Paper SAS3616-2019

SAS® Enterprise Miner™ and SAS® Visual Data Mining and
Machine Learning Hand Shake

Jagruti Kanjia, Dominique Latour, and Holly Sweeney, SAS Institute Inc.

ABSTRACT

SAS® Enterprise Miner™ and Model Studio are two solutions that you can use to create
predictive and classification models. In this paper, we show that although these applications
have different architectures and run in different environments, we canintegrate models
generated in one environment and compare themwith models produced in the other. In
SAS Enterprise Miner, we show how the SAS® Viya® Code node can be used to create
models based on SAS® Visual Data Mining and Machine Learning and integrate theminto a
SAS Enterprise Miner project. For Model Studio, we describe how models generatedin SAS
Enterprise Miner can be integrated into a Model Studio pipeline for the purpose of
comparison. We also discuss how you can use the SAS® code node in Model Studio to
produce user-defined models. We hope that a better understanding of these capabilities can
help users to fully use the rich functionality and flexibility of these products.

INTRODUCTION

SAS Enterprise Miner, and SAS Visual Data Mining and Machine Learning in Model Studio
and SAS® Visual Analytics, are powerful visual tools that take you through the data prep,
data exploration, modeling, and scoring stages of an analytics project. SAS Enterprise Miner
has been a proven data mining workbench for over 20 years and currently runs on the SAS®
9.4 platform. SAS Visual Data Mining and Machine Learning runs on SAS Viya, which
leverages the cloud-enabled, in-memory analytics engine of SAS® Cloud Analytic Services
(CAS), allowing for better processing and greater flexibility.

The SAS Enterprise Miner Graphical User Interface (GUI) is a point-and-click interface where
each stepin the data mining process is represented by a node in the diagram process flow.
The GUI enables analystswith little statistical expertise to easily navigate through the data
mining process. More experienced users can go “behind the scenes” and write theirown

code and customize the process.

SAS Visual Data Mining and Machine Learning is a collection of algorithms and utilities for
data preparation and modeling that run via CAS actionsin a distributed, in-memory
infrastructure. There are multiple interfaces to SAS Visual Data Mining and Machine
Learning. You can analyze your data using SAS procedures, use an open-source
programming language to access SAS® Analytics, and interactively explore and model your
data in both SAS Visual Analytics reports and Model Studio pipelines.

Model Studio presents a modern approachto data mining that is specifically designed to
serve as an extensible and open framework that can access data froma variety of common
sources. By using CAS actions, you can invoke in-memory analytics not just with SAS, but
also with Python, R, and Java.

Model Studio enables you to visually assemble, configure, build, and compare data mining
models and pipelines for a wide range of analytic data mining tasks. Model Studio pipelines
have a similar structure to SAS Enterprise Miner process flow diagrams. All pipelines begin
with a Data node that inserts the project data into the pipeline and performs the specified
data partitioning. Each step of the pipeline flow is represented by a node in one of the
following categories:

¢ Data Mining Preprocessing: Nodes for exploring the data and for manipulating and

prepping the data for modeling.

e Supervised Learning: Nodes to build predictive models for your specified target.

e Postprocessing: Nodes to performoperations on models after they are built in
upstreamnodes. Currently this category is dedicated to building ensemble models.

¢ Miscellaneous: Nodes with additional capabilities. This category includes creating
summary statistics and graphs to explore your data, saving data exported fromthe
previous node in the pipeline, and writing your own SAS code or open-source code (Ror

Python).

The complete list of nodes available to create your pipeline in Model Studio 8.3 are shown in

Table 1.

Node Category

Data Mining
Preprocessing

Nodes

Anomaly Detection Clustering Feature Extraction
Filtering Imputation Manage Variables
Replacement Text Mining Transformations

Variable Clustering

Variable Selection

Supervised
Learning

Batch Code

Bayesian Network

Decision Tree

Forest

GLM

Gradient Boosting

Linear Regression

Logistic Regression

Neural Network

Quantile Regression | Score Code Import SVM
Postprocessing Ensemble
Miscellaneous Data Exploration Open Source Code SAS Code

Save Data

Table 1. Nodes Available in Model Studio 8.3

The Score Data node and the Segment Profile node are two new nodes that will be added in

Model Studio 8.4.

Model Studio also provides a selection of pre-built beginner, intermediate, and advanced
node and pipeline templates that enable you to quickly prototype, test, and enhance
models. You can create, modify, and save your templates and model score codes. You can
also write your own custom SAS code or open-source code to integrate in the pipeline.
Model Studio expedites and simplifies model assessment and model pipeline comparisons
when evaluating competing analytic models.

This paper discusses the integration between SAS Enterprise Miner, Model Studio, and SAS
Visual Analytics, and how you can generate models in one environment and compare them
with models generated in another.

The sample data used in this paper can be downloaded fromthe SAS Visual Analytics

documentation page

(http://support.sas.com/documentation/onlinedoc/va/index. html#viya81). Click Example

Data for Getting Started with Analytical Models, unzip, and save the

insightToyDemo.sas7bdat data file in an accessible location.

The specific business problemyou are trying to solve in this example is increasing company
profits at Insight Toy Company. Your IT department has provided you with two years of

http://support.sas.com/documentation/onlinedoc/va/index.html#viya81

data on all aspects of the business. The data includes information about what products are
sold, to which vendors they are sold, the manufacturers and distributors of the products,
the associated costs, and some metrics about the sales representatives and the vendors.
The goalis to determine which features are most likely to predict whether a product was
returned.

BUILD MODELS IN SAS ENTERPRISE MINER

To determine which features are most likely to predict whether a product has returned, we
first build a forest model and a rule induction model in SAS Enterprise Miner.

BUILD A FOREST MODEL IN SAS ENTERPRISE MINER

We first generate a forest model using the High Performance (HP) Forest node. The diagram
flow in Figure 1 illustrates the data mining flow that you can use to create partition data
sets, pre-process data, create the Forest model, and export the model.

3 Transform | o | L Score Code |
@ Mtk {‘L » ’g.‘ HP Forest 3 »%E Score = - @ Exinet é

Figure 1. SAS Enterprise Miner HP Forest Model Diagram Flow

ﬁ Insight Tey
Company -...

The insightToyDemo table is pre-populated with a Partition variable that contains two
values: T for training observations and V for validation observations. SAS Enterprise Miner
has a Data Partition node that you can use to partition your dataif your table does not have
a partition variable. You caninclude following code in the SAS Code node to createa
training and validation partition data sets based on the Partition variable:
data &EM_EXPORT_TRAIN (drop=Partition);
set &EM_IMPORT_DATA;
where Partition = "T";
run;

data &EM_EXPORT_VALIDATE (drop=Partition);
set &EM_IMPORT_DATA;
where Partition = "V~;

run;

The observations with Partition =T are assigned to the training data set and observations
with Partition =V are assigned to the validation dataset. The partition variable was created
so that each data set contains 50% of the total data.

You can use the TransformVariables node to create a new variable called TotalCost using
the formula or expression shown below:

TotalCost = OrderDistributionCost + OrderMarketingCost + OrderProductCost +
OrderSalesCost;

TotalCostis used in the analysis and the four other cost variables used in the calculation are
excluded from the analysis.

The HP Forest node creates predictive models by using a random forest ensemble
methodology. We used the default property settings to create a forest model. The HP Forest
model creates an analytic store, a binary file called score.sasast. The Score node creates an
associated DATA step 2 (DS2) score file, epscore.sas, which will be used to score new data.
The epscore.sas file contains a string that identifies the following items:

The setkey method identifies the analytic store with the specified key .

The preCode method block. This contains the code to transforminput variables.

The postCode method block. This contains the code to process output variables.

The Score node creates predicted variables that have fixed names. These variables can be
used for further analysis and reporting.

The Score Code Export node exports files that are necessary for score code deployment.
The epcode.sas and the score.sasast files are exported to the location that you specify in
the Output Directory property in the Score Code Export node.

The HP Forest node resultsin Figure 2 display the assessment statistics. In the Fit Statistics
table you can see that the misclassification rate for the training partition is 0.052248 and
the misclassification rate for the validation partition is 0.060341.

B Bs B &
|+ Scare Rankings Overlay: Order Returned = |[E | 2 |k LeafPlot = | ® | & |[E]FitStatistics [o [=
Cumnulative Lift ~ 30000 4 Terget Label Fit Statistics | Statistics Train alidation T
~ Label
35 E
. = Order Returned _ASE_ Average 5o 0.049669 0.053344
£ 304 = : oo Order Returned _DIV_ Diwisor for A 112862 113822
: 2 Crder Returned _MAX_ Maximurm A, 0.963866 0.985608
2 2 g Order Returned _NOBS_ Sum of Fre.. 56481 56761
g 204 - Order Returned _RASE_ Root Avera... 0.222865 0.230964
E E 10000 4 Crder Returned _S5E_ Sum of Sgu. 5610.663 BO55.736
S 154 2 Order Returned _DISF_ Frequency ... 56481 56761
§ Order Returned _MISC_ Misclassific.. 0.05224%8 0.060341
Lk : : : : . z Order Refurned _WRONG_ Number of 2851 3425
0 20 40 60 80 100 o
Depth Number of Trees
[TRAIN VALIDATE | O Base O Increment - =
5] variable Impaortance = | E | =& |l lteration Plot = [E [= | output ERIERES
Variable Mumber of | Train: Gini | Train: OO0B: Gini | € Mistlassification Rate ~ 1N - - L
Hame Spiitting Reduction | Margin Reduction | & 2 User: Jakany
iz Reslielom i £ ooz 3 Date: December 21, 2018
VendorDist. 2001 0035353 0050705 0.02332 A | € \ S T 10:04:41
VendarType 1806 0.100440 0.200879 0.10023 5 a4 I\ 5 N
WendorLon 1781 0005264 0010527 0.00428 H \ € 7 Training Qutput
WendorLat 1755 0.005207 0.010415 0.00419 = aoad S 7 M
SalesRepT. 1627 0006625 0.013250 (0.00548 4 8
SalesRepV. 1353 0.004625 0.009251 0.00395 b= 9
VendarCity.. 1326 0.003790 0.007581 0.00314 = 10
WendorCity 1325 0003442 0006884 0.00277 ! | ! v ! 1 11
SalesRepV. 1262 0003687 0007374 0.00262 0 20 20 50 80 100 1z Varishle Sumary
GalesRepo... 1213 0032735 0065470 0.03177 13
SellerLon 1123 0003234 0006488 (0.00267 Number of Trees 14 Measurement Frequency
SellerLat 1047 0.002989 0005979 0.00248 | T Ot of Beg Valdate 15 pole Lewel Count ™
g 2 < >
lahs Leaf Statistics o | B | E Eﬁ Iteration Histary o | B | E
Mumber of | Mumber of | Averags Awverage Average Misclassifica | Misclassifica | Misclassifica | LogLoss | Logloss | Logloss
40 Trees Leawes Square Square Square tonRste |tonRste | tionRate (Train) {Oul of Bag) | (Validats)
Errar (Trein) | Error (Ol | Error (Trsin) (Ol of Bag) | (validate)
w of Bag) (velidle)
o 1 384 0.0770 0.0842 0.0826 0.1125 0.1241 01214 0.266 0.322 0308 m
5 2 703 0.0646 0.0824 0.0685 0.0846 0.1174 0.0931 0214 0304 0230
S 20 3 1046 0.0804 0.0790 0.0650 0.0771 0.1131 0.0859 0.205 0281 0218
= 4 1344 0.0567 0.0746 00610 0.0676 0.1038 0.0763 0.193 0.263 0.208
5 1703 0.0550 0.0715 00582 0.0544 0.0986 00719 0195 0248 0205
10 8 1981 0.0538 0.0685 0.0579 0.0524 0.0824 0.0687 0.183 0.237 0.203
7 2278 0.0532 0.0663 0.0672 0.0620 0.0889 0.0693 0.191 0.227 0201
_ 8 2543 0.0526 0.0644 0.0565 0.0807 0.0852 0.0580 0.183 0218 0198
o ; — = g 2836 0.0522 0.0631 0.0560 0.0801 0.0832 0.0679 0.188 0214 0197
00 381 762 11431524 1905 2285 26573048 3429 381 .0 10 3135 0.0817 0.0617 0.0654 0.0595 0.0807 0.0664 0186 0.208 0195
1 3383 0.0521 0.0614 0.0557 0.0599 0.0782 0.0576 0.188 0208 0187
Number of Leaves 12 3686 0.0814 0.0601 0.0551 0.0593 0.0768 0.0663 0185 0.204 0194 .

Figure 2. SAS Enterprise Miner HP Forest Model Results
BUILD A RULE INDUCTION MODEL IN SAS ENTERPRISE MINER

We now want to generate a rule induction model. The diagram flow in Figure 3 illustrates
the processflow to generate a rule induction model and save the model as batch processing
code. To import this model into Model Studio, you are required to create a batch file froma
Score node to ensure that the flow score code is properly created. Right-click the Score
node in your diagram and select Export Path as SAS Program. Ensure that Run this path is
enabled in the Export Path as SAS Program window. Specify a location to save the batch
code thatis available to your Model Studio client.

;n;s.:'gph:n:or“ @ SAS Code (2) :::?:IEF:T(S) @ Rule Induction % Score (3)

Figure 3. SAS Enterprise Miner Rule Induction Model Diagram Flow

SAS Enterprise Miner batch processing is a SAS macro-based interface to the SAS
Enterprise Miner client/server environment that operates without running the SAS
Enterprise Miner user interface. This batch code generates several data setssuch as the
workspace dataset, the nodes data set, the actions data set, the connections dataset, and
the node properties data sets. These components data sets configure different settings,
provide relational information, and provide individual node settings to SAS Enterprise Miner.
All this information is required to run a valid process flow diagram.

CREATING SAS VIYA MODELS IN SAS ENTERPRISE MINER

As discussed in “Make SAS® Enterprise Miner™ Play Nicely with SAS® Viya®”, you can
generate models based on SAS Viya procedures within SAS Enterprise Miner. Using the SAS
Viya Code node, you can run procedures in the CAS engine and have the results displayed
in SAS Enterprise Miner. Models generated in the SAS Viya Code node can also be compared
to other models based on traditional SAS Enterprise Miner nodes.

We use a SAS Viya Code node to generate and compare a variety of data mining and
machine learning procedures. These models will be assessed in SAS Viya and the best of
those models will be selected and exported for successor nodes to consume. Figure 4

illustrates the process flow for this example.

‘:‘j Insight Toy L ; - | |) _ g== Transform g . —, Madel
£ Company -... Er . I,:‘] SAE ke i ﬂ Variables T i s vk ¥ Comparison
—0 -— P

Figure 4. SAS Enterprise Miner SAS Viya Code Diagram Flow

The Training Code editor in the SAS Viya Code node consists of a template with a section
where you can enter you custom SAS code.

We first need to provide the name and port of the SAS Viya machine, the CAS library
(CASLIB), and the name of the CAS user:
/*___*

*

Setup the CAS information

*
kS
* Note that the cashost and casport can be specified in the EM project
* startup code using the em casHost and em_casPort macro variables.

*

*

%let em _cashost = dmcasrh-18w30.aatesting.sashq-r.openstack.sas.com;

%let em_casport = 5570;
%let caslib = CASUSER;
%let casuser = emduser4;

If the CAS serveris Transport Layer Security (TLS) enabled, you need to install certificates
to the trusted Certificate Authority (CA) bundle. You can use SAS® Deployment Manager to
add your root and intermediate certificates to the trusted CA bundle and validate
certificates. For more information, you can refer to the SAS® 9.4 and SAS® Viva®
programming documentation.

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=secref&docsetTarget=n195f3avox8na8n1mo2hfrygshqh.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=secref&docsetTarget=n195f3avox8na8n1mo2hfrygshqh.htm&locale=en

We wish to display some results in the node, so we need to register the associated results
tables. This will ensure that the results tables get downloaded fromthe SAS Viya machine to
the SAS Enterprise Miner diagram and node folder. The CAS argument is used to indicate
that these tables are in CAS as opposed to on the SAS Viya client :

%em_register(key=var Importancel, type=DATA);
%em_register (key=var Importance2, type=DATA);
%em_register(key=fForestOutmodel, type=DATA, cas=y);
%em_register (key=GBOutmodel, type=DATA, cas=y);

In this example, we will run four models in our SAS Viya session. All models will be
assessed in SAS Viya using the em_viya_assess macro. The name argument is used so that
we can clearly identify the models when comparing the assessment results. This macro
must be called after each model is run.

A neural network model is generated using the NNET procedure:

proc nnet data=&em_casdata
printtarget
standardize=MIDRANGE;
target %em target /level=8em dec level;
hidden 3;
input %em_interval_input / level=interval;
input %em_nominal_input %em_binary_input/ level=nominal;
train outmodel=&em _caslib..outmodel seed=12345 numtries=1
stagnation=5 validgoal=0;
architecture MLP;
hidden 50 / act=TANH;
optimization algorithm=LBFGS maxiters=300 regl2=0.1;
autotune maxiters=5 maxevals=5 maxtime=200 popsize=2;
&em_partition_statement;
code file=""&em File scorecode"';
score out=&em_casout copyvars=(%em target &em partitionvar);
run;
%em_viya_assess(name=Neural) ;

The score code file that is identified by the em file_scorecode macro contains DS1 code that
will be used to score the training table.

A forest modelis generated using the FOREST procedure:

/* Forest */
proc forest data=&em casdata outmodel=&em user_forestoutmodel
minleafsize=5 seed=12345 loh=0 numbin=20 binmethod=QUANTILE
maxbranch=2 assignmissing=USEINSEARCH
minuseinsearch=1
ntrees=100
maxdepth=20
inbagfraction=0.6
vote=PROBABILITY printtarget;
target %em_target /level=&em dec_level;
input %em_interval_input / level=interval;
input %em_nominal_input %em_binary_input / level=nominal;
grow IGR;
&em_partition_statement;
savestate rstore=&em data_rstore;
ods output variablelmportance=&em user_varimportancel;

run;
%em_viya assess(nhame=Forest);

We use the ODS statement to create the varimportancel table that will be used to display a
report in the node results. The FOREST model produces an analytic store using the
SAVESTATE statement. This analytic store will be used to score the training table. This
remote analytic store table will be downloaded to SAS Enterprise Miner in the form of a
binary file.

A gradient boosting model is generated using the GRADBOOST procedure:

/* Gradient Boosting */
proc gradboost data=&em casdata outmodel=&em_user_GBOutmodel
earlystop(tolerance=0 stagnation=5)
numBin=50 binmethod=QUANTILE
maxdepth=4
maxbranch=2
minleafsize=5
assignmissing=USEINSEARCH minuseinsearch=1
ntrees=100 learningrate=0.1 samplingrate=0.5 lasso=0 ridge=1
seed=12345
printtarget;
target %em_target / level=&em dec_level;
input %em interval _input / level=interval;
input %em_nominal_input %em_binary_input / level=nominal;
&em _partition_statement;
code file="&em file scorecode™;
savestate rstore=&em_data rstore;
run;
%em viya_assess(name=GB) ;

The OUTMODEL option in the PROC GRADBOOST statement is used to produce the
GBoutmodel table, which will be displayed in the results. The SAVESTATE statement is again
used to create the analytic store for this model.

A decision tree model is generated using the TREESPLIT procedure:

/* Decision Tree */
proc treesplit data=&em casdata
maxdepth=10 numbin=20
nsurrogates=0 minleafsize=5 maxbranch=2
assignmissing=USEINSEARCH binmethod=QUANTILE
minuseinsearch=1
pruningtable;
grow IGR;
target %em_target /level=8&em dec_level;
input %em_interval_input / level=interval;
input %em_nominal_input %em binary_input / level=nominal;
prune costcomplexity;
&em partition_statement;
code file="&em file scorecode";
ods output variablelmportance=&em user_varimportance2;
run;
%em viya assess(name=Tree);

We create the variable importance table, VARIMPORTANCEZ2, to display in the results. This
procedure also produces a DS1 code as its score code representation.

The em_viya_modelselection macro will select the best model based on the Model Selection
properties displayed in the property sheet of the node:

%em_viya modelselection;

Finally, we use the em_report macro to define reports to be displayed in the results viewer
of the node. In this example, we simply display tabular reports:

/*________ e e e e e e e e e e %

*

* The em_viya report macro processes assessment tables, score code, as

* well as table and files specified via the em_register macro and downloads
* them from the SAS Viya machine to the EM diagram and node folders.
*
*

%em_report(key=varlmportancel, viewtype=DATA, description=Variable
Importance Forest, Block=SAS Viya Reports);

%em_report(key=varimportance2, viewtype=DATA, description=Variable
Importance Tree2, Block=SAS Viya Reports);

%em_report(key=forestOutmodel, viewtype=DATA, description=Forest model
data set, Block=SAS Viya Reports);

%em_report(key=GBOutmodel , viewtype=DATA, description=Gradient Boosting
model dataset, Block=SAS Viya Reports);

%em _viya report;

The Results window contains many reports used to compare the various models (Figure 5).
These are based on the data that was assessed in SAS Viya using the ASSESS procedure.

Results - Node: SAS Viya Code Diagram: SGF Demo3 = (m] *
L i
File Edit View Window

S

o (B [=
* ~
Key Report User: sasdzl
Desaription Enterprise Miner Report Date: March 01, 2018
File QUSOUPLIL Time: 10:19:46
Falder (C:\tem pjle 1\Workspaces \EMWS 111iya\ODSOUTPUT .htm o
Zb # Training Output
ﬁ
Variable Summary
Measurenent Frequency
Role Level Count w
E View ; ‘ Save < 3
[5AS Viya ROC = [@ [|15 Viya Model Selection =EEr=
H Sensitiity ~ ‘ i
Data Role = VALIDATE
1.0
E. 08+
b} 0.6
2 04
& 02
0.0+
T T T T T
0.0 02 04 0.6 08 1.0
1 - Specificity
< >
Neural Forest GB
Tree — Baseline
EE (= o (= |Drsme Eo=
Hamu'laiiue'n& v| ‘ Try : 5 B i
Data Role = VA LIDATE ~ e
arR:
2 iR
5 .
®©
-] arR
£ Bt
L arRe
T T T T T T
0 20 40 60 80 100
Depth 15
[Neural Forest GB Tree |

Figure 5. SAS Viya Code Node Results

The report titled SAS Viya Model Selection (Figure 6) identifies the model selected basedon
the specifiedcriteria. In this example, the Kolmogorov-Smirnov (KS) statistic was used and
Neural, the model generated by the NNET procedure, was chosen to be the best model of
the four. This is the model that will be exported by the node including its score code to be
used downstreamin the process flow.

79 5AS Viya Model Selection e |

0.9350187._VALIDATE Neural 2316 0.0278663...
0.8661661.VALIDATE GB 56761 0.0463771.. -
10.8495260.. VALIDATE Forest 56761 0.0584613.. 56761 mﬂm
0.7559686.. VALIDATE Tree 56761 0.0822891.. 56761 0.2868607...

Figure 6. SAS Viya Code Node Model Selection Table

The SAS Viya Output Report contains the HT ML output produced by the procedures that ran
(Figure 7).

a C\Users\sasdzl\AppData\Local\ Temph8\0D: O ~ & (22 SAS Qutput

The NNET Procedure

Maodel Information

Model MNeural Mat
Number of Observations Used 58409
Number of Observations Read 58481
Target/Response Variable CrderReturmed
Number of Nodes 163
Number of Input Nodes 161
MNumber of Output Nodes 2
Mumber of Hidden Modes Q
Mumber of Weight Parameters 181
Mumber of Bias Parameters 2
Architecture GLIM
MNumber of Neural Nets 1
Seed for Initial Weight 12345
Optimization Technigue LEFGS
Objective Value 0.8414138613

Misclassification Ermor for Validation (%) 11.08700254

Iteration History

Norm
lteration | Objective | Morm of Validate Step
Number | Function | Gradiemt Loss Error Size L1 L2 | Maximum | Fit Ermor
1| 2777014 | 3369871 2777014 0.533482 0 0513281 0.045488 0008211 0.5314285

2 | 2302523 | 0.820000 | 23085323 | 02074583 | 0.072381 | 20416084 | 0220772 | 0.057091 | 0208837

&
Figure 7. SAS Viya Code Node Output Report

To see the customreport that we requested using the em_report macro, select View, and
then select SAS Viya Reports (Figure 8). The four reports that we created are listed.

10

View | Window

Properties >

545 Results >
i i 5
! Scoring Impostance
I Azsessment >

SAS Viya Assessrment ?
SAS Viya Reports > Variable Importance Forest
5A5Viya Reports : Variable Importance Treed

Forest model dataset
Table

Plot...
SEV SITOUTS

=t

Gradient Boosting model dataset

Figure 8. SAS Viya Code Node Custom Report Selection

Select Variable Importance Forest to display the variable importance for the forest model
(Figure 9).

Eﬂ Variable Importance Forest EE@

ariable Importance Std Dev Importance Relative Importance
VendorType A7E3.96 T71.46 1.0000 ~
SalesRepOrders 1244 38 261.86 0.3306
WendorDistance 24396 58.4049 02242
SalesRepRate 201.08 28013 02128
SalesRepActual T00.35 239.03 0.1861
WendorLoyaltyProgram 474 43 218.35 0.1261
SalesRepVendorBase 21074 22 0468 0.0560
SalesRepTarget 206.22 24 2301 0.0548
SalesRepVendors 128.64 13.2123 0.0342
TotalCost 101.49 27.9029 0.0270
Order3alesCost 94 2168 20,0135 0.0250
SellerCityLat 91.5921 14.3224 0.0243
MarketPenetration 90.4830 2.6010 0.0240
SellerCityLon 20.6125 17.4190 0.0214
SellerLat 793468 16.4019 0.0211
WendorLat T8.7379 13.4710 0.0209
VendorRating 748777 30,2975 0.0199
WendaorLon T3.3707 12.3596 0.0195
OrderAmount 71.25549 13.5979 0.0189
CrderDistributionCost 6Y.7159 14 5243 0.0180
SellerLon 65.0668 18.8394 0.0173 v

Figure 9. SAS Viya Code Node Variable Importance Forest Table

INTEGRATE MODEL STUDIO WITH SAS VISUAL ANALYTICS

We want to create a Forest model in SAS Visual Analytics by using the SAS Visual Data
Mining and Machine Learning add-on. We will then import the model into Model Studio.

11

In SAS Visual Analytics, you can start by identifying the data that you want to model. You
can then adjust certain characteristics of that data and create new dataitems. The

insight ToyDemo data must be loaded into CAS before we can begin our analysis.

Open SAS Visual Analytics and click the Data button. Use the Import tab to import the
insightToyDemo data. We want to create a partition column based on the partition variable
already existing in the table. In the Data pane, right-click the z Partition category and select
New partition. In the New Partition window, specify V for Validation data value and specify T
for Training data value.

To create the Total Cost variable, select New dataitemin the Data pane, and then select
Calculated item (Figure 10). Replace the text with the following expression:

"Order Distribution Cost™"n + "Order Marketing Cost®n + "Order Product
Cost"n + "Order Sales Cost™n

New Calculated Item

otal Cost Automatic (Numeric) » COMMA12.2 (Comma) [1
Deta ltems Operators .l'r:.E\-E _ex‘. ‘ n
Jo) "Order Distribution Cost'n + 'Order Marketing Cost'm +
‘Order Product Cost'n + 'Order Sales Cost'n

» Character

Figure 10. Create the Total Cost Variable in SAS Visual Analytics

From the Objects pane, drag a Forest object onto the canvas. In the Data Roles pane, select
Order Returned as the response variable. Select Total Cost, Vendor Distance, Vendor
Rating, Vendor Satisfaction, Product Line, and Vendor Type as the Predictors. Select z
Partition as a Partition ID variable. Notice that the Error Plot, Variable Importance chart,
and Lift plot are displayed in the canvas (Figure 11).

12

Forest Order Returned fevent=Y) Misclassification Rate | 0.0618 Observations Used 113,242 ‘;
(&
Create pipeline
Variable Importance Error Plot
Vendor Satisfaction Misclassification Rate
012
Vendor Type 0.11
Vendor Distance 0.10
9
Vendor Rating ——
B 0.08
Product Line 0.07
Total Cost 0.06
0 20 40 &0 80 100
Number of Trees
Misclassification Rate
Trai Qut-of-bag C
Lift
Cumulative Lift
35
3.0
2.5
2.0
1.5
1.0
Percentile 40 30 0 40 20
iti Traini /lidatior
0 2 000 4000 5,000 8000 Partition raining Validation
Importance Model Best

Figure 11. SAS Visual Analytics Forest Model Results

To copy this model from SAS Visual Analytics to Model Studio, select Create pipeline, and
then select Add to new project. This action copies the variable roles, the model, and all data
preparation steps to Model Studio and then Model Studio will automatically open. The Model
Studio projectis named Interactive Project and the created pipeline will contain four nodes
as shown in Figure 12.

13

‘ Data

=
ih
|
)
+
[§ K]
[
Ei

Y

¥ Model Comp...

Figure 12. Model Studio Interactive Project Pipeline

The Interactive Data Preparation node handles the role assignments that you made in SAS
Visual Analytics when you run the pipeline. In this example, all variables other than the
response variable, the partition variable, and the variables selected as the predictors are
rejected by the Interactive Data Preparation node. The Interactive Forest node runs the
Forest score code generatedin SAS Visual Analytics. In the same pipeline, a Forest node
can be added from the Supervised Learning nodes group. The new Forest model can then be
compared with the Interactive Forest model created in SAS Visual Analytics as shown in
Figure 13. The models created in SAS Visual Analytics and Model Studio can be different.
SAS Visual Analytics is an interactive environment, so the default options are set so that
models will run faster. In Model Studio, the default options are set to generate the best
possible model.

14

Data (v}

'@« Model Compari...&

Figure 13. Model Studio Forest Model Pipeline

IMPORT A SAS ENTERPRISE MINER MODEL INTO MODEL STUDIO

We now want to compare the three Forest models that we created in SAS Enterprise Miner,
SAS Visual Analytics, and Model Studio. We first need to import the Forest model that we
built in SAS Enterprise Miner into Model Studio. The Score Code Import node enables you to
import the score code of external models that have a representation in DS1 SAS code orin
an analytic store. To import the model built in SAS Enterprise Miner into Model Studio, the
analytic store and the score code file exported by the Score Code Export node need to be
copied to a directory accessible by Model Studio.

UPLOAD AN ANALYTIC STORETO CAS

To import an analytic store model in Model Studio, the analytic store in the form of a binary
file (sasast extension) must be uploaded to CAS first. You can use the ASTORE procedure to
upload an analytic store fromthe local file systeminto a data table in CAS. You can use the
CASUTIL procedure with the promote option to load the analytic store into global-scope so
that it can be found by Model Studio. Global-scope tables can be seen publicly and are not
dropped when the CAS session is terminated.

You can use the SAS Code node to run PROC ASTORE to upload the analytic store. A new
pipeline shown in Figure 14 is created in the Model Studio project.

15

ER Data (]

Figure 14. Model Studio SAS Code Pipeline to Upload Analytic Store

The following code uploads the analytic store to CAS and promotes it into global-scope:

/* Create CAS session */
proc cas;

/* Create SAS librefs for all existing caslibs */
caslib _all_ assign;

/* The UPLOAD statement moves an analytic store from the local file system
into a data table in CAS */
proc astore;
upload store="/demo/hpforestmodel/hpforest_score.sasast"
rstore=Models.hpforeststore _ast;
run;

/* Promote the Analytic Store to global scope so that it is available to
all sessions */
proc casutil;
promote casdata="hpforeststore_ast"
casout=""hpforeststore"
incaslib=""Models"
outcaslib=""Public";
quit;

Note that the analytic store does not reside on your client, but must reside in a path
available to the SAS client (the SAS Viya session).

IMPORT THE SAS ENTERPRISE MINER HP FOREST MODEL

To import the HP Forest model that you createdin SAS Enterprise Miner, add the Score
Code Import node to the Interactive Pipeline created earlier (located in the Supervised
Learning node group). The updated pipeline is shown in Figure 15.

16

B Interactive Data @ |
. Y
e Interactive Fored® : ¢, Forest o : %5 Score Code Im...
SAS Visual Model SAS
Analytics Studio Enterprise

Miner

W Model Compar.Q

Figure 15. Model Studio Pipeline with Forest Models from SAS Visual Analytics,
Model Studio, and SAS Enterprise Miner

In the Score Code Import node properties pane, click Open. Select the analytic store code
File Type radio button. Under Score code file, click Browse, navigate to the
hpforest_epcode.sas file that you saved earlier, and select OK. Under analytic store table,
click Browse to select an analytic store table. Select hpforeststore fromthe Public library
and select OK. Select Import to import the HP Forest model. The score code that you
created in SAS Enterprise Miner is opened in the code editor.

A snapshot of the DS2 score code file below shows the variable declaration, and the init(),
preCode(), astoreScore(), and postCode() methods:

dcl nchar(4) " _WARN_" having label n*Warnings®;
dcl nchar(l) U_ORDERRETURNED;

dcl double EM_EVENTPROBABILITY;

dcl double EM_PROBABILITY;

dcl nchar(32) EM_CLASSIFICATION;

dcl nchar(200) _FORMAT200;

dcl double P ;

varlist allvars [_all_];

method 1nit();

sc.setvars(allvars);
sc.setkey(n"1175CA1F805D85652BEE789C4F4D5507F51F8F307) ;
end;

17

method preCode();

TOTALCOST = ORDERDISTRIBUTIONCOST + ORDERMARKETINGCOST + ORDERPRODUCTCOST
+ ORDERSALESCOST;

end;

method astoreScore();
sc.scoreRecord();
end;

method postCode();

_FORMAT200 = * *;
P =0.0;

if P_ORDERRETURNEDY - P_ > 1E-8 then do ;
P = P_ORDERRETURNEDY ;

_FORMAT200 = *"Y*;

end;

if P_ ORDERRETURNEDN - P_ > 1E-8 then do ;

P = P_ORDERRETURNEDN;
_FORMAT200 = *N-*;
end;

I_ORDERRETURNED = DMNORM(_FORMAT200, 32.0);

it 1_ORDERRETURNED "Y" then U_ORDERRETURNED
it 1_ORDERRETURNED "N* then U_ORDERRETURNED
EM_EVENTPROBABILITY = P_ORDERRETURNEDY ;
EM_PROBABILITY = MAX(P_ORDERRETURNEDY, P_ORDERRETURNEDN) ;
EM_CLASSIFICATION = 1_ORDERRETURNED;

IYI;
INI;

end;

method runQ);
set SASEP.IN;
preCode();
astoreScore();
postCode();
end;

The preCode() method contains pre-processing score code fromthe TransformVariables
node and the postCode() method contains code fromthe Score node in the SAS Enterprise
Miner flow (Figure 1). The sc.setkey() in the init() method block contains a string identifier
or key for the analytic store created by HP Forest model which we uploaded as hpforeststore
in the Public library. Note that the epcode selected must refer to a key that matches the
analytic store or the scoring will fail.

Click Save to save the code and then click Close. Run the pipeline. The Score Code Import
node runs PROC ASTORE to score the imported Forest model using the DS2 score code and
the analytic store provided earlier. The assessment results will be calculated fromthe entire

project table.

Open the Score Code Import node results. The Node results tab contains the Score Inputs
and Score Outputs tables, and the Path EP Score Code. The Assessment tabin Figure 16

18

displays the assessment reports: Lift Reports, ROC Reports, and the Fit Statistics table. The
Fit Statistics table shows that the misclassification rate for the training partition is 0.0522
and the misclassification rate for the validation partition is 0.0603. In Model Studio 8.4, a
misclassification report will also be created that displays a classification bar chart acrossall
data partitions.

The score code in the Score Code Import node is static, so if you rerun the pipeline, the
associated score code or analytic store will not change.

nteractive Project Score Code Import Results Close

Lift Reports Cumulative Lift - 2 ROC Reports ROC v |

Cumulative Lift Sensitivity

] 1.0

N o —

Depth 1 - Specificity

L
'3y

Data Role z Partition Formatte... Sum of Fr... Average ...

TRAIN T T 56,481 0.0497

ALIDATE 56,761 0.0533

Figure 16. Score Code Import Node Results

BATCH CODE NODE

The Batch Code node in Model Studio enables you to import batch processing code or batch
scripts that were created in SAS Enterprise Miner. When the Batch Code node runs, a
sample of the input data is provided to the SAS client. The batch processing code that
represents the SAS Enterprise Miner process flow diagramis run on that sample. When the
batch code node reruns, the score code associated with the SAS Enterprise Miner flow will
be regenerated and assessed in Model Studio. The results can differ from the results in SAS
Enterprise Miner because the project has changed. This differs from the Score Code Import
node where the score code or analytic store is static when you rerun a pipeline.

Add a Batch Code node (located in the Supervised Learning node group) to the Interactive
Project Pipeline created earlier. The updated pipeline is shown in Figure 17.

19

ES Data 9 :

B Intotactive .. @ i
. 3 L Y
s, Interactive Forest o s, Forest o : 12 Score Code Import 9 B3 Batch Code
SAS Visual Maodel SAS SAS Ul
Analytics Studio Enterprise Forest Enterprise | ge "
Miner Miner nuction

‘ ¥ Model Comparison Q)

Figure 17. Model Studio Pipeline with the Rule Induction Model from SAS
Enterprise Miner

In the Batch Code node properties pane, click Open and navigate to the batch code file for
the rule induction model that you saved earlier. The batch processing code that you created

in SAS Enterprise Miner is opened in the code editor:

EM Version: 15.1;

SAS Release: 9.04.01M6P110718;
Host: larry;

Project Path: C:\temp;

Project Name: SGF2019;

Diagram Id: EMWSS;

Diagram Name: Rule Induction model;
Generated by: jakanj;

Date: 21FEB2019:13:39:43;

O ok X 3 o X 3k % X ok X

*
*

%let EM_PROJECT =;

%let EM_PROJECTNAME =;

%let EM_WSNAME =;

%let EM_WSDESCRIPTION =Rule Induction model;
%let EM_SUMMARY =WORK.SUMMARY;

%let EM_NUMTASKS =SINGLE;

%let EM_EDITMODE =R;

%let EM_DEBUGVAL =;

%let EM_ACTION =run;

The header at the top of the program provides information about the SAS Enterprise Miner

project and diagram from which this batch code file was created. In this example, the
EM_PROJECT, EM_PROJECTNAME, and EM_WSNAME macro variables are not set. This

20

indicates that when the batch code runs it will create a temporary project in the WORK
directory of the SAS Viya client session. In some cases, those macro variables might have
been predefined to specific values; this is useful in SAS Enterprise Miner if you want to
rerun an existing diagram or create a project and diagram at a specific location. However,
when running the batch code in Model Studio those macro variables are ignored because in
most cases the SAS Viya client will not be able to access that location.

The workspace data set uses the macro variables to set the configuration properties:

A e o (e E
* Create workspace data set;
* *

data workspace;

length property $64 value $200;
property= "PROJECTLOCATION"®;
value= "&EM PROJECT";

output;

property= "PROJECTNAME";

value= "&EM PROJECTNAME';

The batch code file contains information about the data source that was used when the
process flow was created in SAS Enterprise Miner and which table should be used when
running the batch file. When the Batch Code node runs, the CAS data or a sample will be

used instead of what is specifiedin the batch file:

%macro em _usedatatable;

%iFf ~osymexist(EM_USEDATATABLE) %then %do;
%let EM_USEDATATABLE = Y;

%end ;

%if "&EM_USEDATATABLE™ ne "N' %then %do;
%global Ids _data lds_newdata;

*

%let lds _data = INSIGHT. INSIGHTTOYDEMO;
%let lds _newdata =;

*

%end ;

%global lds_source;

%if "&lds_newdata" ne "' %then %do;
%let lds_source = USERTABLE;

%end ;

%else %do;

%let Ids _source = DATASOURCE;

%end ;

%mend em_usedatatable;
%em_usedatatable;

The file also contains the start-up code associated with the project fromwhich the batch
code was created. In many cases this code contains references to paths that might not be
accessible to the SAS Viya session. This code is therefore ignored when the Batch Code

runs:
A e e e e o e e * -
* Run Startup and Property Code;
* *

%macro em_runstartupCode;

21

%iF ~osymexist(EM_RUNSTARTUP) %then %do;

%let EM_RUNSTARTUP = Y;

%end ;

%if "&EM_RUNSTARTUP" ne "N' %then %do;

data null_;

if symget("sysscp”)=:"WIN" then dsep="\";

else if symget("sysscp™)=:"DNT" then dsep="\";

else dsep = */";

filepath = pathname("work®)!1dsep! I"'RUNSTARTUP.sas"";
call symput("DSPATH", filepath);

run;

data null_;

filename dspath "'&dspath"’;

file dspath;

put A

put ** Project Startup Code-;

put ol . -

put ;

put * *°;

put "libname DemoData "*\D:\SGF2019"";";
put * °;

run;

%end ;

%mend em_runstartupCode;
%em_runstartupCode;

The nodes data set defines nodes that are used in the process flow diagram. In this
example, Transform, Rule Induction, and Score nodes were used in the process flow

diagram:
A e e e e e e e e e *x -
* Create nodes data set;
A o e —,,,—,—,—,—,—,—,—,—,—,——,—,—,—,—,—,—,————,———————— o * -
data nodes;

length id $12 component $32 description $64 X 8 Y 8 diagramlD $32 parentlD
$32;

id= "Trans'';
component=""Transform';
description= "Transform Variables';
diagramlD=""_ROOT_"*;
parentiD=""";

X=462;

Y=66;

output;

id= "Score"’;
component="'Score"’;
description= "Score";
diagramlD=""_ROOT_"*;
parentiD="";

X=858;

Y=66 ;

output;

id= "Rule";
component="Rulelnduction";
description= "Rule Induction';
diagramlD=""_ROOT_"*;
parentiD="";

22

The connections data set indicates directional flow from predecessor nodes to successor
nodes:

A e e e E E E ———,——,—,—,—,—,—,—,—,—,—,—,———,,————,,—————— *x -
* Create connections data set;
* * -

data connect;
length from to $12;
from="Rule";
to=""Score"';
output;
from="Trans";
to=""Rule’;
output;
Ffrom=""EMCODE"*;
to="Trans';
output;

The batch code file contains the metadata associated with the Input Data node of the flow.
When the Batch Code node runs, this metadatawill be replaced by the metadata of the
Model Studio project that is displayed in the Data tab. This ensures that the same target
and input variables are used:

A * -
* Variable Attributes for Ids;
* * -

data WORK. Ids VariableAttribute;
length Variable $64 AttributeName $32 AttributevValue $64;
Variable="DistributorCityLat";
AttributeName=""LEVEL";
AttributeValue="NOMINAL" ;
Output;
Variable="DistributorCityLon";
AttributeName=""LEVEL";
AttributeValue="NOMINAL" ;
Output;
Variable="DistributorLat";
AttributeName=""LEVEL";
AttributeValue="NOMINAL" ;
Output;
Variable="DistributorLon®;
AttributeName=""LEVEL";
AttributeValue="NOMINAL" ;
Output;

The actions data set defines actions to be taken by each node in the process flow diagram.
In this example, the run action is invoked from the Score node, which means that this node
and all its predecessors will run. Note that REPORT is also a supported action. The REPORT
action creates an SPKfile that contains the SAS Enterprise Miner results of each node in the
diagram. However, when running in Model Studio the results of that action are simply

ignored:
A e e e e e *x -
* Create actions to run data set;
* * -

%macro emaction;

23

%let actionstring = %upcase(&M _ACTION);

%if %index(&actionstring, RUN) or %index(&actionstring, REPORT) %then %do;
data actions;

length id $12 action $40;

id="Score";

%iF %index(&actionstring, RUN) %then %do;

action="run";

output;

%end;

The EXECUTE operation of the %emb5batch macro submits the flow streamto SAS for
program execution. The %eemb5batch macro uses the previously defined workspace, nodes,
connect, nodeprops, and actions arguments:

%emSbatch(execute, workspace=workspace, nodes=nodes, connect=connect,
datasources=datasources, nodeprops=nodeprops, action=actions);

Click Save and then click Close. Run the pipeline. The data is downloaded to the SAS client
and the data mining batch processing code shown above will be submitted in a SAS batch
job. If the training data is very large, it is recommended that you download a sample of the
training data to the SAS client to use to train the model. You can specify a sampling method
and the number or percentage of observations in the properties panel under the Data
Sample group. Although the training might be using only a sample of the training data, the
assessment results will be calculated fromthe entire project table.

Open the Batch Code node results. The Node results tab contains the Score Inputs and
Score Outputs tables, the EM Batch Code, and the Path Score Code. The Assessment tab in
Figure 18 displays the assessment reports: Lift Reports, ROC Reports, and the Fit Statistics
table. The Fit Statistics table shows that misclassification rate for the training partition is
0.1060 and the misclassification rate for the validation partition is 0.1059.

24

Interactive Project Batch Code Results

Summary

T
T
]
b
3
i
-
=
“
"
3
s
T
T
[e]
)
“
"
'

Cumulative Lift Sensitivity

- 1.0
3.0 \ -

KS Cutgff

—

\ 0.4 /
1 \\ 0.2
1.0 T~ 0.0
0 20 40 60 80 100 0.0 0.2 0.4 0.6 0.8 1.0
Depth 1 - Specificity
=m
(3]
Data R... z Partit... Forma... Sum o... Avera...

TRAIN T T 56,4817 0.0745

VAL IFYAT

Figure 18. Batch Code Node Results

USE SAS ENTERPRISE MINER AND HIGH-PERFORMANCE DATA
MINING PROCEDURES IN MODEL STUDIO

You can also leverage code that uses SAS Enterprise Miner or SAS High-Performance Data
Mining (HPDM) procedures by integrating theminto a SAS Code node in Model Studio. This
enables you, similarly to the Batch Code node, to retrain a SAS Enterprise Miner model with
new data. This also allows you to also add customreports to the node results.

We illustrate how this can be done through two examples. The first example uses a SAS
Enterprise Miner procedure that produces DS1 score code. The second example uses an
HPDM procedure that produces a model based on an analytic store. Because these
procedures do not run in a CAS environment, the data will get downloaded to the SAS
client. Therefore, if the training data is very large, it is recommended that you download a
sample of the training data to the SAS client to use to train the model. This can be done by
using the PARTITION CAS procedure. Although the model might be trained using only a
sample of the training data, the assessment results will be calculated fromthe entire project
table.

Figure 19 shows the final pipeline after completing these last two examples.

25

Data (]

“"3: eData.@ : |
En Imputation 9 :
[E: DMREG [‘ [HPsvM 9 | | nteractive Fores@ i #y, Forest o : 12 Score Code Im..@ i By BatchCode @
SAS 94 SAS 9.4 HP SAS Visual Model SAS BAS Rule
Procedure Procedure Analytics Studio Enterprise | Forest Enterprise indishon
Miner Miner

W& Model Compari.@ :

Figure 19. Model Studio Pipeline with All Six Models

BUILD A LOGISTIC REGRESSION MODEL USING THE DMREG PROCEDURE

In this first example, we fit a logistic regression model to the OrderReturned binary target
variable. In a logistic regression, observations with missing values are ignored. This reduces
the size of the training data set, which can weaken the predictive power of the model. To
impute missing values, right-click the Interactive Data Preparation node in your pipeline and
add an Imputation node (located in the Data Mining Preprocessing group). By default, the
Imputation node imputes class variables with the most frequent class and imputes interval
variables with the mean. Add a SAS Code node below the Imputation node. Right -click the
SAS Code node, select Move, and then select Supervised Learning. This moves the node to
the Supervised Learning swim lane so that it gets treated as other modeling nodes. Right -
clickthe SAS Code node and rename the node "DMREG.”

Unlike HPDM and CAS-based procedures, SAS Enterprise Miner procedures such as DMREG
require separate data sets for the training, validation, and/or test data. Therefore, we first
create local training and validation tables by applying WHERE clauses to the CAS training
table. Note that by using the dm_partitiontrainwhereclausenlitand
dm_partitionVal idWhereClauseNlit macro variables the code is dynamic and could be
reused in other projects based on different data sources or partition variables:

/* Create the training and validation data sets */
data work.train;

set &dm_data;

where &dm_partitionTrainWhereClauseNlit;
run;

data work.validate;

set &dm_data;

where &dm_partitionValidWvhereClauseNlit;
run;

The DMREG procedure requires the creation of a Data Mining Database (DMDB) catalog,
which is created using PROC DMDB:

proc dmdb batch data=work.train dmdbcat=work.dmdbcat maxlevel = 513;
class %dm_dec_target %dm class_input;

26

var %dm_interval_input;
target %dm_dec_target;
run;

We then fit the logistic regression model with the following code:

proc dmreg data=work.train dmdbcat=work.dmdbcat
validata = work.val idate
outterms = &dm_lib. .outterms
namelen=200;
class %dm_dec_target %dm_class_input;
model %dm_dec_target = %dm_interval _input %dm_class_input
/ error=binomial 1ink=LOGIT coding=DEVIATION nodesignprint;
code file="&dm_file_scorecode' group=_&dm_labelid;
run;

Because we want to display a plot of our parameter estimates, we create the OUTTERMS
data set. The DMREG procedure produces DS1 score code and we use the code statement to
create the Model Studio systemfile &dm_Ffile_scorecode. This file will be used to assess
this model on the entire CAS table and produce assessment reports. Note that the group
option is used to prevent label collision if we were to decide to ensemble this model with
others.

Finally, we create a customreport that display the t-values associated with the various
parameter estimates using a bar chart. The dmcas_report macro is used to describe the bar
chart to be displayed:

data &dm_lib..outterms;
length sign $1 effect $65;
set &dm_lib.._.outterms;
if coefficient<0 then sign="-";
else sign="+";
if Variable ne "Intercept® and classLevel ne "" then
effect=ktrim(variable) 1l "-"11ktrim(classLevel);
else
effect = ktrim(variable);
abstvalue = abs(tvalue);
run;

%dmcas_report(dataset=outterms, reportType=BarChart, category=Effect,
Response=abstvalue, sortDirection=descending,
sortBy=abstvalue, group=sign,
description=%nrbquote(T Value));

Run the SAS Code node and examine the results. Figure 20 displays a bar chart of the t-

values ordered in descending order with the bars colored by the sign of the parameter
estimates.

27

T Value

abstvalue

80

Effect

Sign o+ H-

Figure 20. Parameter Estimates for the DMREG Model

The Path Score Code contains the transformations from the Interactive Data Preparation
node that was createdin SAS Visual Analytics and from the Imputation node:

A o e e e e *;
* DMCAS Release: 1.0;

* SAS Release: V.03.04MOP012919;

* Site Number: 70180938;

* Host: sasdzI12.emd.sashqg-d.openstack.sas.com;
* Encoding: utf-8;

* Java Encoding: UTF8;

* Locale: en_US;

* Project GUID: dc803dcd-afF32-45bb-9b82-7321010c33b0;
* Node GUID: clab2265-Tthc6-488e-a2ac-b2850dc74105;
* Generated by: sasdzl;

* Date: 19FEB2019:15:37:40

* * -
* *:

" va_d_TotalCost"n=("0rderDistributionCost*n + "OrderMarketingCost™n +
"OrderProductCost™n + "OrderSalesCost™n);;

3 * -
*Nodeid: _91H3E88L3KP8UNOAW3BKDBLZM;

A * -
* * -

*Nodeid: _50YLOLD3XZYLSLEY3WADI97XU;

28

* Imputation Method = MEAN ;
Label "IMP_VendorRating®"n = "Imputed Vendor Rating”;
Length "IMP_VendorRating"n 8;
if missing("VendorRating“n) then do;
" IMP_VendorRating™n = 0.5704505088;
end;
else "IMP_VendorRating™n = "VendorRating™n;

The Node results tab contains all the other reports included in supervised modeling nodes:
Score Inputs and Score Outputs tables, Properties table, and the Output Delivery System
(ODS) output that was generated by the DMREG procedure.

The Assessment tab (Figure 21) contains the same reports included in the output of the
supervised learning models with a binary target: Lift reports, ROC reports, and the Fit
Statistics table. The Fit Statistics table shows that misclassification rate for the training
partition is 0.0565 and the misclassification rate for the validation partition is 0.0561.

nteractive Project DMREG Results Close

==
w

Qo
]
4

Cumulative Lift Sensitivity

BN ol

1 \\‘
1 —
Depth 1 - Specificity

LY
(3]

Data R... z Partit... Forma... Sum o... Avera...

TRAIN T T 56,481 0.0387

e 56,761 0.0383

Figure 21. DMREG Model Results

Because this SAS Code node is a supervised learning node, you can add it as a challenger
model (if not chosen by the Model Comparison node) in the Pipeline Comparison tab; you
can use it to score a holdout table; or you can register it to SAS® Model Manager. In Model
Studio 8.4, you will be able to publish a model to SAS® Micro Analytic Service (MAS). For
more information, referto the paper“Unleashing SAS®Visual Data Mining and Machine
learning Models.”

29

BUILD A MODEL THAT CREATESAN ANALYTIC STORE

In this second example, we use the HPSVM procedure to produce a support vector machine
(SVM) model. Because the HPSVM procedure supports a partition variable defined in its
training data, we use the dm_partition_statement macro variable to dynamically reference
the partition variable and partition values. Add another SAS Code node below the
Imputation node. Right-click the node and rename it "HPSVM.”

The following code creates the SVM model:
proc hpsvm data=&dm_data maxiter=25 method=ACTIVESET
tolerance=0.000001 c=1;

input %dm_interval_input / level = interval;
input %dm_nominal_input %dm_binary_input / level = nominal;
target %dm _dec_target / level = &dm dec_level;
kernel polynom / deg = 2;
&dm_partition_statement;
PERFORMANCE DETAILS;
savestate File = "&dm_Ffile _astore™;

run;

proc astore;
upload store="&dm_file astore' rstore=&dm_data rstore;

run;

The HPSVM procedure produces score code in the form of an analytic store. The savestate
statement is used to create the analytic store binary file, which resides on the SAS client.

In order for Model Studio to assess the model, this file must be uploaded to CAS. You use
the ASTORE procedure to upload this file to a CAS table so that Model Studio can assess the

model on the CAS training table.

As in the previous example, the Assessment tab in the node Results is populated with
assessment reports (Figure 22). The Fit Statistics table shows that misclassification rate for
the training partition is 0.0558 and the misclassification rate for the validation partition is

0.0552.

30

Interactive Project HPSVM Results

Output Data

3 2
Summary

Node
Lift Reports Cumulative Lift v iz R
Cumulative Lift
35
3.0 \
25
2.0 \
1.5 [~
].0 \-.-‘..-"\-._‘_
0 20 40 60 80 100
Depth
Fit Statistics b
DataR... z Partit... Forma... Avera
TRAIN T T 0.1236
VALIDAT o .
E V V 0.1231

Figure 22. HPSVM Model Results

Open the Model Comparison node results and note that the Forest model created in Model
Studio is the champion model (Figure 23). The Forest model built in Model Studio has a
larger Kolmogorov-Smirnov (KS) value compared to the other five models built in this

paper.

Interactive Project

Assessment

Model Comparison

Model Comparison Results

Figure 23. Model Studio Model Comparison Results for All Models

Champion Name
% Forest
DMREG

nteractive Forest
Score Code Import
HPSVM

Batch Code

Algorithm Name

SAS Code

Forest

Score Code Import
SAS Code

Batch Code

OC Reports

Sensitivity

Close

ROC v i

KS Cutoff

oo

0.4

0.2

0.0

[=]
=1

[=]

%]

0.4 0.6 0.8 1.0

1 - Specificity

Close

KS (Youden)
0.8994
0.8926
0.88M4
0.8772
0.8715

0.8196

Misclassification Rate
0.0493
0.0561
0.0611
0.0603
0.0552

0.1059

SCORE USING A MODEL STUDIO FOREST MODEL IN SAS 9.4

31

The analytic store table and DS2 scoring code generated in Model Studio can be downloaded
for use in other environments. In this example, the Forest model built in Model Studio can
be used to score in SAS 9.4. In your Interactive Model pipeline, right-click the Model Studio
Forest node and select Download Score Code. Save the ZIP file. The ZIP file contains a SAS
file called dmcas_epscorecode.sas, which is the DS2 code associated with the analytic store.
This file references the analytic store table information located in the model’s CAS library
(CASLIB) table. In addition, the associated analytic store will be copied from the project
CASLIB to the model’s CASLIB. For example, the header in the dmcas_epscorecode.sas file
indicates that the 97E0545WFIODNUSCUFG8GN8HVY _ast analytic storeis located in the
Models CAS library:

/* This score code File references one or more analytic stores that are
located in the CASLIB Models.

* These ASTORE tables include:

* 97E0545WFIDNUSCUFGBGN8BHVY_ast */

PROC ASTORE is used to download the analytic store table
_97EO0545WF9DNUSCUFG8GN8HVY _ast, which was created by Forest model.

Create a new pipeline with a SAS Code node (Figure 24). Use the SAS Code node to run
PROC ASTORE to download the analytic store table to the SAS Viya file system.

Ea Data (]

Figure 24. Model Studio SAS Code Pipeline to Download Analytic Store

The CASLIB statement makes the default CAS libraries visible in the active session. The
CASUTIL procedureis used to load the analytic store table into memory on the CAS server.
The following code loads the analytic store table _ 97E0545WFI9DNUSCUFG8GN8HVY _ast
into memory and makes it available in the Public library:

/* Create CAS session */
cas;

/* Create SAS librefs for all existing caslibs */
caslib _all_ assign;

/* Load the analytic store table into memory and make it available into

Public library */

proc casutil;

load casdata=""_97E0545WFIDNUSCUFG8GN8HVY_ ast.sashdat"

incaslib="models"
casout=""_97E0545WFODNUSCUFG8GNBHVY _ast"
outcaslib=Public;

run;

The DOWNLOAD statement retrieves the analytic store available in the CAS session and
stores it in the SAS file system. The following code downloads the analytic store table

32

_97EO0545WF9DNUSCUFG8GN8HVY _ast to the Public library and stores the Forest.sasast file
in the SAS file system:

/* Retrieve an analytic store 97E0545WFODNUSCUFG8GN8HVY_ast from the CAS
session and store it in the local file system as Forest.sasast */
proc astore;
download rstore=Public. 97E0545WFODNUSCUFGBGN8HVY ast"
store=""/saveastore/Forest.sasast'’;
run;

The Forest.sasast and dmcas_epscorecode.sas files need to be copied to directories
accessible by SAS 9.4 system.

PROC ASTORE can score an input table by using the information in the analytic store
created by the Forest model. In this example, the input data table is Insight ToyDemo, the
output datatable is SAS94 scoreoutl, the analytic store table is Forest.sasast, and the DS2
scoring code is in the dmcas_epscorecode.sas file (generated by the Forest model). Run the
following PROC ASTORE code to score the modelin the SAS 9.4 Program Editor. The same
code can be executed in a SAS Code node in SAS Enterprise Miner:

libname DemoData ''D:\AstoreModels';

/* Score the forest model */
proc astore;
score data=DemoData. InsightToyDemo
store="D:\AstoreModels\Forest.sasast"
epcode=""D: \AstoreModel s\dmcas_epscorecode.sas"
out=DemoData.SAS94 scoreoutl;
quit;

proc print data=DemoData.SAS94 scoreoutl (obs=100);
run;

View the output. The SAS94 scoreoutl table was created in the D:\AstoreModels directory
and first 100 observations were printed in the output.

SCORE ANALYTIC STORE MODELS IN CAS FROM SAS 9.4

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud servicesin
SAS Viya. You can create a CAS session and run a CASLIB statement to make the default
CAS libraries visible in the specified library. The CASLIB statement assumes that you have a
CAS server already available. This CAS server is identified by specifying the host on which it
runs and the port on which it listens for communications.

The following CAS statement creates the CAS session named emcasid:

cas emcasid host="dmcasrh-18w30.aatesting.sashqg-r.openstack.sas.com"
port=5570;

The following caslib statement makes the default CAS libraries visible in the CAS session:
caslib _all_ assign;

If you have created the emcasid session, you can terminate it with the following code by
using the TERMINATE option in the CAS statement:

cas emcasid terminate;

33

If the CAS serveris Transport Layer Security (TLS) enabled, you need to install certificates
to the trusted Certificate Authority (CA) bundle. You can use SAS® Deployment Manager to
add your root and intermediate certificates to the trusted CA bundle and validate
certificates. For more information, you can refer to the SAS® 9.4 and SAS® Viva®
programming documentation.

The CASUTIL procedure can be used to load an analytic store table into memory on a
specified CAS server. The following code loads the analytic store table
_97EO0545WF9DNUSCUFG8BGN8BHVY _ast that was created by the Forest modelin Model
Studio into memory and makes it available in the Public library as a foreststore:

proc casutil;
load casdata=""_97E0545WFODNUSCUFG8GN8HVY_ ast.sashdat"
incaslib="models™ /* This is the store that was copied earlier from
our project CASLIB when we downloaded out the DS2 code. */
casout=""foreststore"
outcasl ib="Public";
run;

Use PROC ASTORE to score an input table by information in the analytic store, foreststore,
which is loaded in Public library. In this example, the input data table is
public.InsightToyDemo, the output datatable is public.scoreoutl, the analytic store is in the
data table Public.foreststore, and DS2 scoring code is in the dmcas_epscorecode.sas file
(generated by the Forest model):
ods listing;
proc astore;
score data=public. InsightToyDemo
out=public.scoreoutl
rstore=Public.foreststore
epcode=""D:\AstoreModel s\dmcas_epscorecode.sas";
run;

CONCLUSION

Model Studio enables users with the ability to not only create models based on modern

mac hine learning algorithms, but also import models from a variety of sources: SAS Visual
Analytics, models created in SAS Enterprise Miner, and external models that can be
expressed in the form of DS1 code oras an analytic store. Moreover, you can, using the
SAS code node, create your own models by writing customcode based on SAS Enterprise
Miner or HPDM procedures or use the Batch Code node to run SAS Enterprise Miner
diagrams expressed as batch code. Model Studio provides a flexible environment to assess,
compare, register, and publish these models although they came fromvarious sources and
applications.

REFERENCES

Ebersole, Beth, and Czika, Wendy. 2018. “"Make SAS® Enterprise Miner™ Play Nicely with
SAS® Viya®.” Proceedings of the SAS Global Forum 2018. Cary, NC: SAS Institute Inc.
Available at https://www.sas.com/content/danmVSAS/support/en/sas-global-forum-
proceedings/2018/2204-2018.pdf.

SAS Institute Inc. 2018. “Create a Forest.” In SAS® Visual Analytics 8.3: Getting Started
with Analytical Models. Cary, NC: SAS Institute Inc. Available at
https://go.documentation.sas.com/?cdcld=vacdc&cdcVersion=8.3&docsetld=vaamgs&docs

etTarget=n0y80e2uitkic4nlvg836kjkmsbo.htm&locale=en.

34

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=secref&docsetTarget=n195f3avox8na8n1mo2hfrygshqh.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=secref&docsetTarget=n195f3avox8na8n1mo2hfrygshqh.htm&locale=en
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2204-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2204-2018.pdf
https://go.documentation.sas.com/?cdcId=vacdc&cdcVersion=8.3&docsetId=vaamgs&docsetTarget=n0y80e2uitkic4n1vq836kjkmsbo.htm&locale=en
https://go.documentation.sas.com/?cdcId=vacdc&cdcVersion=8.3&docsetId=vaamgs&docsetTarget=n0y80e2uitkic4n1vq836kjkmsbo.htm&locale=en

Pecze, Shawn, Prasanth Kanakadandi, Byron Biggs, Michael (Xin) Chi. 2019. “Unleashing
SAS® Visual Data Mining and Machine Learning Models.” Proceedings of the SAS Global
Forum 2019. Cary, NC: SAS Institute Inc.

Wujek, Brett, Susan Haller, and Jonathan Wexler. 2018. “"Navigating the Analytics Life Cycle
with SAS® Visual Data Mining and Machine Learning on SAS Viya.” Proceedings of the SAS
Global Forum 2018. Cary, NC: SAS Institute Inc. Available at
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-
proceedings/2018/2246-2018.pdf.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Jagruti Kanjia
SAS Institute Inc.
Jagruti.Kanjia@sas.com

Dominique Latour
SAS Institute Inc.
Dominigque.Latour@sas.com

Holly Sweeney
SAS Institute Inc.
Holly.Sweeney@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

35

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2246-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2246-2018.pdf
mailto:Jagruti.Kanjia@sas.com
mailto:Dominique.Latour@sas.com
mailto:Holly.Sweeney@sas.com

