Models.”

30

BUILD A MODEL THAT CREATES AN ANALYTIC STORE

In this second example, we use the HPSVM procedure to produce a support vector machine
(SVM) model. Because the HPSVM procedure supports a partition variable defined in its

training data, we use the dm_partition_statement macro variable to dynamically reference

the partition variable and partition values. Add another SAS Code node below the

Imputation node. Right-click the node and rename it “HPSVM.”

The following code creates the SVM model:

proc hpsvm data=&dm_data maxiter=25 method=ACTIVESET

 tolerance=0.000001 c=1;

 input %dm_interval_input / level = interval;

 input %dm_nominal_input %dm_binary_input / level = nominal;

 target %dm_dec_target / level = &dm_dec_level;

 kernel polynom / deg = 2;

 &dm_partition_statement;

 PERFORMANCE DETAILS;

 savestate file = "&dm_file_astore";

run;

proc astore;

 upload store="&dm_file_astore" rstore=&dm_data_rstore;

run;

The HPSVM procedure produces score code in the form of an analytic store. The savestate
statement is used to create the analytic store binary file, which resides on the SAS client.
In order for Model Studio to assess the model, this file must be uploaded to CAS. You use
the ASTORE procedure to upload this file to a CAS table so that Model Studio can assess the

model on the CAS training table.

As in the previous example, the Assessment tab in the node Results is populated with

assessment reports (Figure 22). The Fit Statistics table shows that misclassification rate for
the training partition is 0.0558 and the misclassification rate for the validation partition is

0.0552.

31

Figure 22. HPSVM Model Results

Open the Model Comparison node results and note that the Forest model created in Model
Studio is the champion model (Figure 23). The Forest model built in Model Studio has a
larger Kolmogorov-Smirnov (KS) value compared to the other five models built in this

paper.

Figure 23. Model Studio Model Comparison Results for All Models

SCORE USING A MODEL STUDIO FOREST MODEL IN SAS 9.4

32

The analytic store table and DS2 scoring code generated in Model Studio can be downloaded
for use in other environments. In this example, the Forest model built in Model Studio can
be used to score in SAS 9.4. In your Interactive Model pipeline, right-click the Model Studio

Forest node and select Download Score Code. Save the ZIP file. The ZIP file contains a SAS
file called dmcas_epscorecode.sas, which is the DS2 code associated with the analytic store.
This file references the analytic store table information located in the model’s CAS library
(CASLIB) table. In addition, the associated analytic store will be copied from the project
CASLIB to the model’s CASLIB. For example, the header in the dmcas_epscorecode.sas file

indicates that the _97E0545WF9DNUSCUFG8GN8HVY_ast analytic store is located in the

Models CAS library:

/* This score code file references one or more analytic stores that are

located in the CASLIB Models.

* These ASTORE tables include:

* _97E0545WF9DNUSCUFG8GN8HVY_ast */

PROC ASTORE is used to download the analytic store table

_97E0545WF9DNUSCUFG8GN8HVY_ast, which was created by Forest model.

Create a new pipeline with a SAS Code node (Figure 24). Use the SAS Code node to run

PROC ASTORE to download the analytic store table to the SAS Viya file system.

Figure 24. Model Studio SAS Code Pipeline to Download Analytic Store

The CASLIB statement makes the default CAS libraries visible in the active session. The
CASUTIL procedure is used to load the analytic store table into memory on the CAS server.
The following code loads the analytic store table _97E0545WF9DNUSCUFG8GN8HVY_ast

into memory and makes it available in the Public library:

/* Create CAS session */

cas;

/* Create SAS librefs for all existing caslibs */

caslib _all_ assign;

/* Load the analytic store table into memory and make it available into

Public library */

proc casutil;

 load casdata="_97E0545WF9DNUSCUFG8GN8HVY_ast.sashdat"

 incaslib="models"

 casout="_97E0545WF9DNUSCUFG8GN8HVY_ast"

 outcaslib=Public;

run;

The DOWNLOAD statement retrieves the analytic store available in the CAS session and

stores it in the SAS file system. The following code downloads the analytic store table

33

_97E0545WF9DNUSCUFG8GN8HVY_ast to the Public library and stores the Forest.sasast file

in the SAS file system:

/* Retrieve an analytic store _97E0545WF9DNUSCUFG8GN8HVY_ast from the CAS

session and store it in the local file system as Forest.sasast */

proc astore;

 download rstore=Public._97E0545WF9DNUSCUFG8GN8HVY_ast"

 store="/saveastore/Forest.sasast";

run;

The Forest.sasast and dmcas_epscorecode.sas files need to be copied to directories

accessible by SAS 9.4 system.

PROC ASTORE can score an input table by using the information in the analytic store
created by the Forest model. In this example, the input data table is InsightToyDemo, the
output data table is SAS94_scoreout1, the analytic store table is Forest.sasast, and the DS2
scoring code is in the dmcas_epscorecode.sas file (generated by the Forest model). Run the

following PROC ASTORE code to score the model in the SAS 9.4 Program Editor. The same

code can be executed in a SAS Code node in SAS Enterprise Miner:

libname DemoData "D:\AstoreModels";

/* Score the forest model */

proc astore;

 score data=DemoData.InsightToyDemo

 store="D:\AstoreModels\Forest.sasast"

 epcode="D:\AstoreModels\dmcas_epscorecode.sas"

 out=DemoData.SAS94_scoreout1;

quit;

proc print data=DemoData.SAS94_scoreout1 (obs=100);

run;

View the output. The SAS94_scoreout1 table was created in the D:\AstoreModels directory

and first 100 observations were printed in the output.

SCORE ANALYTIC STORE MODELS IN CAS FROM SAS 9.4

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in
SAS Viya. You can create a CAS session and run a CASLIB statement to make the default
CAS libraries visible in the specified library. The CASLIB statement assumes that you have a
CAS server already available. This CAS server is identified by specifying the host on which it

runs and the port on which it listens for communications.

The following CAS statement creates the CAS session named emcasid:

cas emcasid host="dmcasrh-18w30.aatesting.sashq-r.openstack.sas.com"

port=5570;

The following caslib statement makes the default CAS libraries visible in the CAS session:

caslib _all_ assign;

If you have created the emcasid session, you can terminate it with the following code by

using the TERMINATE option in the CAS statement:

cas emcasid terminate;

34

If the CAS server is Transport Layer Security (TLS) enabled, you need to install certificates
to the trusted Certificate Authority (CA) bundle. You can use SAS® Deployment Manager to
add your root and intermediate certificates to the trusted CA bundle and validate

certificates. For more information, you can refer to the SAS® 9.4 and SAS® Viya®

programming documentation.

The CASUTIL procedure can be used to load an analytic store table into memory on a

specified CAS server. The following code loads the analytic store table
_97E0545WF9DNUSCUFG8GN8HVY_ast that was created by the Forest model in Model

Studio into memory and makes it available in the Public library as a foreststore:

proc casutil;

 load casdata="_97E0545WF9DNUSCUFG8GN8HVY_ast.sashdat"

 incaslib="models" /* This is the store that was copied earlier from

 our project CASLIB when we downloaded out the DS2 code. */

 casout="foreststore"

 outcaslib="Public";

run;

Use PROC ASTORE to score an input table by information in the analytic store, foreststore,
which is loaded in Public library. In this example, the input data table is
public.InsightToyDemo, the output data table is public.scoreout1, the analytic store is in the

data table Public.foreststore, and DS2 scoring code is in the dmcas_epscorecode.sas file

(generated by the Forest model):

ods listing;

proc astore;

 score data=public.InsightToyDemo

 out=public.scoreout1

 rstore=Public.foreststore

 epcode="D:\AstoreModels\dmcas_epscorecode.sas";

run;

CONCLUSION

Model Studio enables users with the ability to not only create models based on modern

machine learning algorithms, but also import models from a variety of sources: SAS Visual
Analytics, models created in SAS Enterprise Miner, and external models that can be
expressed in the form of DS1 code or as an analytic store.  Moreover, you can, us ing the
SAS code node, create your own models by writing custom code based on SAS Enterprise
Miner or HPDM procedures or use the Batch Code node to run SAS Enterprise Miner
diagrams expressed as batch code. Model Studio provides a flexible environment to assess,

compare, register, and publish these models although they came from various sources and

applications.

REFERENCES

Ebersole, Beth, and Czika, Wendy. 2018. “Make SAS® Enterprise Miner™ Play Nicely with
SAS® Viya®.” Proceedings of the SAS Global Forum 2018. Cary, NC: SAS Institute Inc.
Available at https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-

proceedings/2018/2204-2018.pdf.

SAS Institute Inc. 2018. “Create a Forest.” In SAS® Visual Analytics 8.3: Getting Started
with Analytical Models. Cary, NC: SAS Institute Inc. Available at
https://go.documentation.sas.com/?cdcId=vacdc&cdcVersion=8.3&docsetId=vaamgs&docs

etTarget=n0y80e2uitkic4n1vq836kjkmsbo.htm&locale=en.

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=secref&docsetTarget=n195f3avox8na8n1mo2hfrygshqh.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=secref&docsetTarget=n195f3avox8na8n1mo2hfrygshqh.htm&locale=en
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2204-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2204-2018.pdf
https://go.documentation.sas.com/?cdcId=vacdc&cdcVersion=8.3&docsetId=vaamgs&docsetTarget=n0y80e2uitkic4n1vq836kjkmsbo.htm&locale=en
https://go.documentation.sas.com/?cdcId=vacdc&cdcVersion=8.3&docsetId=vaamgs&docsetTarget=n0y80e2uitkic4n1vq836kjkmsbo.htm&locale=en

35

Pecze, Shawn, Prasanth Kanakadandi, Byron Biggs, Michael (Xin) Chi. 2019. “Unleashing
SAS® Visual Data Mining and Machine Learning Models.” Proceedings of the SAS Global

Forum 2019. Cary, NC: SAS Institute Inc.

Wujek, Brett, Susan Haller, and Jonathan Wexler. 2018. “Navigating the Analytics Life Cycle
with SAS® Visual Data Mining and Machine Learning on SAS Viya.” Proceedings of the SAS
Global Forum 2018. Cary, NC: SAS Institute Inc. Available at

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-

proceedings/2018/2246-2018.pdf.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Jagruti Kanjia

SAS Institute Inc.
Jagruti.Kanjia@sas.com

Dominique Latour
SAS Institute Inc.

Dominique.Latour@sas.com

Holly Sweeney
SAS Institute Inc.
Holly.Sweeney@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2246-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2246-2018.pdf
mailto:Jagruti.Kanjia@sas.com
mailto:Dominique.Latour@sas.com
mailto:Holly.Sweeney@sas.com

