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ABSTRACT  

SAS® Enterprise Miner™ and Model Studio are two solutions that you can use to create 
predictive and classification models. In this paper, we show that although these applications 

have different architectures and run in different environments, we can integrate models 
generated in one environment and compare them with models produced in the other. In 
SAS Enterprise Miner, we show how the SAS® Viya® Code node can be used to create 
models based on SAS® Visual Data Mining and Machine Learning and integrate them into a 
SAS Enterprise Miner project.  For Model Studio, we describe how models generated in SAS 
Enterprise Miner can be integrated into a Model Studio pipeline for the purpose of 

comparison. We also discuss how you can use the SAS® code node in Model Studio to 
produce user-defined models. We hope that a better understanding of these capabilities can 

help users to fully use the rich functionality and flexibility of these products. 

INTRODUCTION  

SAS Enterprise Miner, and SAS Visual Data Mining and Machine Learning in Model Studio 
and SAS® Visual Analytics, are powerful visual tools that take you through the data prep, 
data exploration, modeling, and scoring stages of an analytics project. SAS Enterprise Miner 

has been a proven data mining workbench for over 20 years and currently runs on the SAS® 
9.4 platform. SAS Visual Data Mining and Machine Learning runs on SAS Viya, which 
leverages the cloud-enabled, in-memory analytics engine of SAS® Cloud Analytic Services 

(CAS), allowing for better processing and greater flexibility. 

The SAS Enterprise Miner Graphical User Interface (GUI) is a point-and-click interface where 
each step in the data mining process is represented by a node in the diagram process flow. 
The GUI enables analysts with little statistical expertise to easily navigate through the data 
mining process. More experienced users can go “behind the scenes” and write their own 

code and customize the process.  

SAS Visual Data Mining and Machine Learning is a collection of algorithms and utilities for 
data preparation and modeling that run via CAS actions in a distributed, in-memory 

infrastructure. There are multiple interfaces to SAS Visual Data Mining and Machine 
Learning. You can analyze your data using SAS procedures, use an open-source 
programming language to access SAS® Analytics, and interactively explore and model your 

data in both SAS Visual Analytics reports and Model Studio pipelines. 

Model Studio presents a modern approach to data mining that is specifically designed to 
serve as an extensible and open framework that can access data from a variety of common 
sources. By using CAS actions, you can invoke in-memory analytics not just with SAS, but 

also with Python, R, and Java. 

Model Studio enables you to visually assemble, configure, build, and compare data mining 
models and pipelines for a wide range of analytic data mining tasks. Model Studio pipelines 

have a similar structure to SAS Enterprise Miner process flow diagrams. All pipelines begin 
with a Data node that inserts the project data into the pipeline and performs the specified 
data partitioning. Each step of the pipeline flow is represented by a node in one of the 

following categories: 

• Data Mining Preprocessing: Nodes for exploring the data and for manipulating and 
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prepping the data for modeling.   

• Supervised Learning: Nodes to build predictive models for your specified target. 

• Postprocessing: Nodes to perform operations on models after they are built in 

upstream nodes. Currently this category is dedicated to building ensemble models.  

• Miscellaneous: Nodes with additional capabilities. This category includes creating 
summary statistics and graphs to explore your data, saving data exported from the 

previous node in the pipeline, and writing your own SAS code or open-source code (R or 

Python).  

The complete list of nodes available to create your pipeline in Model Studio 8.3 are shown in 

Table 1. 

Node Category Nodes 

Data Mining 

Preprocessing 

Anomaly Detection Clustering Feature Extraction 

Filtering Imputation Manage Variables 

Replacement Text Mining Transformations 

Variable Clustering Variable Selection 

Supervised 

Learning 
Batch Code Bayesian Network Decision Tree 

Forest GLM Gradient Boosting 

Linear Regression Logistic Regression Neural Network 

Quantile Regression Score Code Import SVM 

Postprocessing Ensemble 

Miscellaneous Data Exploration Open Source Code SAS Code 

Save Data 

Table 1. Nodes Available in Model Studio 8.3 

The Score Data node and the Segment Profile node are two new nodes that will be added in 

Model Studio 8.4.  

Model Studio also provides a selection of pre-built beginner, intermediate, and advanced 
node and pipeline templates that enable you to quickly prototype, test, and enhance 

models. You can create, modify, and save your templates and model score codes. You can 
also write your own custom SAS code or open-source code to integrate in the pipeline. 
Model Studio expedites and simplifies model assessment and model pipeline comparisons 

when evaluating competing analytic models. 

This paper discusses the integration between SAS Enterprise Miner, Model Studio, and SAS 
Visual Analytics, and how you can generate models in one environment and compare them 

with models generated in another. 

The sample data used in this paper can be downloaded from the SAS Visual Analytics 
documentation page 
(http://support.sas.com/documentation/onlinedoc/va/index.html#viya81). Click Example 
Data for Getting Started with Analytical Models, unzip, and save the 

insightToyDemo.sas7bdat data file in an accessible location.  

The specific business problem you are trying to solve in this example is increasing company 

profits at Insight Toy Company. Your IT department has provided you with two years of 

http://support.sas.com/documentation/onlinedoc/va/index.html#viya81
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data on all aspects of the business. The data includes information about what products are 
sold, to which vendors they are sold, the manufacturers and distributors of the products, 
the associated costs, and some metrics about the sales representatives and the vendors. 

The goal is to determine which features are most likely to predict whether a product was 

returned. 

BUILD MODELS IN SAS ENTERPRISE MINER 

To determine which features are most likely to predict whether a product has returned, we 

first build a forest model and a rule induction model in SAS Enterprise Miner.  

BUILD A FOREST MODEL IN SAS ENTERPRISE MINER 

We first generate a forest model using the High Performance (HP) Forest node. The diagram 
flow in Figure 1 illustrates the data mining flow that you can use to create partition data 

sets, pre-process data, create the Forest model, and export the model.  

 

Figure 1. SAS Enterprise Miner HP Forest Model Diagram Flow 

The insightToyDemo table is pre-populated with a Partition variable that contains two 
values: T for training observations and V for validation observations. SAS Enterprise Miner 

has a Data Partition node that you can use to partition your data if your table does not have 
a partition variable. You can include following code in the SAS Code node to create a 

training and validation partition data sets based on the Partition variable:  

data &EM_EXPORT_TRAIN (drop=Partition);  

  set &EM_IMPORT_DATA; 

  where Partition = 'T'; 

run;  

 

data &EM_EXPORT_VALIDATE (drop=Partition);  

  set &EM_IMPORT_DATA; 

  where Partition = 'V'; 

run; 

  

The observations with Partition = T are assigned to the training data set and observations 

with Partition = V are assigned to the validation data set. The partition variable was created 

so that each data set contains 50% of the total data. 

You can use the Transform Variables node to create a new variable called TotalCost using 

the formula or expression shown below:  

TotalCost = OrderDistributionCost + OrderMarketingCost + OrderProductCost + 

OrderSalesCost; 

TotalCost is used in the analysis and the four other cost variables used in the calculation are 

excluded from the analysis. 

The HP Forest node creates predictive models by using a random forest ensemble 
methodology. We used the default property settings to create a forest model. The HP Forest 
model creates an analytic store, a binary file called score.sasast. The Score node creates an 

associated DATA step 2 (DS2) score file, epscore.sas, which will be used to score new data. 

The epscore.sas file contains a string that identifies the following items: 
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• The setkey method identifies the analytic store with the specified key. 

• The preCode method block. This contains the code to transform input variables. 

• The postCode method block. This contains the code to process output variables. 

The Score node creates predicted variables that have fixed names. These variables can be 

used for further analysis and reporting.   

The Score Code Export node exports files that are necessary for score code deployment. 
The epcode.sas and the score.sasast files are exported to the location that you specify in 

the Output Directory property in the Score Code Export node. 

The HP Forest node results in Figure 2 display the assessment statistics. In the Fit Statistics 
table you can see that the misclassification rate for the training partition is 0.052248 and 

the misclassification rate for the validation partition is 0.060341. 

 

Figure 2. SAS Enterprise Miner HP Forest Model Results 

BUILD A RULE INDUCTION MODEL IN SAS ENTERPRISE MINER 

We now want to generate a rule induction model. The diagram flow in Figure 3 illustrates 
the process flow to generate a rule induction model and save the model as batch processing 
code. To import this model into Model Studio, you are required to create a batch file from a 
Score node to ensure that the flow score code is properly created. Right-click the Score 
node in your diagram and select Export Path as SAS Program. Ensure that Run this path is 

enabled in the Export Path as SAS Program window. Specify a location to save the batch 

code that is available to your Model Studio client. 
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Figure 3. SAS Enterprise Miner Rule Induction Model Diagram Flow 

SAS Enterprise Miner batch processing is a SAS macro-based interface to the SAS 
Enterprise Miner client/server environment that operates without running the SAS 
Enterprise Miner user interface. This batch code generates several data sets such as the 
workspace data set, the nodes data set, the actions data set, the connections data set, and 
the node properties data sets. These components data sets configure different settings, 

provide relational information, and provide individual node settings to SAS Enterprise Miner. 

All this information is required to run a valid process flow diagram.  

CREATING SAS VIYA MODELS IN SAS ENTERPRISE MINER 

As discussed in “Make SAS® Enterprise Miner™ Play Nicely with SAS® Viya®”, you can 
generate models based on SAS Viya procedures within SAS Enterprise Miner. Using the SAS 
Viya Code node, you can run procedures in the CAS engine and have the results displayed 
in SAS Enterprise Miner. Models generated in the SAS Viya Code node can also be compared 

to other models based on traditional SAS Enterprise Miner nodes. 

We use a SAS Viya Code node to generate and compare a variety of data mining and 
machine learning procedures. These models will be assessed in SAS Viya and the best of 
those models will be selected and exported for successor nodes to consume. Figure 4 

illustrates the process flow for this example. 

 

Figure 4. SAS Enterprise Miner SAS Viya Code Diagram Flow 

The Training Code editor in the SAS Viya Code node consists of a template with a section 

where you can enter you custom SAS code. 

We first need to provide the name and port of the SAS Viya machine, the CAS library 

(CASLIB), and the name of the CAS user: 

/*---------------------------------------------------------------* 

* 

* Setup the CAS information 

* 

* Note that the cashost and casport can be specified in the EM project 

* startup code using the em_casHost and em_casPort macro variables. 

* 

*----------------------------------------------------------------*/ 

  

   %let em_cashost = dmcasrh-18w30.aatesting.sashq-r.openstack.sas.com; 

   %let em_casport = 5570; 

  

   %let caslib  = CASUSER; 

   %let casuser = emduser4; 

 

If the CAS server is Transport Layer Security (TLS) enabled, you need to install certificates 
to the trusted Certificate Authority (CA) bundle. You can use SAS® Deployment Manager to 
add your root and intermediate certificates to the trusted CA bundle and validate 

certificates. For more information, you can refer to the SAS® 9.4 and SAS® Viya® 

programming documentation.  

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=secref&docsetTarget=n195f3avox8na8n1mo2hfrygshqh.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=secref&docsetTarget=n195f3avox8na8n1mo2hfrygshqh.htm&locale=en
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We wish to display some results in the node, so we need to register the associated results 
tables. This will ensure that the results tables get downloaded from the SAS Viya machine to 
the SAS Enterprise Miner diagram and node folder. The CAS argument is used to indicate 

that these tables are in CAS as opposed to on the SAS Viya client : 

%em_register(key=varImportance1, type=DATA); 

%em_register(key=varImportance2, type=DATA); 

%em_register(key=forestOutmodel, type=DATA, cas=y); 

%em_register(key=GBOutmodel, type=DATA, cas=y); 

 

In this example, we will run four models in our SAS Viya session. All models will be 
assessed in SAS Viya using the em_viya_assess macro.  The name argument is used so that 
we can clearly identify the models when comparing the assessment results.  This macro 

must be called after each model is run. 

A neural network model is generated using the NNET procedure:  

proc nnet data=&em_casdata 

   printtarget 

   standardize=MIDRANGE; 

   target %em_target /level=&em_dec_level; 

   hidden 3; 

   input %em_interval_input / level=interval; 

   input %em_nominal_input  %em_binary_input/ level=nominal; 

   train outmodel=&em_caslib..outmodel seed=12345 numtries=1 

   stagnation=5 validgoal=0; 

   architecture MLP; 

   hidden 50 / act=TANH; 

   optimization algorithm=LBFGS maxiters=300 regl2=0.1; 

   autotune maxiters=5 maxevals=5 maxtime=200 popsize=2; 

   &em_partition_statement; 

   code file="&em_file_scorecode"; 

   score out=&em_casout copyvars=(%em_target &em_partitionvar); 

run; 

%em_viya_assess(name=Neural); 

 

The score code file that is identified by the em_file_scorecode macro contains DS1 code that 

will be used to score the training table. 

A forest model is generated using the FOREST procedure: 

/* Forest */ 

proc forest data=&em_casdata outmodel=&em_user_forestoutmodel 

   minleafsize=5 seed=12345 loh=0 numbin=20 binmethod=QUANTILE 

   maxbranch=2 assignmissing=USEINSEARCH  

   minuseinsearch=1 

   ntrees=100 

   maxdepth=20 

   inbagfraction=0.6 

   vote=PROBABILITY printtarget; 

   target %em_target /level=&em_dec_level; 

   input %em_interval_input / level=interval; 

   input %em_nominal_input %em_binary_input / level=nominal; 

   grow IGR; 

   &em_partition_statement; 

   savestate rstore=&em_data_rstore; 

   ods output variableImportance=&em_user_varimportance1; 
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run; 

%em_viya_assess(name=Forest); 

 

We use the ODS statement to create the varimportance1 table that will be used to display a 

report in the node results.  The FOREST model produces an analytic store using the 
SAVESTATE statement. This analytic store will be used to score the training table. This 
remote analytic store table will be downloaded to SAS Enterprise Miner in the form of a 

binary file. 

A gradient boosting model is generated using the GRADBOOST procedure:  

/* Gradient Boosting */ 

proc gradboost data=&em_casdata outmodel=&em_user_GBOutmodel  

  earlystop(tolerance=0 stagnation=5) 

  numBin=50 binmethod=QUANTILE 

  maxdepth=4 

  maxbranch=2 

  minleafsize=5 

  assignmissing=USEINSEARCH minuseinsearch=1 

  ntrees=100 learningrate=0.1 samplingrate=0.5 lasso=0 ridge=1 

  seed=12345 

  printtarget;  

  target %em_target / level=&em_dec_level; 

  input %em_interval_input / level=interval; 

  input %em_nominal_input %em_binary_input / level=nominal; 

  &em_partition_statement; 

  code file="&em_file_scorecode"; 

  savestate rstore=&em_data_rstore;  

run; 

%em_viya_assess(name=GB); 

 

The OUTMODEL option in the PROC GRADBOOST statement is used to produce the 
GBoutmodel table, which will be displayed in the results. The SAVESTATE statement is again 

used to create the analytic store for this model. 

A decision tree model is generated using the TREESPLIT procedure: 

/* Decision Tree */ 

proc treesplit data=&em_casdata 

  maxdepth=10 numbin=20 

  nsurrogates=0 minleafsize=5 maxbranch=2  

  assignmissing=USEINSEARCH binmethod=QUANTILE 

  minuseinsearch=1 

  pruningtable; 

  grow IGR; 

  target %em_target /level=&em_dec_level; 

  input %em_interval_input / level=interval; 

  input %em_nominal_input %em_binary_input  / level=nominal; 

  prune costcomplexity; 

  &em_partition_statement; 

  code file="&em_file_scorecode"; 

  ods output variableImportance=&em_user_varimportance2; 

run; 

%em_viya_assess(name=Tree); 

 

We create the variable importance table, VARIMPORTANCE2, to display in the results.  This 

procedure also produces a DS1 code as its score code representation. 
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The em_viya_modelselection macro will select the best model based on the Model Selection 

properties displayed in the property sheet of the node: 

%em_viya_modelselection; 

  

Finally, we use the em_report macro to define reports to be displayed in the results viewer 

of the node. In this example, we simply display tabular reports: 

/*---------------------------------------------------------------* 

* 

* The em_viya_report macro processes assessment tables, score code, as 

* well as table and files specified via the em_register macro and downloads 

* them from the SAS Viya machine to the EM diagram and node folders. 

* 

*----------------------------------------------------------------*/ 

   %em_report(key=varImportance1, viewtype=DATA, description=Variable 

Importance Forest,  Block=SAS Viya Reports); 

   %em_report(key=varImportance2, viewtype=DATA, description=Variable 

Importance Tree2,  Block=SAS Viya Reports); 

   %em_report(key=forestOutmodel, viewtype=DATA, description=Forest model 

data set, Block=SAS Viya Reports); 

   %em_report(key=GBOutmodel, viewtype=DATA, description=Gradient Boosting 

model dataset, Block=SAS Viya Reports); 

   %em_viya_report; 

 

The Results window contains many reports used to compare the various models (Figure 5). 

These are based on the data that was assessed in SAS Viya using the ASSESS procedure. 
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Figure 5. SAS Viya Code Node Results 

The report titled SAS Viya Model Selection (Figure 6) identifies the model selected based on 
the specified criteria.  In this example, the Kolmogorov-Smirnov (KS) statistic was used and 
Neural, the model generated by the NNET procedure, was chosen to be the best model of 
the four. This is the model that will be exported by the node including its score code to be 

used downstream in the process flow. 

 

Figure 6. SAS Viya Code Node Model Selection Table 

The SAS Viya Output Report contains the HTML output produced by the procedures that ran 

(Figure 7). 
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Figure 7. SAS Viya Code Node Output Report 

To see the custom report that we requested using the em_report macro, select View, and 

then select SAS Viya Reports (Figure 8). The four reports that we created are listed. 
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Figure 8. SAS Viya Code Node Custom Report Selection 

Select Variable Importance Forest to display the variable importance for the forest model 

(Figure 9). 

 

Figure 9. SAS Viya Code Node Variable Importance Forest Table 

INTEGRATE MODEL STUDIO WITH SAS VISUAL ANALYTICS 

We want to create a Forest model in SAS Visual Analytics by using the SAS Visual Data 

Mining and Machine Learning add-on. We will then import the model into Model Studio. 
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In SAS Visual Analytics, you can start by identifying the data that you want to model. You 
can then adjust certain characteristics of that data and create new data items. The 

insightToyDemo data must be loaded into CAS before we can begin our analysis. 

Open SAS Visual Analytics and click the Data button. Use the Import tab to import the 
insightToyDemo data. We want to create a partition column based on the partition variable 
already existing in the table. In the Data pane, right-click the z Partition category and select 

New partition. In the New Partition window, specify V for Validation data value and specify T 

for Training data value. 

To create the Total Cost variable, select New data item in the Data pane, and then select 

Calculated item (Figure 10). Replace the text with the following expression: 

'Order Distribution Cost'n + 'Order Marketing Cost'n + 'Order Product 

Cost'n + 'Order Sales Cost'n 

 

Figure 10. Create the Total Cost Variable in SAS Visual Analytics 

From the Objects pane, drag a Forest object onto the canvas. In the Data Roles pane, select 
Order Returned as the response variable. Select Total Cost, Vendor Distance, Vendor 
Rating, Vendor Satisfaction, Product Line, and Vendor Type as the Predictors. Select z 
Partition as a Partition ID variable. Notice that the Error Plot, Variable Importance chart, 

and Lift plot are displayed in the canvas (Figure 11). 
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Figure 11. SAS Visual Analytics Forest Model Results 

To copy this model from SAS Visual Analytics to Model Studio, select Create pipeline, and 
then select Add to new project. This action copies the variable roles, the model, and all data 

preparation steps to Model Studio and then Model Studio will automatically open. The Model 
Studio project is named Interactive Project and the created pipeline will contain four nodes 

as shown in Figure 12. 
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Figure 12. Model Studio Interactive Project Pipeline 

The Interactive Data Preparation node handles the role assignments that you made in SAS 

Visual Analytics when you run the pipeline. In this example, all variables other than the 
response variable, the partition variable, and the variables selected as the predictors are 
rejected by the Interactive Data Preparation node. The Interactive Forest node runs the 
Forest score code generated in SAS Visual Analytics. In the same pipeline, a Forest node 
can be added from the Supervised Learning nodes group. The new Forest model can then be 

compared with the Interactive Forest model created in SAS Visual Analytics as shown in 
Figure 13. The models created in SAS Visual Analytics and Model Studio can be different. 
SAS Visual Analytics is an interactive environment, so the default options are set so that 
models will run faster. In Model Studio, the default options are set to generate the best 

possible model. 
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Figure 13. Model Studio Forest Model Pipeline 

IMPORT A SAS ENTERPRISE MINER MODEL INTO MODEL STUDIO 

We now want to compare the three Forest models that we created in SAS Enterprise Miner, 
SAS Visual Analytics, and Model Studio. We first need to import the Forest model that we 

built in SAS Enterprise Miner into Model Studio. The Score Code Import node enables you to 
import the score code of external models that have a representation in DS1 SAS code or in 
an analytic store. To import the model built in SAS Enterprise Miner into Model Studio, the 
analytic store and the score code file exported by the Score Code Export node need to be 

copied to a directory accessible by Model Studio. 

UPLOAD AN ANALYTIC STORE TO CAS 

To import an analytic store model in Model Studio, the analytic store in the form of a binary 
file (sasast extension) must be uploaded to CAS first. You can use the ASTORE procedure to 
upload an analytic store from the local file system into a data table in CAS. You can use the 

CASUTIL procedure with the promote option to load the analytic store into global-scope so 
that it can be found by Model Studio. Global-scope tables can be seen publicly and are not 

dropped when the CAS session is terminated. 

You can use the SAS Code node to run PROC ASTORE to upload the analytic store. A new 

pipeline shown in Figure 14 is created in the Model Studio project. 
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Figure 14. Model Studio SAS Code Pipeline to Upload Analytic Store 

The following code uploads the analytic store to CAS and promotes it into global-scope: 

/* Create CAS session */ 

proc cas;  

 

/* Create SAS librefs for all existing caslibs */ 

caslib _all_ assign; 

 

/* The UPLOAD statement moves an analytic store from the local file system 

into a data table in CAS */ 

proc astore; 

  upload store="/demo/hpforestmodel/hpforest_score.sasast" 

  rstore=Models.hpforeststore_ast; 

run; 

 

/* Promote the Analytic Store to global scope so that it is available to 

all sessions */ 

proc casutil; 

  promote casdata="hpforeststore_ast"  

          casout="hpforeststore" 

          incaslib="Models" 

          outcaslib="Public"; 

quit; 

 

Note that the analytic store does not reside on your client, but must reside in a path 

available to the SAS client (the SAS Viya session). 

IMPORT THE SAS ENTERPRISE MINER HP FOREST MODEL 

To import the HP Forest model that you created in SAS Enterprise Miner, add the Score 
Code Import node to the Interactive Pipeline created earlier (located in the Supervised 

Learning node group). The updated pipeline is shown in Figure 15. 
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Figure 15. Model Studio Pipeline with Forest Models from SAS Visual Analytics, 

Model Studio, and SAS Enterprise Miner 

In the Score Code Import node properties pane, click Open. Select the analytic store code 

File Type radio button. Under Score code file, c lick Browse, navigate to the 
hpforest_epcode.sas file that you saved earlier, and select OK. Under analytic store table, 
click Browse to select an analytic store table. Select hpforeststore from the Public library 
and select OK. Select Import to import the HP Forest model. The score code that you 

created in SAS Enterprise Miner is opened in the code editor.  

A snapshot of the DS2 score code file below shows the variable declaration, and the init(), 

preCode(), astoreScore(), and postCode() methods: 

dcl nchar(4) "_WARN_" having label n'Warnings'; 

dcl nchar(1) U_ORDERRETURNED; 

dcl double EM_EVENTPROBABILITY; 

dcl double EM_PROBABILITY; 

dcl nchar(32) EM_CLASSIFICATION; 

dcl nchar(200) _FORMAT200; 

dcl double _P_; 

varlist allvars [_all_]; 

method init(); 

sc.setvars(allvars); 

sc.setkey(n'1175CA1F805D85652BEE789C4F4D5507F51F8F30'); 

end; 
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method preCode(); 

  

  TOTALCOST = ORDERDISTRIBUTIONCOST + ORDERMARKETINGCOST + ORDERPRODUCTCOST 

  + ORDERSALESCOST; 

  

end; 

  

method astoreScore(); 

  

sc.scoreRecord(); 

  

end; 

  

method postCode(); 

  

  _FORMAT200 = ' '; 

  _P_ = 0.0; 

  if P_ORDERRETURNEDY - _P_ > 1E-8 then do ; 

  _P_ = P_ORDERRETURNEDY; 

  _FORMAT200 = 'Y'; 

  end; 

  if P_ORDERRETURNEDN - _P_ > 1E-8 then do ; 

  _P_ = P_ORDERRETURNEDN; 

  _FORMAT200 = 'N'; 

  end; 

  I_ORDERRETURNED = DMNORM(_FORMAT200, 32.0); 

  ; 

  if I_ORDERRETURNED = 'Y' then U_ORDERRETURNED = 'Y'; 

  if I_ORDERRETURNED = 'N' then U_ORDERRETURNED = 'N'; 

  EM_EVENTPROBABILITY = P_ORDERRETURNEDY; 

  EM_PROBABILITY = MAX(P_ORDERRETURNEDY, P_ORDERRETURNEDN); 

  EM_CLASSIFICATION = I_ORDERRETURNED; 

  

end; 

  

  

method run(); 

    set SASEP.IN; 

    preCode(); 

    astoreScore(); 

    postCode(); 

end; 

 

The preCode() method contains pre-processing score code from the Transform Variables 
node and the postCode() method contains code from the Score node in the SAS Enterprise 
Miner flow (Figure 1). The sc.setkey() in the init() method block contains a string identifier 
or key for the analytic store created by HP Forest model which we uploaded as hpforeststore 

in the Public library. Note that the epcode selected must refer to a key that matches the 

analytic store or the scoring will fail. 

Click Save to save the code and then click Close. Run the pipeline. The Score Code Import 
node runs PROC ASTORE to score the imported Forest model using the DS2 score code and 
the analytic store provided earlier. The assessment results will be calculated from the entire 

project table. 

Open the Score Code Import node results. The Node results tab contains the Score Inputs 
and Score Outputs tables, and the Path EP Score Code. The Assessment tab in Figure 16 
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displays the assessment reports: Lift Reports, ROC Reports, and the Fit Statistics table.  The 
Fit Statistics table shows that the misclassification rate for the training partition is 0.0522 
and the misclassification rate for the validation partition is 0.0603. In Model Studio 8.4, a 

misclassification report will also be created that displays a classification bar chart across all 

data partitions.  

The score code in the Score Code Import node is static, so if you rerun the pipeline, the 

associated score code or analytic store will not change. 

 

Figure 16. Score Code Import Node Results 

BATCH CODE NODE 

The Batch Code node in Model Studio enables you to import batch processing code or batch 
scripts that were created in SAS Enterprise Miner. When the Batch Code node runs, a 
sample of the input data is provided to the SAS client . The batch processing code that 
represents the SAS Enterprise Miner process flow diagram is run on that sample. When the 
batch code node reruns, the score code associated with the SAS Enterprise Miner flow will 
be regenerated and assessed in Model Studio. The results can differ from the results in SAS 

Enterprise Miner because the project has changed. This differs from the Score Code Import 

node where the score code or analytic store is static when you rerun a pipeline.  

Add a Batch Code node (located in the Supervised Learning node group) to the Interactive 

Project Pipeline created earlier. The updated pipeline is shown in Figure 17. 
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Figure 17. Model Studio Pipeline with the Rule Induction Model from SAS 

Enterprise Miner 

In the Batch Code node properties pane, click Open and navigate to the batch code file for 
the rule induction model that you saved earlier. The batch processing code that you created 

in SAS Enterprise Miner is opened in the code editor: 

*------------------------------------------------------------*; 

* EM Version: 15.1; 

* SAS Release: 9.04.01M6P110718; 

* Host: larry; 

* Project Path: C:\temp; 

* Project Name: SGF2019; 

* Diagram Id: EMWS8; 

* Diagram Name: Rule Induction model; 

* Generated by: jakanj; 

* Date: 21FEB2019:13:39:43; 

*------------------------------------------------------------*; 

*------------------------------------------------------------*; 

* Macro Variables; 

*------------------------------------------------------------*; 

%let EM_PROJECT =; 

%let EM_PROJECTNAME =; 

%let EM_WSNAME =; 

%let EM_WSDESCRIPTION =Rule Induction model; 

%let EM_SUMMARY =WORK.SUMMARY; 

%let EM_NUMTASKS =SINGLE; 

%let EM_EDITMODE =R; 

%let EM_DEBUGVAL =; 

%let EM_ACTION =run; 

 

The header at the top of the program provides information about the SAS Enterprise Miner 
project and diagram from which this batch code file was created. In this example, the 
EM_PROJECT, EM_PROJECTNAME, and EM_WSNAME macro variables are not set. This 
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indicates that when the batch code runs it will create a temporary project in the WORK 
directory of the SAS Viya client session. In some cases, those macro variables might have 
been predefined to specific values; this is useful in SAS Enterprise Miner if you want to 

rerun an existing diagram or create a project and diagram at a specific location. However, 
when running the batch code in Model Studio those macro variables are ignored because in 

most cases the SAS Viya client will not be able to access that location. 

The workspace data set uses the macro variables to set the configuration properties: 

*------------------------------------------------------------*; 

* Create workspace data set; 

*------------------------------------------------------------*; 

data workspace; 

length property $64 value $200; 

property= 'PROJECTLOCATION'; 

value= "&EM_PROJECT"; 

output; 

property= 'PROJECTNAME'; 

value= "&EM_PROJECTNAME"; 

 

The batch code file contains information about the data source that was used when the 
process flow was created in SAS Enterprise Miner and which table should be used when 
running the batch file.  When the Batch Code node runs, the CAS data or a sample will be 

used instead of what is specified in the batch file: 

%macro em_usedatatable; 

%if ^%symexist(EM_USEDATATABLE) %then %do; 

%let EM_USEDATATABLE = Y; 

%end; 

%if "&EM_USEDATATABLE" ne "N" %then %do; 

%global Ids_data Ids_newdata; 

*------------------------------------------------------------*; 

* Data Tables; 

*------------------------------------------------------------*; 

%let Ids_data = INSIGHT.INSIGHTTOYDEMO; 

%let Ids_newdata =; 

*------------------------------------------------------------*; 

%end; 

%global Ids_source; 

%if "&Ids_newdata" ne "" %then %do; 

%let Ids_source = USERTABLE; 

%end; 

%else %do; 

%let Ids_source = DATASOURCE; 

%end; 

%mend em_usedatatable; 

%em_usedatatable; 

 

The file also contains the start-up code associated with the project from which the batch 
code was created. In many cases this code contains references to paths that might not be 
accessible to the SAS Viya session.  This code is therefore ignored when the Batch Code 

runs: 

*------------------------------------------------------------*; 

* Run Startup and Property Code; 

*------------------------------------------------------------*; 

%macro em_runstartupCode; 
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%if ^%symexist(EM_RUNSTARTUP) %then %do; 

%let EM_RUNSTARTUP = Y; 

%end; 

%if "&EM_RUNSTARTUP" ne "N" %then %do; 

data _null_; 

if symget('sysscp')=:'WIN' then dsep='\'; 

else if symget('sysscp')=:'DNT' then dsep='\'; 

else dsep = '/'; 

filepath = pathname('work')!!dsep!!"RUNSTARTUP.sas"; 

call symput('DSPATH', filepath); 

run; 

data _null_; 

filename dspath "&dspath"; 

file dspath; 

put '*------------------------------------------------------------* ;'; 

put '* Project Startup Code'; 

put '*------------------------------------------------------------* ;'; 

put ' '; 

put ' '; 

put 'libname DemoData ''\D:\SGF2019'';'; 

put ' '; 

run; 

%end; 

%mend em_runstartupCode; 

%em_runstartupCode; 

 

The nodes data set defines nodes that are used in the process flow diagram. In this 
example, Transform, Rule Induction, and Score nodes were used in the process flow 

diagram:   

*------------------------------------------------------------*; 

* Create nodes data set; 

*------------------------------------------------------------*; 

data nodes; 

length id $12 component $32 description $64 X 8 Y 8 diagramID $32 parentID 

$32; 

id= "Trans"; 

component="Transform"; 

description= "Transform Variables"; 

diagramID="_ROOT_"; 

parentID=""; 

X=462; 

Y=66; 

output; 

id= "Score"; 

component="Score"; 

description= "Score"; 

diagramID="_ROOT_"; 

parentID=""; 

X=858; 

Y=66; 

output; 

id= "Rule"; 

component="RuleInduction"; 

description= "Rule Induction"; 

diagramID="_ROOT_"; 

parentID=""; 



23 

 

The connections data set indicates directional flow from predecessor nodes to successor 

nodes: 

*------------------------------------------------------------*; 

* Create connections data set; 

*------------------------------------------------------------*; 

data connect; 

length from to $12; 

from="Rule"; 

to="Score"; 

output; 

from="Trans"; 

to="Rule"; 

output; 

from="EMCODE"; 

to="Trans"; 

output; 

 

The batch code file contains the metadata associated with the Input Data node of the flow.  

When the Batch Code node runs, this metadata will be replaced by the metadata of the 
Model Studio project that is displayed in the Data tab. This ensures that the same target 

and input variables are used: 

*------------------------------------------------------------*; 

* Variable Attributes for Ids; 

*------------------------------------------------------------*; 

data WORK.Ids_VariableAttribute; 

length Variable $64 AttributeName $32 AttributeValue $64; 

Variable='DistributorCityLat'; 

AttributeName="LEVEL"; 

AttributeValue='NOMINAL'; 

Output; 

Variable='DistributorCityLon'; 

AttributeName="LEVEL"; 

AttributeValue='NOMINAL'; 

Output; 

Variable='DistributorLat'; 

AttributeName="LEVEL"; 

AttributeValue='NOMINAL'; 

Output; 

Variable='DistributorLon'; 

AttributeName="LEVEL"; 

AttributeValue='NOMINAL'; 

Output; 

 

The actions data set defines actions to be taken by each node in the process flow diagram. 
In this example, the run action is invoked from the Score node, which means that this node 

and all its predecessors will run. Note that REPORT is also a supported action. The REPORT 
action creates an SPK file that contains the SAS Enterprise Miner results of each node in the 
diagram. However, when running in Model Studio the results of that action are simply 

ignored: 

*------------------------------------------------------------*; 

* Create actions to run data set; 

*------------------------------------------------------------*; 

%macro emaction; 
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%let actionstring = %upcase(&EM_ACTION); 

%if %index(&actionstring, RUN) or %index(&actionstring, REPORT) %then %do; 

data actions; 

length id $12 action $40; 

id="Score"; 

%if %index(&actionstring, RUN) %then %do; 

action='run'; 

output; 

%end; 

 

The EXECUTE operation of the %em5batch macro submits the flow stream to SAS for 
program execution. The %em5batch macro uses the previously defined workspace, nodes, 

connect, nodeprops, and actions arguments: 

*------------------------------------------------------------*; 

* Execute the actions; 

*------------------------------------------------------------*; 

%em5batch(execute, workspace=workspace, nodes=nodes, connect=connect, 

datasources=datasources, nodeprops=nodeprops, action=actions); 

 

Click Save and then click Close. Run the pipeline. The data is downloaded to the SAS client 
and the data mining batch processing code shown above will be submitted in a SAS batch 
job. If the training data is very large, it is recommended that you download a sample of the 
training data to the SAS client to use to train the model. You can specify a sampling method 
and the number or percentage of observations in the properties panel under the Data 

Sample group. Although the training might be using only a sample of the training data, the 

assessment results will be calculated from the entire project table. 

Open the Batch Code node results. The Node results tab contains the Score Inputs and 

Score Outputs tables, the EM Batch Code, and the Path Score Code. The Assessment tab in 
Figure 18 displays the assessment reports: Lift Reports, ROC Reports, and the Fit Statistics 
table. The Fit Statistics table shows that misclassification rate for the training partition is 

0.1060 and the misclassification rate for the validation partition is 0.1059. 
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Figure 18. Batch Code Node Results 

USE SAS ENTERPRISE MINER AND HIGH-PERFORMANCE DATA 
MINING PROCEDURES IN MODEL STUDIO 

You can also leverage code that uses SAS Enterprise Miner or SAS High-Performance Data 
Mining (HPDM) procedures by integrating them into a SAS Code node in Model Studio. This 
enables you, similarly to the Batch Code node, to retrain a SAS Enterprise Miner model with 

new data. This also allows you to also add custom reports to the node results. 

We illustrate how this can be done through two examples. The first example uses a SAS 
Enterprise Miner procedure that produces DS1 score code. The second example uses an 
HPDM procedure that produces a model based on an analytic store. Because these 
procedures do not run in a CAS environment, the data will get downloaded to the SAS 

client. Therefore, if the training data is very large, it is recommended that you download a 
sample of the training data to the SAS client to use to train the model. This can be done by 
using the PARTITION CAS procedure. Although the model might be trained using only a 
sample of the training data, the assessment results will be calculated from the entire project 

table. 

Figure 19 shows the final pipeline after completing these last two examples.  
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Figure 19. Model Studio Pipeline with All Six Models 

BUILD A LOGISTIC REGRESSION MODEL USING THE DMREG PROCEDURE 

In this first example, we fit a logistic regression model to the OrderReturned binary target 
variable. In a logistic regression, observations with missing values are ignored. This reduces 

the size of the training data set, which can weaken the predictive power of the model. To 
impute missing values, right-click the Interactive Data Preparation node in your pipeline and 
add an Imputation node (located in the Data Mining Preprocessing group). By default, the 
Imputation node imputes class variables with the most frequent class and imputes interval 
variables with the mean. Add a SAS Code node below the Imputation node. Right -click the 

SAS Code node, select Move, and then select Supervised Learning. This moves the node to 
the Supervised Learning swim lane so that it gets treated as other modeling nodes. Right-

click the SAS Code node and rename the node “DMREG.”  

Unlike HPDM and CAS-based procedures, SAS Enterprise Miner procedures such as DMREG 
require separate data sets for the training, validat ion, and/or test data. Therefore, we first 
create local training and validation tables by applying WHERE clauses to the CAS training 
table.  Note that by using the dm_partitiontrainwhereclausenlit and 

dm_partitionValidWhereClauseNlit macro variables the code is dynamic and could be 

reused in other projects based on different data sources or partition variables: 

/* Create the training and validation data sets */ 

data work.train; 

   set &dm_data; 

   where &dm_partitionTrainWhereClauseNlit; 

run; 

 

data work.validate; 

   set &dm_data; 

   where &dm_partitionValidWhereClauseNlit; 

run; 

  

The DMREG procedure requires the creation of a Data Mining Database (DMDB) catalog, 

which is created using PROC DMDB: 

proc dmdb batch data=work.train dmdbcat=work.dmdbcat maxlevel = 513; 

   class %dm_dec_target %dm_class_input; 
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   var %dm_interval_input; 

   target %dm_dec_target; 

run; 

 

We then fit the logistic regression model with the following code:   

proc dmreg data=work.train dmdbcat=work.dmdbcat 

   validata = work.validate 

   outterms = &dm_lib..outterms 

   namelen=200; 

   class %dm_dec_target %dm_class_input; 

   model %dm_dec_target = %dm_interval_input %dm_class_input  

          / error=binomial link=LOGIT coding=DEVIATION nodesignprint; 

   code file="&dm_file_scorecode" group=_&dm_labelid; 

run; 

 

Because we want to display a plot of our parameter estimates, we create the OUTTERMS 
data set. The DMREG procedure produces DS1 score code and we use the code statement to 
create the Model Studio system file &dm_file_scorecode.  This file will be used to assess 

this model on the entire CAS table and produce assessment reports.  Note that the group 
option is used to prevent label collision if we were to decide to ensemble this model with 

others. 

Finally, we create a custom report that display the t-values associated with the various 
parameter estimates using a bar chart.  The dmcas_report macro is used to describe the bar 

chart to be displayed: 

data &dm_lib..outterms; 

   length sign $1 effect $65; 

   set &dm_lib..outterms; 

   if coefficient<0 then sign='-'; 

   else sign='+'; 

   if Variable ne 'Intercept' and classLevel ne '' then 

      effect=ktrim(variable)!!'-'!!ktrim(classLevel); 

   else 

      effect = ktrim(variable); 

   abstvalue = abs(tvalue); 

run; 

 

%dmcas_report(dataset=outterms, reportType=BarChart, category=Effect, 

              Response=abstvalue, sortDirection=descending, 

              sortBy=abstvalue, group=sign,  

              description=%nrbquote(T Value)); 

 

Run the SAS Code node and examine the results. Figure 20 displays a bar chart of the t-
values ordered in descending order with the bars colored by the sign of the parameter 

estimates. 
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Figure 20. Parameter Estimates for the DMREG Model 

The Path Score Code contains the transformations from the Interactive Data Preparation 

node that was created in SAS Visual Analytics and from the Imputation node: 

*------------------------------------------------------------*; 

* DMCAS Release:         1.0; 

* SAS Release:           V.03.04M0P012919; 

* Site Number:           70180938; 

* Host:                  sasdzl2.emd.sashq-d.openstack.sas.com; 

* Encoding:              utf-8; 

* Java Encoding:         UTF8; 

* Locale:                en_US; 

* Project GUID:          dc803dcd-af32-45bb-9b82-7321010c33b0; 

* Node GUID:             c1ab2265-fbc6-488e-a2ac-b2850dc74f05; 

* Generated by:          sasdzl; 

* Date:                  19FEB2019:15:37:40 

*------------------------------------------------------------*; 

*------------------------------------------------------------*; 

*Nodeid: _2YXXM5J7R0BDWTM7K8CHIH920; 

*------------------------------------------------------------*; 

'_va_d_TotalCost'n=('OrderDistributionCost'n + 'OrderMarketingCost'n + 

'OrderProductCost'n + 'OrderSalesCost'n);; 

*------------------------------------------------------------*; 

*Nodeid: _91H3E88L3KP8UNOAW3BKDBLZM; 

*------------------------------------------------------------*; 

*------------------------------------------------------------*; 

*Nodeid: _50YL9LD3XZYLSLEY3WADI97XU; 
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*------------------------------------------------------------*; 

 

* Imputation Method = MEAN ; 

Label 'IMP_VendorRating'n = 'Imputed Vendor Rating'; 

Length 'IMP_VendorRating'n 8; 

if missing('VendorRating'n) then do; 

   'IMP_VendorRating'n = 0.5704505088; 

end; 

else 'IMP_VendorRating'n = 'VendorRating'n;               

 

The Node results tab contains all the other reports included in supervised modeling nodes: 
Score Inputs and Score Outputs tables, Properties table, and the Output Delivery System 

(ODS) output that was generated by the DMREG procedure. 

The Assessment tab (Figure 21) contains the same reports included in the output of the 
supervised learning models with a binary target: Lift reports, ROC reports, and the Fit 

Statistics table. The Fit Statistics table shows that misclassification rate for the training 

partition is 0.0565 and the misclassification rate for the validation partition is 0.0561. 

 

Figure 21. DMREG Model Results 

Because this SAS Code node is a supervised learning node, you can add it as a challenger 
model (if not chosen by the Model Comparison node) in the Pipeline Comparison tab; you 
can use it to score a holdout table; or you can register it to SAS® Model Manager. In Model 
Studio 8.4, you will be able to publish a model to SAS® Micro Analytic Service (MAS). For 

more information, refer to the paper “Unleashing SAS® Visual Data Mining and Machine 

learning Models.”  
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BUILD A MODEL THAT CREATES AN ANALYTIC STORE 

In this second example, we use the HPSVM procedure to produce a support  vector machine 
(SVM) model. Because the HPSVM procedure supports a partition variable defined in its 

training data, we use the dm_partition_statement macro variable to dynamically reference 

the partition variable and partition values. Add another SAS Code node below the 

Imputation node. Right-click the node and rename it “HPSVM.” 

The following code creates the SVM model: 

proc hpsvm data=&dm_data maxiter=25 method=ACTIVESET 

                         tolerance=0.000001 c=1; 

   input %dm_interval_input / level = interval; 

   input %dm_nominal_input %dm_binary_input / level = nominal; 

   target %dm_dec_target / level = &dm_dec_level; 

   kernel polynom / deg = 2; 

   &dm_partition_statement; 

   PERFORMANCE DETAILS; 

   savestate file = "&dm_file_astore"; 

run; 

 

proc astore; 

   upload store="&dm_file_astore" rstore=&dm_data_rstore; 

run; 

 

The HPSVM procedure produces score code in the form of an analytic store. The savestate 
statement is used to create the analytic store binary file, which resides on the SAS client.  
In order for Model Studio to assess the model, this file must be uploaded to CAS. You use 
the ASTORE procedure to upload this file to a CAS table so that Model Studio can assess the 

model on the CAS training table. 

As in the previous example, the Assessment tab in the node Results is populated with 

assessment reports (Figure 22). The Fit Statistics table shows that misclassification rate for 
the training partition is 0.0558 and the misclassification rate for the validation partition is 

0.0552.  
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Figure 22. HPSVM Model Results 

Open the Model Comparison node results and note that the Forest model created in Model 
Studio is the champion model (Figure 23). The Forest model built in Model Studio has a 
larger Kolmogorov-Smirnov (KS) value compared to the other five models built in this 

paper. 

 

Figure 23. Model Studio Model Comparison Results for All Models 

SCORE USING A MODEL STUDIO FOREST MODEL IN SAS 9.4 



32 

The analytic store table and DS2 scoring code generated in Model Studio can be downloaded 
for use in other environments. In this example, the Forest model built in Model Studio can 
be used to score in SAS 9.4. In your Interactive Model pipeline, right-click the Model Studio 

Forest node and select Download Score Code. Save the ZIP file. The ZIP file contains a SAS 
file called dmcas_epscorecode.sas, which is the DS2 code associated with the analytic store. 
This file references the analytic store table information located in the model’s CAS library 
(CASLIB) table. In addition, the associated analytic store will be copied from the project 
CASLIB to the model’s CASLIB. For example, the header in the dmcas_epscorecode.sas file 

indicates that the _97E0545WF9DNUSCUFG8GN8HVY_ast analytic store is located in the 

Models CAS library: 

/* This score code file references one or more analytic stores that are 

located in the CASLIB Models. 

* These ASTORE tables include: 

* _97E0545WF9DNUSCUFG8GN8HVY_ast */ 

 

PROC ASTORE is used to download the analytic store table 

_97E0545WF9DNUSCUFG8GN8HVY_ast, which was created by Forest model.  

Create a new pipeline with a SAS Code node (Figure 24). Use the SAS Code node to run 

PROC ASTORE to download the analytic store table to the SAS Viya file system. 

 

Figure 24. Model Studio SAS Code Pipeline to Download Analytic Store 

The CASLIB statement makes the default CAS libraries visible in the active session. The 
CASUTIL procedure is used to load the analytic store table into memory on the CAS server. 
The following code loads the analytic store table _97E0545WF9DNUSCUFG8GN8HVY_ast 

into memory and makes it available in the Public library: 

/* Create CAS session */ 

cas; 

 

/* Create SAS librefs for all existing caslibs */ 

caslib _all_ assign; 

 

/* Load the analytic store table into memory and make it available into 

Public library */ 

proc casutil; 

  load casdata="_97E0545WF9DNUSCUFG8GN8HVY_ast.sashdat" 

       incaslib="models" 

       casout="_97E0545WF9DNUSCUFG8GN8HVY_ast" 

       outcaslib=Public; 

run; 

 

The DOWNLOAD statement retrieves the analytic store available in the CAS session and 

stores it in the SAS file system. The following code downloads the analytic store table 
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_97E0545WF9DNUSCUFG8GN8HVY_ast to the Public library and stores the Forest.sasast file 

in the SAS file system: 

/* Retrieve an analytic store _97E0545WF9DNUSCUFG8GN8HVY_ast from the CAS 

session and store it in the local file system as Forest.sasast */ 

proc astore; 

  download rstore=Public._97E0545WF9DNUSCUFG8GN8HVY_ast" 

  store="/saveastore/Forest.sasast"; 

run; 

  

The Forest.sasast and dmcas_epscorecode.sas files need to be copied to directories 

accessible by SAS 9.4 system.  

PROC ASTORE can score an input table by using the information in the analytic store 
created by the Forest model. In this example, the input data table is InsightToyDemo, the 
output data table is SAS94_scoreout1, the analytic store table is Forest.sasast, and the DS2 
scoring code is in the dmcas_epscorecode.sas file (generated by the Forest model). Run the 

following PROC ASTORE code to score the model in the SAS 9.4 Program Editor. The same 

code can be executed in a SAS Code node in SAS Enterprise Miner: 

libname DemoData "D:\AstoreModels"; 

 

/* Score the forest model */ 

proc astore; 

  score data=DemoData.InsightToyDemo 

        store="D:\AstoreModels\Forest.sasast" 

        epcode="D:\AstoreModels\dmcas_epscorecode.sas" 

        out=DemoData.SAS94_scoreout1; 

quit;  

 

proc print data=DemoData.SAS94_scoreout1 (obs=100);  

run; 

 

View the output. The SAS94_scoreout1 table was created in the D:\AstoreModels directory 

and first 100 observations were printed in the output. 

SCORE ANALYTIC STORE MODELS IN CAS FROM SAS 9.4 

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in 
SAS Viya. You can create a CAS session and run a CASLIB statement to make the default 
CAS libraries visible in the specified library. The CASLIB statement assumes that you have a 
CAS server already available. This CAS server is identified by specifying the host on which it 

runs and the port on which it listens for communications. 

The following CAS statement creates the CAS session named emcasid: 

cas emcasid host="dmcasrh-18w30.aatesting.sashq-r.openstack.sas.com"   

port=5570; 

 

The following caslib statement makes the default CAS libraries visible in the CAS session: 

caslib _all_ assign;  

 

If you have created the emcasid session, you can terminate it  with the following code by 

using the TERMINATE option in the CAS statement: 

cas emcasid terminate; 
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If the CAS server is Transport Layer Security (TLS) enabled, you need to install certificates 
to the trusted Certificate Authority (CA) bundle. You can use SAS® Deployment Manager to 
add your root and intermediate certificates to the trusted CA bundle and validate 

certificates. For more information, you can refer to the SAS® 9.4 and SAS® Viya® 

programming documentation.  

The CASUTIL procedure can be used to load an analytic store table into memory on a 

specified CAS server. The following code loads the analytic store table 
_97E0545WF9DNUSCUFG8GN8HVY_ast that was created by the Forest model in Model 

Studio into memory and makes it available in the Public library as a foreststore: 

proc casutil; 

  load casdata="_97E0545WF9DNUSCUFG8GN8HVY_ast.sashdat" 

       incaslib="models" /* This is the store that was copied earlier from 

                 our project CASLIB when we downloaded out the DS2 code. */ 

       casout="foreststore" 

       outcaslib="Public"; 

run; 

 

Use PROC ASTORE to score an input table by information in the analytic store, foreststore, 
which is loaded in Public library. In this example, the input data table is 
public.InsightToyDemo, the output data table is public.scoreout1, the analytic store is in the 

data table Public.foreststore, and DS2 scoring code is in the dmcas_epscorecode.sas file 

(generated by the Forest model): 

ods listing; 

proc astore; 

  score data=public.InsightToyDemo 

        out=public.scoreout1 

        rstore=Public.foreststore 

        epcode="D:\AstoreModels\dmcas_epscorecode.sas"; 

run; 

CONCLUSION 

Model Studio enables users with the ability to not only create models based on modern 

machine learning algorithms, but also import models from a variety of sources: SAS Visual 
Analytics, models created in SAS Enterprise Miner, and external models that can be 
expressed in the form of DS1 code or as an analytic store.  Moreover, you can, us ing the 
SAS code node, create your own models by writing custom code based on SAS Enterprise 
Miner or HPDM procedures or use the Batch Code node to run SAS Enterprise Miner 
diagrams expressed as batch code. Model Studio provides a flexible environment to assess, 

compare, register, and publish these models although they came from various sources and 

applications. 
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