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ABSTRACT  

Missing data is a common phenomenon in various data analyses. Imputation is a flexible 

method for handling missing-data problems since it efficiently uses all the available 

information in the data. Apart from regression imputation approach, the MI procedure in 

SAS® also provides the multiple imputation options which create multiple data sets based on 

Markov chain Monte Carlo (MCMC) and fully conditional specification (FCS) methods. 

However, these methods may not work very effectively for skewed multivariate data since 

they require the assumption of multivariate normal distribution. To deal with such data, we 

introduce an approach based on copula transformation. We combine imputation using PROC 

MI and copula theory using PROC COPULA to arrive at an approach to solve the missing 

data problem for skewed multivariate data. We implement and demonstrate the use of this 

method through simulated examples under the assumption that data are missing completely 

at random (MCAR). 

INTRODUCTION  

Most of the methodology available for missing data imputation assumes data distributed as 

multivariate normal (see Little and Rubin 2002, Rao et al. 2007). Applying normality-based 

imputation in skewed data may cause practical issues for the simple reason of violation of 

distributional assumptions. One common way to deal with non-normal data is to apply 

normalizing transformation prior to the imputation phase and then back-transform to 

original scale at the analysis phase. However, transformation of each variable individually 

may alter the association structure among variables and hence may impact the accuracy of 

imputations.  

As Bahuguna and Khattree (2019) illustrated, based on copula transformation, multivariate 

skewed data can be transformed to any other multivariate distribution without losing 

dependence information among random variables. This property provides an approach to 

normalize multivariate skewed data and more importantly, ensures that existing normality-

based imputation methods are applicable for the analysis of multivariate skewed data. Our 

work here builds on this crucial and important observation. 

The objective of this work is to illustrate the implementation of above ideas by applying the 

copula transformation using PROC COPULA and to combine PROC MI for multiple imputation 

for the missing data in case of skewed multivariate data. In the following section, we revisit 

the basic concept of copula and the Sklar's theorem (Sklar, 1959), which is the foundation 

of copula transformation, and then we show the details of copula transformation algorithm 

and its implementation in SAS. 

COPULAS AND COPULA TRANSFORMATION 

THE COPULA TRANSFORMATION 

In copula theory, copula is a multivariate probability distribution where the marginal 

probability distribution of each variable is uniform. In other words, a function 𝐶 is a 𝑑-
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dimensional copula if there is a random vector 𝑈 = (𝑈1, 𝑈2, … , 𝑈𝑑)′, such that for 𝑖 = 1,2, … , 𝑑, 

𝑈𝑖  ~ Uniform (0,1), and  

𝐶(𝑢1, 𝑢2, … , 𝑢𝑑) = 𝑃[𝑈1 ≤ 𝑢1, 𝑈2 ≤ 𝑢2, … , 𝑈𝑑 ≤ 𝑢𝑑]. 

The most important theorem in copula theory is the Sklar's theorem (Sklar, 1959), which 

states that a function F: Rd →  [0,1] is the distribution function of a random vector 𝑋 =
(𝑋1, 𝑋2, … , 𝑋𝑑)′ if and only if there is a copula 𝐶 from [0,1]𝑑 to [0,1] and 𝑑 univariate distribution 

functions 𝐹1, 𝐹2, … , 𝐹𝑑 such that  

𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑑(𝑥𝑑)) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑑). 

This theorem indirectly implies that two different continuous multivariate distributions can 

be transformed to each other via the same copula. Specifically, consider two different 

continuous multivariate cumulative distributions denoted by 𝐹(⋅) and 𝐺(⋅) and assume that 

they have a common copula. Then the transformation is shown as follows from Sklar's 

theorem, 

𝑭(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒅) = 𝑪(𝑭𝟏(𝒙𝟏), 𝑭𝟐(𝒙𝟐), … , 𝑭𝒅(𝒙𝒅)) 

= 𝑪(𝒖𝟏, 𝒖𝟐, … , 𝒖𝒅) 

= 𝑪(𝑮𝟏(𝒚𝟏), 𝑮𝟐(𝒚𝟐), … , 𝑮𝒅(𝒚𝒅)) 

= 𝑮(𝒚𝟏, 𝒚𝟐, … , 𝒚𝒅), (𝟏) 

where 𝐹𝑖(⋅) and 𝐺𝑖(⋅) are the corresponding marginal cumulative distribution functions arising 

out of 𝐹(⋅) and 𝐺(⋅), respectively. Thus, a set of data on (𝑥1, … , 𝑥𝑑) can be transformed as 
(𝑦1, … , 𝑦𝑑) and vice versa via dependent uniform data (𝑢1, 𝑢2, … , 𝑢𝑑)′ created in between. 

In this study, since our purpose is to normalize multivariate variables, we assume that the 

common copula is a Gaussian copula Φμ,Σ(⋅), that is, 

𝐶Σ(𝑢1, … , 𝑢𝑑) = Φμ,Σ(Φ−1(𝑢1), … , Φ−1(𝑢𝑑)), 

where Φμ,Σ(⋅) is the cumulative distribution of multivariate normal distribution with mean 

vector 𝜇 and covariance matrix Σ. Φ(⋅) is the cumulative distribution function of the standard 

univariate normal and Φ−1(⋅) is its inverse function. 

  

THE ALGORITHM 

We start with the missing data problem, for which missingness occurs in one variable 

denoted by 𝐘 while the other variables 𝐗i's are fully observed. Then the missing data 

structure can be divided into two blocks: (i) the complete cases denoted by (𝐘obs, 𝐗cc)  and 

(ii) incomplete cases denoted by (𝐘mis, 𝐗ic). Let  

(𝐘, 𝐗) = [
𝐘𝐨𝐛𝐬 𝐗𝐜𝐜

𝐘𝐦𝐢𝐬 𝐗𝐢𝐜
]. 

According to the above process of copula transformation as stated in Equation (1), we 

implement the following algorithm, 

1. Transform the complete cases (𝐘𝐨𝐛𝐬, 𝐗𝐜𝐜) to uniformly distributed data 𝐔𝐜𝐜 =

(𝑈𝑌 , 𝑈𝑋1
, 𝑈𝑋2

, … , 𝑈𝑋𝑘
) using the empirical cumulative distribution function estimated from 

the data. 

2. For the incomplete case, transform 𝐗𝐢𝐜 to uniformly distributed data 𝐔𝐢𝐜 = (𝑈𝑋1
, 𝑈𝑋2

, … , 𝑈𝑋𝑘
) 

using the empirical cumulative distribution function estimated from the data. There is no 
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𝑈𝑌 data due to missingness. 

3. Combine 𝐔𝐜𝐜 and 𝐔𝐢𝐜 into 𝐔, that is 

𝐔 = [
𝐔𝑐𝑐

𝐔𝑖𝑐
], 

and convert 𝐔 to a new dataset (𝐘∗, 𝐗∗) using inverse multivariate normal cumulative 

distribution, corresponding to the correlation matrix from the original data. Thus, 

(𝐘∗, 𝐗∗) = [
𝐘𝐨𝐛𝐬

∗ 𝐗𝐜𝐜
∗

𝐘𝐦𝐢𝐬
∗ 𝐗𝐢𝐜

∗ ]. 

At this stage, after transforming from 𝐔 to (𝐘∗, 𝐗∗), one of the imputation methods can be 

applied on multivariate normally distributed (𝐘∗, 𝐗∗) as in Step 4 below. 

4. Use one of the imputation procedures (e.g. regression, MCMC, FCS) as desired to impute 

all missing values of 𝐘𝐦𝐢𝐬
∗ . Multivariate normality of (𝐘∗, 𝐗∗) makes this step easily 

implementable using PROC MI.  

5. Back-transform the filled-in data to original scale via 𝐔 according to the chosen copula 

function. 

It is assumed that the missingness scheme is independent of any such transformation and 

hence will remain the same all through the transformation. 

 

IMPLEMENTATION 

We illustrate the implementation scheme step by step following the above algorithm on a 

sample dataset misData with four variables (𝑌, 𝑋1, 𝑋2, 𝑋3),  which contains missing values in 𝑌 

and fully observed values in 𝑋1, 𝑋2, and 𝑋3. We add an indicator column Flag into the dataset 

misData such that Flag='X' and '.' are for complete and incomplete cases, respectively. 

Step 1 & 2: Transform complete cases (𝐘𝑜𝑏𝑠, 𝑿𝑐𝑐) and incomplete cases 𝐗𝑖𝑐 to uniform 

random variables using PROC COPULA, respectively. We specify parameter normal in FIT 

statement since we use Gaussian copula. The setting marginals=empirical indicates that 

we use the empirical cumulative distribution function estimated from the data. The resulting 

dataset unif_cc_star is the data set on the transformed uniform variables from complete 

cases (𝐘𝑜𝑏𝑠, 𝐗𝑐𝑐), while unif_ic_star is the data set on the transformed uniform variables 

from incomplete cases 𝐗𝑖𝑐 . 

%let misVar = y; 

%let ccVarList = x1 x2 x3; 

  

proc copula data=misData(where=(Flag='X')); 

  var &misVar &ccVarList; 

  fit normal / marginals=empirical outpseudo=unif_cc noprint; 

run; 

  

proc copula data=misData; 

  var &ccVarList; 

  fit normal / marginals=empirical outpseudo=unif_ic noprint; 

run; 

  

data unif_cc_star; 

  set unif_cc; 

  Flag = 'X'; 

run; 
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data unif_ic_star(where=(Flag='.')); 

  merge unif_ic misData(keep=Flag); 

run; 

 

Step 3: Combine two datasets unif_cc_star and unif_ic_star and transform each of 

uniformly distributed column data to standard normal by using quantile function. 

data unif_u; 

  set unif_cc_star unif_ic_star; 

run; 

 

data std_norm; 

  set unif_u; 

  if Flag='X' then y = quantile("Normal", y); 

  x1 = quantile("Normal", x1); 

  x2 = quantile("Normal", x2); 

  x3 = quantile("Normal", x3); 

run; 

 

Step 4: Apply the desired multiple imputation method on the dataset std_norm. MCMC 

method is selected as an example in the code given below. 

 
proc mi data=std_norm nimpute=5 out=mi_std_norm seed=1234 noprint; 

  mcmc; 

  var &misVar &ccVarList; 

run; 

 

Step 5: Note that the imputed values in above dataset mi_std_norm are still in standard 

normal scale. The last step is to back-transform the filled-in data to original scale according 

to the copula. This process involves two steps: 

 

(a) Simulate a large number (e.g., NSIM=10,000) of observations from multivariate uniform 

distribution corresponding to our copula and convert those simulated observations to the 

data on variables in original data scale and to the data on variables with standard normal 

distribution, respectively. This can be readily simulated by using FIT and SIMULATE 

statements in PROC COPULA. The FIT statement setting must be the same as we set in Step 

1 & 2 since we back-transform the data according to the same copula. The output dataset 

sim_org contains the simulated observations in original scale and sim_unif consists of the 

simulated observations distributed as multivariate uniform distribution. The dataset 

sim_std_norm is the converted data where each variable is distributed as standard normal. 

 
%let NSIM=10000; 

 

proc copula data=misdata(where=(Flag='X')); 

  var &misVar &ccVarList; 

  fit normal / marginals=empirical noprint; 

  simulate /ndraws = &NSIM seed = 1234567 

  out = sim_org outuniform=sim_unif; 

run; 

 

data sim_std_norm; 

  set sim_unif; 

  sy = quantile("Normal", y); 

  sx1 = quantile("Normal", x1); 
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  sx2 = quantile("Normal", x2); 

  sx3 = quantile("Normal", x3); 

  keep sy sx1 sx2 sx3; 

run; 

 

(b) Obtain the imputed values in original data scale by interpolation from above simulated 

observations in data sets sim_org and sim_std_norm. Denote the imputed value in Step 4 

by 𝑦�̂� , which is in standard normal scale. If 𝑦�̂� is sandwiched between two values 𝑠𝑦𝑡 and 

𝑠𝑦𝑡+1 in dataset sim_std_norm, then we predict 𝑦𝑘 in its original scale by averaging, in 

general, by interpolating values corresponding to 𝑠𝑦𝑡 and 𝑠𝑦𝑡+1 in dataset sim_org. In the 

resulting dataset impt_org_scale, the variable ry with MIS='Y' are the imputed values in 

original scale. 

 
data sim_org; 

  set sim_org; 

  keep y; 

  rename y=ry; 

run; 

 

data sim_std_norm(keep=sy); 

  set sim_std_norm; 

run; 

 

proc sort data=sim_std_norm; by sy; run; 

 

proc sort data=sim_org; by ry; run; 

 

data sim_org_std; 

  merge sim_std_norm sim_org; 

run; 

 

/* filter the imputed values in variable y*/ 

data impt_std_norm; 

  set mi_std_norm(where=(Flag='.')); 

  keep y; 

  rename y=sy; 

run; 

 

data impt_sim_comb; 

  set impt_std_norm sim_org_std; 

run; 

 

proc sort data=impt_sim_comb; by sy; run; 

 

data impt_org_scale;                                                  

  merge impt_sim_comb impt_sim_comb(keep=ry firstobs=2 

rename=(ry=lead_mis));      

  lag_mis=lag(ry);        

  if ry=. then do; 

  ry=mean(lag_mis, lead_mis);  

  MIS='Y'; 

  end; 

run; 
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AN ILLUSTRATION VIA SIMULATED DATA SETS 

COMPLETE DATA GENERATION AND MISSINGNESS MECHANISM 

Using the Iman-Conover method given by Wicklin (2013), we generate data sets from the 

following two multivariate distributions, where marginals of components are as specified in 

Table 1, 

Group 𝑋1 𝑋2 𝑋3 𝑋4 

1 Log-normal (0, 𝜎) Pareto (1,1) Normal (0,1) Uniform (0,1) 

2 Log-normal (0, 𝜎) Normal (0,1) Exponential (1) Uniform (0,1) 

Table 1. Marginal distributions of simulated data sets 

where 𝜎 was set as 1.0, 2.0 and 3.0. In each case, the following correlation structure was 

used, 

Corr = [

1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ 1 ρ
ρ ρ ρ 1

] 

where ρ was set as 0.9. 

Missing values are assumed to be missing completely at random (MCAR).  

 

EVALUATION OF OUR IMPUTATION METHOD 

We select 𝑋1 as the variate with missing values. The sample size is taken as 100 and the 

number of missing cases as 5. To evaluate the quality of imputation, we simulate each 

scenario NSIM=1,000 times and use 𝑘 imputation(s). Then we compute the mean of the 

sum of squared residuals by 

MSSR =
1

NSIM
∑ ∑ ∑ (𝑋1𝑖

impt(𝑚)
− 𝑋1𝑖

𝑡𝑟𝑢𝑒)
2
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𝑖=1

𝑘

𝑚=1

NSIM

, 

where 𝑋1𝑖
impt(𝑚)

 is the 𝑚-th imputed value for the 𝑖-th missing value 𝑋1𝑖 and 𝑋1𝑖
𝑡𝑟𝑢𝑒 is the true 

observed value of 𝑋1𝑖. 

 

MULTIPLE IMPUTATION METHODS 

We select FCS regression (Van Buuren 2007) and MCMC (Schafer 1997) multiple imputation 

methods for multiple imputation. The general idea of FCS regression is to generate 𝑘 sets of 

predicted values based on regression model, which involves filled-in phase and imputation 

phrase. MCMC method is used to generate 𝑘 sets of predicted values according to the 

posterior distributions in Bayesian inference. Both methods require the assumption that the 

data are from a multivariate normal distribution. In our illustration, we choose 𝑘 = 5.  

 

SIMULATION RESULT 

Table 2 and Table 3 give sample summaries using FCS and MCMC methods for original and 

copula-transformed data. The column Ratio (O/C) is the ratio of the MSSR values of above 

to respective data. The larger Ratio (O/C) indicates the better performance of copula 
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transformation. The column %SSR (O>C) is the percent of times our approach results in 

smaller sum of squared residuals. Accordingly, the larger percentage value indicates 

superior performance of our transformation approach. The following results show that our 

approach performs substantially better than the case when multivariate normality of the 

data was blindly assumed. A more detailed extensive simulation work, not reported here 

due to lack of space, confirms to the above observations. 

 

Method 𝝈 MSSR %SSR 

(O>C) Original 

(Assumed multi-

normality) 

Copula-

transformed 

Ratio 

(O/C) 

FCS 

Regression 

1.0 1,373.60 51.55 26.65 87.9% 

2.0 260,022.58 28,639.43 9.08 89.2% 

3.0 113,277,135.61 37,978,413.33 2.98 90.0% 

MCMC 1.0 450.31 47.32 9.51 80.5% 

2.0 131,115.16 21,115.43 6.21 83.9% 

3.0 67,349,495.85 13,494,377.60 4.99 85.5% 

Table 2 Comparison between original data and copula-transformed data using 

multiple imputation (𝒌 =  𝟓) for Group 1 with correlation choosing 𝝆 =  𝟎. 𝟗 

 

Method 𝝈 MSSR %SSR 

(O>C) Original 

(Assumed multi-

normality) 

Copula-

transformed 

Ratio 

(O/C) 

FCS 

Regression 

1.0 84.70 53.40 1.59 86.4% 

2.0 50,264.93 30,896.51 1.63 90.3% 

3.0 75,184,163.76 42,523,936.26 1.77 90.8% 

MCMC 1.0 65.26 48.47 1.34 81.2% 

2.0 35,414.91 25,431.77 1.39 84.3% 

3.0 44,235,290.84 29,549,312.57 1.50 85.5% 

Table 3 Comparison between original data and copula-transformed data using 

multiple imputation (𝒌 =  𝟓) for Group 2 with correlation choosing 𝝆 =  𝟎. 𝟗 

 

CONCLUSION 

We have introduced a very powerful approach based on copula transformation to impute the 

missing values for general skewed multivariate data. We provide the algorithm and its 

implementation for one-variate missing pattern. Algorithm can be readily modified for 𝑘-

variate (𝑘 > 1) missing patterns. In view of ready accessibility of MI and COPULA 

procedures, this approach has a very wide scope for practical applications. A complete 
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program combining all the procedures pieces is given as the supplementary material. An 

execution of our program results in imputed values (column rx1 in bold) shown in Table 4 

for five missing values. 

 

Obs _Imputation_ sx1 sx2 sx3 sx4 Flag Sr rx1 MIS 

1 1 -0.71624 -0.88485 -0.62092 -0.39469 . 1 0.61905 Y 

2 1 -1.15206 -1.28721 -1.48097 -2.33008 . 2 0.42109 Y 

3 1 -0.41595 -0.71397 -0.11191 -0.47658 . 3 0.92597 Y 

4 1 0.37430 0.56179 0.65130 -0.11191 . 4 1.78136 Y 

5 1 0.20480 0.21254 0.26361 0.16202 . 5 1.38008 Y 

Table 4 The first five output (the imputed values are in column rx1 in bold) of 

execution of sample code in supplementary material 
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