
1

Paper 3604-2019

Lightweight SAS® Web Services

Alan Churchill, Savian, LLC
Don Henderson, Henderson Consulting Services, LLC

ABSTRACT

Web services have become very popular over the last decade as enterprises face a need to integrate

disparate systems. Additionally, new web server engines and database integration options have arrived

that ease that system integration challenge. This paper will illustrate how a lightweight service

infrastructure can be put in place that simplifies the process of getting data into and out of SAS® and

serving up the output of SAS programs in a very stream-lined fashion. Web services do not need large

stacks of software or complex hardware systems to be effective.

INTRODUCTION

Most traditional IT shops doing web services for ETL, modeling, reporting, etc. use a large middleware

component to manage the web services and stored process layers. These are Java libraries that integrate

with the SAS metadata to determine security, what is available and libraries. Many web services do not

need that level of complexity, power, or different components to manage that functionality. For example,

simple folder structure security can be handled via groups in a typical Active Directory (AD) world (or LDAP for

other variants). Libnames can be managed via macros or direct reference in the SAS code.

Web services do not need to be complex. This paper will illustrate that by using Web API, ORM (Object-

Relational Mapping), and a simple directory structure holding SAS code, web services can be delivered with

minimal deployment effort on the part of the SAS programmers, and minimal effort on the part of the web

services developer.

PROCESSING FLOW

1. A call to a REST (Representational State Transfer)-based web service is made.
2. The business web service backing code binds the JSON (JavaScript Object Notation)) data directly

to the database tables
3. The business web service calls the SAS web service
4. The SAS web service gets an instance of SAS from the queue and executes the SAS code
5. The SAS code reads in the data from step 2 tables, does whatever transformations are needed,

and then writes it back to the database

2

6. When sas.exe process ends, the business web service returns the response object back to the
calling application.

ASP.NET Core and Web APIs (Business/SAS web services)

Overview

ASP.NET Core MVC is a web framework that provides a powerful, patterns-based way to build dynamic websites
and web APIs. ASP.NET Core MVC enables a clean separation of concerns and full control over markup.1

Why Use it

Traditionally, ASP.NET has used IIS. IIS is a legacy system that has matured over time but has also lagged.
Many things that IIS handles are no longer valid in the modern web era and many things the web does today
were just bolted on in IIS. One description of IIS was ‘the developers are so afraid of touching it that they don’t’.
ASP.NET Core starts with a very lightweight web server called Kestrel. It is initialized by a Windows service (as
an example) and runs in the background passing information into the web services.

ASP.NET Core can still use IIS but the preference is to use Kestrel.

Web APIs

The Web APIs are a mix of controllers and actions that expose web services. Think of the APIs as verbs that
dictate what actions can be done with the system. A JSON packet coming into one of the services is an object
upon which an action can occur. In return, the APIs return objects (in most cases) that reflect that action. As an
example:

Here is an example, in C#, for a very simple API. This is an endpoint as can be seen in the Route below:

[HttpGet]
[Route("v1/Admin/GetMachineName")]
public ActionResult<string> GetMachineName()
{
 return Ok(Environment.MachineName);

 }

GetMachineName returns the machine’s id.

This is another example showing the binding of the incoming payload to the database (see ORM below):

ShoeStore Record ➔ AddToDataBase ➔ return SthoeStoreId on new record  Note, the id allows us to link the

request with the response

[HttpPost("v1/shoestore/create")]
public IActionResult Create(ShoeStore shoeStore)
{
 db.Add(shoeStore);
 db.SaveChanges();
 return Accepted();

 }

3

OBJECT RELATIONAL MAPPING (ORM)

OVERVIEW

Object-Relational Mapping (ORM) in computer science is a programming technique for converting data
between incompatible type systems using object-oriented programming languages. This creates, in effect, a
"virtual object database" that can be used from within the programming language. 2

The objects represent the code (C#) which defines the web services. The relational parts are the tables in
the database that hold those objects. The mapping between the objects and the relational elements are
automatic and represent a contract between the 2 sides. When a new object is defined and saved to the
database, the two are matched. Because it is a contract, the 2 sides must always match in type and name.
As an example, here is sashelp.shoes expressed as a table in a database (a SQL definition) as well as the
corresponding object (the actual data table):

SQL Definition in table shoes

SQL Table

Classes in C#

1. Define a collection of objects (shoes)

public class ShoeCompanyClass
{
 public List<ShoeStore> ShoeStores { get; set; }
}

4

2. Define a ShoeStore object:

public class ShoeStore
{
 public int Id { get; set; }
 public string Region { get; set; }
 public string Product { get; set; }
 public string Subsidiary { get; set; }
 public double? Stores { get; set; }
 public double? Sales { get; set; }
 public double? Inventory { get; set; }

 public double? Returns { get; set; }
}

Adding to Database

Now that the structures are set up, we can do a databind and work with the data:

using (var db = new DbContext())  Note: The name of the context is arbitrary
{
 var shoeStores = new ShoeCompanyClass();
 shoeStores.Add(new ShoeStore() {Region = “United States”, Product=”Boot”,….};
 shoeStores.Add(new ShoeStore() { Region = “United States”, Product=”Slipper”,….};
 …add more…
 db.ShoeStores.Add(shoeStores);
}

Note: An ORM can do full CRUD (Create, Read, Update, Delete) operations and not just adds/creates.

ENTITY FRAMEWORK CORE

The ORM that is being used in our examples is Entity Framework Core which is maintained by Microsoft

and is available for free on NuGet.

The SAS Glue

.NET Queue

The SAS services code maintains a queue provided by .NET. This queue is started when the SAS services are
initialized, normally when Windows starts since they are typically installed as a Windows service. This queue has
a number, say 5, that tells it how many instances of sas.exe to start. As calls come into the services, the queue
delivers one of these instances and executes the SAS code. Why is this done? It prevents the startup cost of
SAS by Integration Technologies (see beow). This makes the SAS system execute almost instantaneously. Once
the SAS code is completed, the instance is cleared of any work-related items and placed back into the queue.
The number of instances of SAS running is a variable and is determined by the admin according to anticipated
load and simultaneous calls.

Memory is not a limiting factor; the number of instances of SAS that can be running simultaneously on a server is
very high (hundreds) for a modern system.

5

SAS INTEGRATION TECHNOLOGIES

SAS Integration Technologies (SAS/IT) is the mechanism that allows the web services code in .NET to use

SAS on the backend. Behind the scenes, SAS/IT relies on a COM object to work with SAS on Windows. For

this demo, the server is local so SAS/IT can be called using the local instance of SAS. These dlls support the

SAS IOM data provider which is “an OLE DB data provider that supports access to SAS data sets that are

managed by SAS Integrated Object Model (IOM) servers.” 3

Interop.SAS.dll

Interop.SASIOMCommon.dll

Interop.SASWorkspaceManager.dll

This object, the Workspace Manager, can be called via C#. This example will run the SAS code defined in the

first line (sasCode of type string) and then extract the log information:

 var sasCode = “data test; set sashelp.class”; run;”

SAS.Workspace ws = null;

var lang = ws.LanguageService;  Creates a language service to submit SAS code

lang.LineSeparator = "\r\n";  Lines in the log will be separated by CRLF

lang.ResetLogLineNumbers();  Reset the line numbers back to starting at 1

Common.Log($"Execute SAS code");

lang.Submit(sasCode);  Submit the SAS code defined in the string

Array carriage, lineTypes, lines;

var cc = new SAS.LanguageServiceCarriageControl();

var lt = new SAS.LanguageServiceLineType();

lang.FlushLogLines(1000, out carriage, out lineTypes, out lines);  Get 1000 lines of the log

 lang.Reset();  Reset the language service

Once that runs, the variable ‘lines’ will contain the log for SAS.

BASE SAS AND SAS ACCESS FOR ODBC

The final part of the solution is the movement of the data to and from the database. For this, the solution links the
database to the SAS code using an Access engine. The ODBC access engine is very flexible and can connect to
any major database source. Since the systems are web services, the need for specialized Access engines should
be minimal but any Access engine should work. The need is to read and write to a database.

In SAS, the data written to the database by the ORM side is read in by SAS. This is the request (records) for
services:

Read the data stored by the web service

libname MyData ODBC NOPROMPT="server=xxxx;driver=ODBC Driver 13 for SQL Server;
uid=MyUsedId;pwd=MyPwd;Database=SasData;" STRINGDATES=NO
IGNORE_READ_ONLY_COLUMNS=YES SCHEMA=DBO;

data dsShoes;
 set MyData.shoeRequest;
….
run;

…do analysis and transformations…

Once processing completes, the response data also needs to be written to the database so that the ORM can
pick it up for the response back to the calling application.

6

Write the data back to the database

%macro AddRecordsToDb(table=,ds=);
 proc append base=MyData.&table. (drop=id) data=&ds. force;
 run;
%mend AddRecordsToDb;

%AddRecordsToDb(table=shoesResponse,ds=dsShoes);

Return Objects

Once the sas.exe ends and returns to the queue, the system then knows that the call to SAS services is at an
end. The data is read back from the database by the ORM and a response is sent back to the calling application.

The response object is defined as:

The columns that are numeric, in our example, would be totals based upon the initial query. So, if the
shoesRequest was limited to region and product, the response back would be the sum of the numerics specified
here. Notice that the Subsidiary column is missing in the response since the values are aggregated to rge Region
and Product level.

The response object will be sent back to the calling app in a JSON format.

7

CONCLUSION

The world of IT is moving to smaller, more nimble systems. In the past, there were large, monolithic

applications that came full-featured even if the application need was light. Today, developers can install

only what is needed to power the business application. Additionally, newer technologies such as ORM

allow developers to ignore the CRUD operations normally associated with databases and concentrate on

the business logic.

An application developer does not need to worry about the SQL commands needed to maintain one or

more databases. The ORM handles it and, using SAS/integration Technologies, SAS jobs can be

incorporated into the overall flow allowing SAS to interact with the services layer. SAS Access can then be

used to handle the database reads/writes.

REFERENCES

1 https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc/
2 https://en.wikipedia.org/wiki/Object-relational_mapping
3http://support.sas.com/rnd/itech/doc9/dev_guide/dist-obj/winclnt/ext_iom_intro.html
RECOMMENDED READING

• Entity Framework

https://docs.microsoft.com/en-us/ef/ef6/index

• ORM

https://en.wikipedia.org/wiki/Object-relational_mapping

• Kestrel
https://www.tektutorialshub.com/asp-net-core/asp-net-core-kestrel-web-server/

• SAS Integration Technologies and .NET

https://support.sas.com/rnd/itech/doc9/dev_guide/dist-obj/winclnt/windotnet.html

SUGGESTED SOFTWARE (except for SAS, install using nuget)

• ASP.NET Core

• Entity Framework Core

• SAS/Access to ODBC

• SAS/Integration Technologies

• Swashbuckle ASP.NET Core

• Serilog
o Files Sink

o Console Sink

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Alan Churchill, Savian, LLC

alan.churchill@savian.net

Don Henderson, HCSBI

don.henderson@hcsbi.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of

SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

https://www.nuget.org/packages/Microsoft.AspNetCore.Mvc/
https://en.wikipedia.org/wiki/Object-relational_mapping
mailto:alan.churchill@savian.net
mailto:don.henderson@hcsbi.com

