
1

Paper 3614-2019

Data-Driven Agent Allocation in a Process using Machine

Learning and Optimization in SAS®
Lokendra Kumar Devangan, Chandu Saladi, Core Compete

ABSTRACT

Data-driven agent allocation provides immense opportunity in improving the efficiency of any
process. Cost effective system can be designed using machine learning and optimization in

SAS®. In this paper, the application of machine learning and optimization for agent allocation
in two-stage job processing is described using a case study of Business Process Outsourcing
(BPO) organization. This organization handles verification and underwriting process for credit
card applications of a large bank. The paper provides a brief overview of unsupervised
machine learning algorithms for agent and application profiling. Clusters of application and
agents are created and are used in the agent allocation optimization problem. Optimization
model framework is extensively discussed to solve the problem of skill-based agent allocation
for credit card application processing based on its complexities, which has two stages of
processing, application verification, and underwriting. A mixed integer optimization problem
is modeled and is solved using the OPTMODEL procedure. The design for the end-to-end
process to implement optimization for agent allocation is also discussed in this paper.

INTRODUCTION

This paper discusses how to use unsupervised machine learning algorithms for agent and
application profiling using historical data and design an optimization system for agent
allocation to a credit card application process. An application can be of any type such as visa,
credit card, loan, passport etc. To solve the optimization problem, PROC OPTMODEL have
been used. SAS Visual Statistics has been used for profiling of agents and applications. The
business problem, solution design, and assumptions are discussed in this paper. Subsequent
section briefly discusses settings for agent and application profiling using clustering technique.
An extensive description for skill-based agent allocation using optimization technique has
been discussed in the following sections.

AGENT AND APPLICATION PROFILING

It is well known that the level of skills of different individuals varies, the same applies for the
complexity of applications. In this case, agents are clustered into homogenous groups using
demographic variables and profession-related information such as age, education, residence,
income, tenure in the organization, total tenure, experience, etc. Clusters developed using K-
Means clustering technique on SAS Visual Statistics have been profiled by analyzing time
taken by agents for verification and underwriting of applications in the past. The objective of
the analysis was to create a meaningful group. Based on the skill level, three clusters were
created using K- Means clustering technique. The clusters were named High (H), Medium (M)
and Low(L).

Similarly, credit card applications can be clustered using application attributes like applicant’s
age, profession, education, residence, income, new customer, credit score, documentation
status, application mode, time of the year, etc. All available attributes were used to create
segments using K-Means clustering on SAS Visual Statistics. Two separate clustering exercise
was performed to create complexity level for two stages of the application decision process,
verification and underwriting. These clusters were used to assign a complexity level of 0 to 3.
Figure 1 Clustering Results shows the result window of SAS Visual Statistics.

2

Figure 1 Clustering Results

Clusters developed for agents and applications to be grouped by skills and complexity
respectively were used to create a table as illustrated in Table 1 for each stage of the
application processing. These tables form input to the optimization model and is discussed in
the next section.

Table 1

Underwriting

Skill Level 1 2 3

High Mean time taken by High
skilled agents on applications

with complexity level 1

Medium

Low

AGENT ALLOCATION OPTIMIZATION SETTING

In this section, settings and assumptions of the application processing have been described.
Every day in the morning, all the pending applications are allocated to the agents for
verification and for underwriting and they remain allocated to the same agent until a decision
is made. If the agent is required to be changed, it will be initiated by a manager using other
available ways rather than using the optimization system. It is assumed that for allocation,
there is a system which decides whether an application requires only verification or only

underwriting or both and henceforth designated complexity on a 0-3 scale with 3 being the
most complex. 0 means verification is not required. All applications are required to go through
underwriting though. The application included in the optimization are:

• Applications arriving in the system today which are analyzed to asses if it needs
verification or underwriting or both.

3

• Applications from previous days that required verification or underwriting and were
not allocated earlier.

Any application allocated earlier, which were not completed would not be included again. They
remain allocated to the same agent and if scheduled for today, the availability of that agent
is reduced for today. Agents are grouped into High/Medium/Low skill blocks for verification
and underwriting. Hence, there are 6 possible resource blocks to which an application can be
allocated, at most one in verification and one in underwriting. For each agent, information
about previous application allocation to the agent, which has not been completed yet is
assumed to be provided. In practice, this would be small since the allocation is made in such
a way that the tasks will be completed on the same day. Hence, the capacity of each agent

today is known, based on their availability. Aggregating across all High/Medium/Low skills
across verification or underwriting, the total capacity for each of the six blocks is known.
Based on the previous allocations which are not finished but due for today, the schedule for
the first part is already known and hence it is not part of optimization.

DATA ORGANIZATION

Assumptions

1. A Workday is divided into TimeBlock = 1, … . . 𝑡 blocks e.g., 8 for each hour from 9.00
a.m. to 6.00 p.m. except for the lunch hour assumed from noon to 1:00 p.m. It can
be grouped into fewer or more homogeneous time blocks.

2. All agents are profiled using historical data and grouped into High (H), Medium(M) and
Low(L) skill level.

3. All agents skilled for verification or underwriting are grouped together and are treated
as a resource block.

4. It is assumed that all agents with skillset H/M/L will take the same mean time for
verification and underwriting job with complexity 𝑗/𝑝.

5. Time availability data for each agent block by skill level in a time block t is available.

6. Completion in timeslot t means a total wait of t for each application in that slot, Wait
(t) = t.

7. Weight denotes the importance of applications. Applications from high valued customer
could have higher weight given by known constants Importance (π).

Notation

i: index for application 𝑖 = 1 to 𝑛

j: index for verification complexity where 𝑗 = 0 to 3 and 0 means no verification and 3
is the most complex

k: index for verification agent block skill level 𝑘 = H/M/L

t: index for time block

p: index for underwriting complexity where 𝑗 = 1 to 3 and 1 least is complex and 3 is
the most complex

q: index for underwriting agent block skill level 𝑞 = H/M/L

µ𝑗𝑘 mean processing time for verification of application with complexity 𝑗 by an agent

with skill 𝑘

4

µ𝑝𝑞 mean processing time for underwriting for application with complexity 𝑝 by an

agent with skill 𝑞. If an agent group does not do the task, a high number like 10000
can be used for the meantime.

 𝑉𝑘𝑡: Available time for verification agent block with skill level 𝑘 in time block 𝑡

𝑈𝑞𝑡: Available time for underwriting agent block with skill level 𝑞 in time block 𝑡

Decision: There are two decisions for each application taken separately for verification
and underwriting; which agent block and which time slot for processing.

𝒙𝒊𝒂𝒕 = 𝟏 if application 𝑖 is assigned to block 𝑡 for verification by agent block a

𝒚𝒊𝒃𝒕 = 𝟏 if application 𝑖 is assigned to block 𝑡 for underwriting by agent block b

OPTIMIZATION DESIGN

Objective:

Minimize application processing time + scaled-weighted wait time

 Minimize ∑ ∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑡tkj𝑖 ∗ 𝑊𝑡 ∗ 𝜋𝑖 ∗ 60 + ∑ ∑ ∑ ∑ 𝑦
𝑖𝑝𝑞𝑡tq𝑝𝑖 ∗ 𝑊𝑡 ∗ 𝜋𝑖 ∗ 60 + ∑ ∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑡tkj𝑖 ∗

 µ𝑗𝑘 + ∑ ∑ ∑ ∑ 𝑦
𝑖𝑝𝑞𝑡tq𝑝𝑖 ∗ µ𝑝𝑞

Binary Constraint:

 ∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑡tk𝑗 = 𝜈𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 Assign to one agent and time slot for verification of

application

∑ ∑ ∑ 𝑦𝑖𝑝𝑞𝑡tk𝑗 = 𝑢𝑖 𝑓𝑜𝑟 𝑖 Assign to one agent and time slot for underwriting of application

where 𝜈𝑖 and 𝑢𝑖 are vectors of 1 or 0 based on whether an application needs

verification/underwriting (1) or not (0). 0 is not applicable for underwriting. This helps to
specify the constraint efficiently.

Precedence Constraint:

The verification process must precede the underwriting process. This is implemented using
logical constraints which ascertains that the waiting time of an application for the verification
process should be less than waiting time for underwriting

 ∑ ∑ ∑ 𝑊𝑡 ∗ 𝑥𝑖𝑗𝑘𝑡tk𝑗 ≤ ∑ ∑ ∑ 𝑊𝑡 ∗ 𝑦𝑖𝑝𝑞𝑡 + (1 − 𝑢𝑖) ∗ 𝑥𝐿𝑎𝑟𝑔𝑒tk𝑗

Processing Time Constraint:

Total processing time should not exceed the available time in each time block for agent block
with a certain skill level. For example, for all H skill verification agents in time slot 1, the time
taken by all applications assigned to them should be less than the time available.

 ∑ ∑ 𝑥𝑖𝑗𝑘𝑡𝑗𝑖 ∗ µ𝑗𝑘 ≤ 𝑉𝑘𝑡

 ∑ ∑ 𝑦𝑖𝑝𝑞𝑡𝑝𝑖 ∗ µ𝑝𝑞 ≤ 𝑈𝑞𝑡

There can be many extensions to the mathematical formulation. One of the extensions is, if
the resource capacity is less than the demand, a resource block can be added each for
verification or underwriting with a very large capacity so that allocating to that block would
mean that the demand will not be met that day. The mean time for this block would be high

so that it is not selected except to ensure feasibility of the capacity constraint.

5

PROC OPTMODEL IMPLEMENTATION AND RESULTS

Proc OPTMODEL has been used to implement the mathematical model described in the
previous section. Data discussed in section 2 and 3 have been transformed to ensure that it
can be used as input data to Proc OPTMODEL.

Proc optmodel FDIGITS=3 printlevel=3;

*** declare dimensions to read the parameter data

 set <num,num> compl_dimv;

 set <num,num> compl_dimm;

 set <num> app_dim;

 set <num,num> agent_dim_v;

 set <num,num> agent_dim_m;

 set <num,num> avail_hrs_v;

 set <num,num> avail_hrs_m;

 set <num>time_slot_dim;

 /*****Declaring the parameters************/

 num avail_time_v{avail_hrs_v};

 num avail_time_m{avail_hrs_m};

 num avgtime_v {agent_dim_v};

 num avgtime_m {agent_dim_m};

 num wait {time_slot_dim};

 num v_flag{app_dim};

 num m_flag{app_dim};

 num imp{app_dim};

/***Reading the parameters from the SAS data into Proc Opt Model*/

Read data &avail_time_v into avail_hrs_v=[k t] avail_time_v = avail_time;

Read data &avail_time_m into avail_hrs_m=[q t] avail_time_m=avail_time;

Read data &time_slot_wait into time_slot_dim=[t] wait;

Read data &m_skill into agent_dim_m=[q p] avgtime_m;

/***Mean processing time of underwriting by agent with a skill and

application complexity***/

Read data &v_skill into agent_dim_v=[k j] avgtime_v;

/***Mean processing time of verification by agent skill and application

complexity***/

Read data &applications into compl_dimv=[i j] ;

Read data &applications into compl_dimm=[i p] ;

Read data &applications into app_dim=[i] v_flag imp ;

Read data &applications into app_dim=[i] m_flag;

 /******Declaring the decision variables**********/

var slotv {compl_dimv cross avail_hrs_v} >= 0 <=1 integer;

var slotm {compl_dimm cross avail_hrs_m} >= 0 <=1 integer;

6

/***minimize the total wait time due to verification + wait time due to

underwriting + processing time due to verification + processing time due to

underwriting* balanced by a factor**********/

minimize time = sum {<i, j,k, t> in compl_dimv cross avail_hrs_v :< t> in

time_slot_dim }

slotv[i,j, k, t]*wait[t]*60*imp[i]*1/&Bal_factor.+ /*wait time due to

verification **multiplying with 60 to convert to minutes**/

sum{<i, p, q, t> in compl_dimm cross avail_hrs_m :<t> in time_slot_dim }

slotm[i, p,q, t]*wait[t]*60*imp[i]*1/&Bal_factor. + /*wait time due to

underwriting**multiply with 60 to convert into minutes**/

sum{<i,j,k,t> in compl_dimv cross avail_hrs_v:<k,j> in agent_dim_v }

slotv[i,j,k,t]*avgtime_v[k,j] + /***Processing time for

verification************/

sum{<i,p,q,t> in compl_dimm cross avail_hrs_m :<q,p> in agent_dim_m }

slotm[i,p, q, t]*avgtime_m[q,p] ; /***Processing time for

underwriting************/

/*****assignment constraint for verification***/

con assignment_v { <i> in app_dim }:

sum {< (i),j,k, t> in compl_dimv cross avail_hrs_v}

slotv[i,j, k, t]=v_flag[i];

/**** assignment constraint for underwriting************/

con assignment_m { <i> in app_dim}:

sum {< (i),p,q, t> in compl_dimm cross avail_hrs_m}

slotm[i,p, q, t]=m_flag[i];

/***Processing_time constraint */

/****Total time for verification/underwriting processing by agent block by

skill level should be less than available time of the

verification/underwriting agent block***/
con agent_v {<k,t> in avail_hrs_v}:

sum {< i,j,(k),(t)> in compl_dimv cross avail_hrs_v } slotv[i,j, k,

t]*avgtime_v[k,j] <= avail_time_v[k,t];

con agent_m {<q,t> in avail_hrs_m}:

sum {<i,p,(q),(t)> in compl_dimm cross avail_hrs_m } slotm[i,p, q,

t]*avgtime_m[q,p] <= avail_time_m[q,t];

/*Precedence Constraints: verification must precede underwriting*/

con precedence_cons { <i> in app_dim}:

sum{<(i),j,k,t> in compl_dimv cross avail_hrs_v:<t> in time_slot_dim}

slotv[i,j, k, t]*wait[t] <=

sum{<(i),p,q, t> in compl_dimm cross avail_hrs_m:<t> in time_slot_dim}

slotm[i,p, q, t]*wait[t]+ (1-m_flag[i])*10000;

solve with MILP;

/****creating SAS table to retain the solution ************/

create data verification

7

from [i j k t]

={<i,j, k, t> in compl_dimv cross avail_hrs_v :

slotv[i,j, k, t].sol > 0}

slotv = slotv;

create data underwriting

from [i p q t]

={<i,p, q, t> in compl_dimm cross avail_hrs_m :

slotm[i,p, q, t].sol > 0}

slotm = slotm;

Quit;

ILLUSTRATIVE EXAMPLE

The above-formulated problem was solved for 1,104 applications with three levels of
complexities for both verification and underwriting stages. Agents have been grouped as two
types of resource blocks for verification and underwriting having three levels of skills. 39
applications do not require verification. 240 minutes were allocated to each resource block in
a time slot for each skill level. Example problem used is considerably large with 3,360

constraints and solved using Branch and Cut algorithm. Figure 2 is screenshot of the ODS
(Output Delivery System) output of Proc OPTMODEL.

Figure 2 Problem and Solution Summary

Table 2 and Table 3 below summarizes the application allocation to agents by complexity type
for illustrative example.

• Table 2 and Table 3 suggests that optimization model allocates more number of
appications to high skilled agent resource block as objective is to minimize the waiting
time to make a decision on application.

• It is also observed that high skilled agent resource blocks are allocated significantly
large number of high complexity applications.

• Table 3 suggests that low skill agent resource block of underwriting is not allocated
any application. Minimum utilization constraints can be introduced to avoid this

situation.

8

Availability of a resource block is 240 minutes for each time block, uniform across the skill
levels. In reality availability of high skill agents would not be same as low skill agents as it
may not be cost effective. Power of optimization model can realized by solving illustrative
example for different scenarios.

Table 2

Verification Agent
Block

Verification
Complexity

Number of
Application

High 3 167

High 2 119

High 1 410

Medium 3 72

Medium 2 19

Medium 1 71

Low 3 23

Low 2 19

Low 1 165

Table 3

Underwriting Agent
Block

Underwriting
Complexity

Number of
Application

High 3 268

High 2 126

High 1 265

Medium 3 178

Medium 2 86

Medium 1 181

CONCLUSION

SAS Visual Statistics is useful for developing supervised and unsupervised machine learning
models quickly on large data sets as data resides on LASR. The Modeler can tune the available
parameters to generate the best models. It also provides different ways of analyzing the
results. Scoring codes can be exported outside for a batch run. PROC OPTMODEL is a very
powerful and flexible programming language for solving different types of optimization

problem. Programming in PROC OPTMODEL has the same format as the mathematical
representation of optimization problems.

In the service industry, service operations play a critical role in the business. If the operations
are not handled efficiently, it can lead to additional cost and impact customer satisfaction
adversely. Processing time can be reduced by optimizing resource allocation based on the

9

skills. In this paper, a two-stage process is used to demonstrate the power of optimization
and the capability of Proc OPTMODEL. Numerical results have been presented to illustrate the
applicability of optimization in the service industry to optimize resource allocation and
processes.

REFERENCES

SAS Institute Inc. 2011. SAS/OR® 9.3 User’s Guide: Mathematical Programming. Cary, NC:
SAS Institute Inc.

ACKNOWLEDGMENTS

Special thanks to Dr. Ajay Mishra, Core Compete for the guidance provided for the
optimization model development.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Lokendra Kumar Devangan
Core Compete
E-mail: Lokendra.devangan@corecompete.com
www.corecompete.com

Chandu Saladi
Core Compete
E-mail: Chandu.Saladi@corecompete.com
www.corecompete.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:Lokendra.devangan@corecompete.com
http://www.corecompete.com/
mailto:Chandu.Saladi@corecompete.com
http://www.corecompete.com/

