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ABSTRACT  
This session is designed for data scientists looking to develop custom production analytics 
solutions backed by SAS® analytic capabilities. First, we will describe an interactive 
exploration and discovery environment based on the SAS® Viya™/ SAS® Cloud Analytic 
Services (CAS) architectural foundation. Next, using cybersecurity as an example, we will 
demonstrate how SAS analytics can be implemented in Python in a production 
implementation of the environment. 

INTRODUCTION  
We demonstrate two analytics environments developed for the SAS® Cybersecurity solution 
that combines SAS and open source tools. The first, an exploration and discovery 
environment, supports investigation of data and hypothesis testing. Insights gained on 
static data in this environment can then be implemented in a production environment that 
supports analytic calculations on streaming data. The results of these calculations feed an 
alerting system that highlights anomalous events found in the streaming data. Using these 
environments, data scientists implement SAS analytics in Python. Though designed for 
cybersecurity, the core environment is extensible to other analytic scenarios. 

The environment’s foundation is built with SAS® Viya. A custom Python module implements 
78 predefined cybersecurity analytics that orchestrate SAS® Cloud Analytic Services (CAS) 
via the SAS developed, open source python-swat module. Analytics are easily tuned and 
configured using JSON formatted support files. A data scientist can create custom analytics 
with the same Python framework that implements the preconfigured analytics.  

Alongside this paper, we share a sample version of the python module that readers can use 
as a base to develop their own analytics that run in CAS. The provided sample builds a 
Docker container that delivers the python module, SAS python-swat, sample Jupyter 
notebooks, and a sample dataset of Windows Host Events from the Los Alamos National 
Laboratory Unified Host and Network datasets. 

We chose the language, tools, and architecture presented here specifically for the quality, 
popularity, and ease of use they provide. SAS Viya provides world class in-memory 
analytics; Python is popular among data scientists and easily scales to enterprise 
deployments; and Jupyter is a standard, accepted environment for prototyping data science 
solutions. Our Python module simplifies interaction with CAS by abstracting connection, 
management, and analytic details one level higher from the SWAT framework. The 
abstraction allows the module to operate in a production environment and perform 
calculations in response to data availability, instead of in response to a user-driven request. 
The use cases for such an analytic architecture range from instructional delivery in 
education through production data science solutions. The SAS Viya / Python / Jupyter 
combination demonstrated here is an exciting option for data scientists looking to develop 
custom solutions backed by SAS analytics. 
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DEVELOPMENT ENVIRONMENT CONFIGURATION AND SETUP 
To facilitate easier development, a simplified, containerized version of the analytics 
environment referenced throughout this paper is found in the SAS Global Forum 2019 
Github repository located at: 

https://github.com/sascommunities/sas-global-forum-2019 

All code related to this paper is located in the 3601-2019-Herrick folder: 

https://github.com/sascommunities/sas-global-forum-2019/tree/master/3601-2019-Herrick 

Follow the steps below to replicate the environment on your local machine. The instructions 
assume you have access to both a SAS Cloud Analytic Services installation and a terminal 
emulator on your local computer. All shell scripts provided are written in bash. In MacOS or 
Linux, this is easily accessible using the terminal shell bundled with the operating system. 
In Windows, you should use a terminal emulator such as MobaXTerm, and run a bash shell. 

1. Install Docker on your local system. The Docker binaries and installation instructions 
for your specific OS are located at: https://www.docker.com/products/docker-
desktop 

2. Identify the remote CAS server you plan to connect to from your Docker container. 
Make a note of the hostname for later use. 

3. Create a .authinfo file with the host, port (5570), username, and encrypted 
password. Make sure the file has the proper permissions by running chmod 600 
.authinfo 

4. Place it in the 3601-2019-Herrick/security/ directory. 

5. While logged into your CAS server, locate the cascert.pem (this should be in the 
CAS user’s home directory), and the certificate located at  
/opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts/vault-
deployTarget-ca.crt. Copy both of these files from the remote CAS server to the 
3601-2019-Herrick/security/ directory on your computer. 

6. Once you’ve copied the security files to right location in the repository, everything is 
in place to build the two containers. The containers are hierarchical – 
centos/jupyter derives from centos/base. They provided this way to avoid a full 
rebuild and compilation from source of Python and Sqlite each time the Jupyter 
container is modified. 

a. Navigate to the root of our repository. 

b. Build the base container by running the script ./build_base.sh. The base 
container builds from a CentOS 7 base image hosted at the Docker Hub. It 
uses the yum package manager to install and update the packages needed by 
SAS Cybersecurity. The build process also downloads Python 3.7.2 and Sqlite, 
then compiles both tools with the required settings for the SAS Cybersecurity 
solution. 

c. Following completion of the base container build process, build the Jupyter 
container similarly by running the script ./build_jupyter.sh. The Jupyter 
container installs the specific items needed to run the analytic environments 
needed for this session. Specifically, it: 

i. installs the security certificates and settings needed to connect to CAS. 
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ii. Installs all Python packages needed to run a Jupyter server, SWAT, 
and cybersecurity code. 

iii. Creates necessary users and assign privileges. 

iv. Starts the Jupyter server. 

 

Running the container requires that you map four additional directories – /notebooks/, 
/datasets/, /logs/, and /custom/ – from your local system to the container. These 
directories mount as Docker volumes. Mounting them this way allows modification of their 
contents without rebuilding the container, and insures that changes persist after the 
container is shut down. Sample directories are provided in the Github repository and should 
be used if you are following along with this paper. Those directories are located in:  

• 3601-2019-Herrick/notebooks/ 

• 3601-2019-Herrick/data/ 

• 3601-2019-Herrick/logs/ 

• 3601-2019-Herrick/custom/  

If you choose to use your own notebooks and data directories, make sure they are 
subfolders of a single common directory. 

After the Jupyter container is built, launch the container with the following command: 
./run_container.sh /full/path/to/your/repo/3601-2019-Herrick jupyter 

The run_container.sh script automatically mounts the four directories mentioned above: 

FOLDER=$1 
IMAGE=$2 
 
CONTAINER=`docker run -d --rm -p 8888:8888 \ 
           -v $FOLDER/notebooks/:/home/ds/notebooks \ 
           -v $FOLDER/data/:/home/ds/datasets \ 
           -v $FOLDER/logs/:/home/ds/logs \ 
           -v $FOLDER/custom/:/home/ds/custom \ 
           centos-ds/$IMAGE` 
echo $CONTAINER 

 

If the container successfully opens, its identifier prints in the terminal. The identifier is a 
GUID and should appear similar to: 
8d5e34128ef87decfd8fe315b145fd7f97a9f22626c68512b56fccfbec6822f3.  

Open a new browser tab or window and navigate to: http://localhost:8888. The Jupyter 
server homepage loads and shows all notebooks in the corresponding local directory 
mapped to the container. Clicking on any of them opens a Jupyter notebook in a new 
browser tab. 

Test the connection to your CAS server using the 00_DisplayActionSets.ipynb notebook. 
Enter the name of your server in the statement conn = swat.CAS("<hostname-for-CAS-
server>", 5570) in the third cell. Execute the cells in order from top to bottom; if all of the 
security certificates were copied to the container properly, the container will connect to CAS 
and the remaining cells will display metadata information about your CAS server. Display 1 
shows the CASLIBs available in the CAS server used for this paper. Display 2 shows the 
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actionsets loaded in the cybersecurity CAS server at the start of this demonstration. 
Additionally, the sample notebook has the following calls for information about the server: 

• Server status: conn.builtins.serverstatus() 

• License information: conn.builtins.getlicenseinfo() 

• Available nodes: conn.builtins.listnodes() 

• Current sessions: conn.listsessions() 

 
Display 1: Available CASLIBS on the cybersecurity research CAS server. 

 
Display 2: Loaded actionsets available in the CAS server at runtime. Unloaded actionsets can be 
listed similarly by referencing the asinfoUnloaded variable. 
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LOS ALAMOS UNIFIED HOST AND NETWORK DATASET 
The example data provided for this paper is a small subset of Windows Host Events taken 
from the Los Alamos National Laboratory Host and Network Dataset (Turcotte, Kent, and 
Hash). The complete dataset contains approximately 90 days of enterprise network traffic 
collected from the internal network at the Los Alamos National Laboratory (LANL). Two data 
sources - Netflow and Windows Host Events - are provided by Los Alamos. We use the 
Windows Host Events dataset as the source for our examples in this paper.  

Detailed data descriptions of all fields in these datasets is beyond the scope of this paper. 
Refer to Turcotte, Kent, and Hash for full descriptions of the datasets. 

Los Alamos provides individual files as bzip2 compressed full-day captures for each of the 
90 days. Windows Host Events files decompress into JSON files whose size ranges between 
10 and 15GB, each containing approximately 65 million lines of data. Netflow files 
decompress into CSV formatted files and have fewer columns than the Host Event files. 
They are smaller than the Host Event files – full day files range between 5 and 8 GB, but 
capture many more lines of data – approximately 115 million lines. 

SAS Cybersecurity expects data in CSV format, and processes files hourly. In order to 
conform to that standard, the full-day LANL files are pre-processed and output as individual 
hourly CSV files. The pre-processing workflow is as follows: 

1. Download a single day from the remote Host Events or Netflow repository. 

2. Decompress into either JSON or CSV. 

3. Load the full file into a Pandas dataframe. 

4. Extract each hour from the timestamps provided. 

5. Write each hour as a CSV file in an “hours” subdirectory. 

Due to the size of the individual day files, they are not provided in the Github repository. 
Instead we provide a single Windows Host Events hourly file in the /datasets/ directory. 
The file provides the source data for the examples in this paper. 

SAS CYBERSECURITY OVERVIEW 
The most recent version of SAS Cybersecurity provides a much more flexible and scalable 
architecture than earlier releases. Thanks to a modular architecture, individual portions of 
the solution can be installed and updated without affecting the entire installation. This 
design introduces a key advantage – the ability to add new or improved analytics without 
reinstalling the entire stack. Additionally, SAS Cybersecurity is built entirely on the SAS Viya 
architecture. Both SAS Cloud Analytics Services (CAS) and SAS Event Stream Processing 
are key components of the analytics and data ingest tiers. 

SAS Cybersecurity’s analytics tier is diagrammed in Figure 1. This tier represents a 
production installation. In this setting, all analytics are pre-built and calculated when data 
arrives from an ingest pipeline. Several individual services work together to calculate 
analytics and deliver results to the client tier. An Analytics Manager monitors the 
environment, and when new data arrives at the head of the tier, fires a trigger that kicks off 
an analytic processing job (represented by the DAG section in Figure 1). Analytics 
calculation takes place in CAS, and results are persisted to disk. An Analytics Publisher 
transforms and augments the results, then pushes the finalized analytic events to the Client 
Tier of the solution. 
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Figure 1: SAS Cybersecurity analytics tier architecture. 

  

To support development of new analytics in a customer setting, a separate exploration 
and discovery environment can be installed. The exploration and discovery environment is 
diagrammed in Figure 2; the Docker container provided in the associated Github repository 
is a simplified version of the solution offered to SAS Cybersecurity customers.  

 
Figure 2: SAS Cybersecurity Analytics Exploration and Discovery architecture. 
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DESIGN CONSIDERATIONS FOR THE SAS CYBERSECURITY PYTHON CLIENT 
The newest version of SAS® Cybersecurity 3.1 incorporates several important advances 
from earlier versions: 

1. Its architecture is designed to be completely modular, facilitating easy updates of 
any single portion of the solution without a full reinstall. 

2. It relies fully on SAS® Viya, using SAS® Cloud Analytic Services (CAS) to calculate 
cybersecurity analytics, and SAS® Event Stream Processing (ESP) to handle ingest, 
enrichment, and delivery of streaming data to the analytics tier. 

3. The analytics tier (the focus of this paper) was completely redesigned and rewritten 
in Python.  

The design decision to use CAS instead of SAS® LASR™ Analytic Server opened exciting 
new options for analytics development. Specifically, CAS provides APIs accessible through 
multiple languages. This functionality allowed the team to factor in a wider range of 
considerations and requirements when developing the architecture. Feedback from prior 
proof-of-concept (POC) engagements provided significant input during the design phase. 
Specifically, even though most target customers were already SAS customers, most security 
teams (and their data scientists) often were not SAS users. In fact, the practice of 
cybersecurity data science is rapidly maturing. Most data scientists expressed familiarity 
with R and Python, and expressed the desire to use one of those languages for model 
development and testing. Instead of forcing data scientists to learn a new language, Viya’s 
open architecture allows us to easily meet this customer need. 

SAS Cybersecurity 3.1 also supports more data sources in a standard install than earlier 
versions supported. More data sources imply a need for more analytics. Cyber Analytics 
Research and Development also identified multiple new analytic techniques that are 
included in this version. Between the additional data sources and new analytic techniques, 
this solution delivers 78 individual analytics in a standard install – up from 22 in prior 
versions. 

These high-level design considerations led the team to develop a Python architecture that is 
lightweight, modular, and supports the development of new analytics – both through the 
standard development process as well as custom, field-developed analytics. Analytics are 
dynamically loaded at run time, which keeps the memory load of individual processes lighter 
than if all analytics were loaded. 

The analytics tier runs in production with both a dynamic configuration model and a custom 
designed workflow manager. This architecture allows multiple analytics to run in parallel, 
meeting the requirement that all analytics complete calculation inside of a 60-minute 
window. 

“Flexible analytics” was a primary design goal of the analytics tier of SAS Cybersecurity. In 
order to achieve this, the team decided to deliver analytics through a class module that 
wrapped the behavior of the SAS-delivered python-swat module. Python-swat provides full 
interaction with CAS, including session management, access to all actionsets licensed to the 
user, and data transfer and management. While powerful, there is also a learning curve 
associated with it. 

Additionally, SAS Cybersecurity supports pre-built analytics that are ready to run as soon as 
ingested data begins streaming. Bundling those analytics into a higher-level module 
facilitates easier installation and troubleshooting. 

Providing pre-built analytics and encapsulating python-swat function in a single module met 
most of the flexible analytics design requirements. In order to fully support flexible 
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analytics, the module supports custom built analytics – cybersecurity analytics that are 
developed and deployed by customers or the SAS services team outside the standard 
development process. Python’s support for dynamic class loading at run time allowed us to 
meet this requirement. 

CLASS HIERARCHY 
All analytics used by the SAS Cybersecurity Python Analytics Module derive from the 
CasAnalytic class. This class manages the connection and interaction with the CAS server. 
Several support classes derive from the CasAnalytic class; they facilitate easier interaction 
for specific repetitive tasks required by the Analytics tier in production. Finally, general 
analytic categories derive from the CasAnalytic class – such as the DstAnalytic shown in 
Figure 3. Specific analytics from that family then derive from this class. 

The class hierarchy removes much of the challenge of interacting with CAS – connecting, 
session management, and actionset loading. It also insures that new data formats are 
output in the proper fashion for downstream processing by the Analytics Publisher and the 
Client tier. The extensive utility provided by these classes allows independent developers to 
build their own custom analytics classes, focus on the individual calculations required by 
their analytic, and then integrate with the production user interface. 

 
Figure 3: A simplified view of the class hierarchy that supports SAS Cybersecurity analytics. 
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IDENTIFYING FAILED LOGIN ATTEMPTS BY INDIVIDUAL USERS 
To better understand the relationship between the two environments, the remainder of this 
paper discusses how to test a hypothesis in the exploration and discovery environment, 
then implement the same analytic as a production analytic under the sascyber module. 

The provided sample data in the file /home/ds/datasets/WH/wls-day_02_hr13.csv 
consists of one hour of Windows Host Events data. The Jupyter notebook 
01_WindowsHostExploratoryAddToCAS.ipynb describes: 

• How to import the data into CAS 

• How to conduct simple exploratory analysis 

• How to persist the CASTable in the .sashdat format. Taking this step simplifies 
loading the table into memory during future CAS sessions. 

After loading the data into CAS, we determine the number of records in this dataset by 
simply calling len(hostData). In our case, the provided hour contains 354,758 events. 

Table 1 shows a summary of the columns in our data, with the number of distinct values as 
well as the number of missing values. Note that most fields are missing a significant amount 
of data, but the EventID field is complete, and only 14 values are missing in the UserName 
field. 

Column Name Distinct Missing 
AuthenticationPackage 6 232,670 
Destination 321 349,487 
DomainName 82 14 
EventID 18 0 
FailureReason 7 353,231 
LogHost 9,408 0 
LogonID 198,999 49,030 
LogonType 11 177,367 
LogonTypeDescription 11 177,367 
ParentProcessID 4,762 262,043 
ParentProcessName 454 262,043 
ProcessID 9,219 251,247 
ProcessName 928 251,247 
ServiceName 1,506 342,347 
Source 9,547 237,860 
Status 7 306,641 
SubjectDomainName 23 349,256 
SubjectLogonID 369 349,440 
SubjectUserName 1,390 349,256 
Time 3,600 0 
UserName 17,981 14 
occurredTime 3,600 0 

Table 1: Distinct and missing values in the Windows Host Event hour 13 dataset. 
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For the exercise provided here, we calculate a “collection” analytic. In SAS Cybersecurity, a 
collection analytic examines a group of devices or users, looking for anomalous activity in a 
predefined category. The Windows Host Event dataset used here is well-suited for such an 
analytic. 

The dataset contains many unique users and devices. Additionally, the EventID field records 
specific activities that may be of interest to a security investigator. A comprehensive list of 
Event IDs can be found at the Windows Security Log Events page (Franklin-Smith). An 
examination of event IDs on that page shows that ID 4625 indicates an account that failed 
to log on to a device. Excessive login failures in a given hour could indicate potential 
malicious activity. We will create an analytic to identify which, if any, users are continually 
triggering this event ID. 

The notebook 02_FailedLogins.ipynb demonstrates how to test the hypothesis that some 
users attempt (and fail) logins excessively in a 60-minute period. In order to test the 
hypothesis, we load our full dataset from the SASHDAT created when we imported the CSV 
into CAS. Once that’s loaded, we want to select only the records with an event ID value of 
4625. The following code performs that task: 
clause = "EventID = 4625" 
where = clause.format(table="", not_missing="Is Not Missing") 
conn.partition(table={"name": "wls_day_02_hr13", "where":where},  
               casout={"name": "WLS_DAY02_HR13_FAILED"}) 
 

The subtable generated by this code contains 1,507 records. This indicates all account 
failures that took place during hour 13. We can check the number of user names in the data 
by calling UserName.distinct() on the table; this shows that there are 142 users in our 
new dataset. 

Finally, we determine who the biggest offenders are in our dataset by using a fedsql call to 
group users by the count of failures, as shown in the following code: 
query = f"CREATE TABLE WLS_DAY02_HR13_FAILED_USERS AS SELECT UserName,             
          count(UserName) as Failures  
          FROM WLS_DAY02_HR13_FAILED GROUP BY UserName" 
conn.fedsql.execdirect(query) 
 

Figure 4 shows that three users (Comp065845$, Administrator, and AppService) account for 
the majority of failures in this hour. This data point warrants further investigation, which 
indicates that these accounts are system accounts, not associated with a specific person. 
This fact leads to an inference that the activity is not malicious, but instead is the result of a 
misconfiguration on the network. 
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Figure 4: Login failures during the hour 13 dataset. Three system accounts committed the bulk of 
the login failures during this period. 

CONVERTING TO PRODUCTION 
After confirming that some users do trigger excessive login failures in an hour, the next step 
is to translate our findings to the production analytic environment. The translation involves 
creating a new class for the analytic and a corresponding analytics configuration file with the 
filter information. The /custom/ directory in the Github repository contains the source code 
and configuration files. The class file whFailedLogins.py shows that, because we are 
building a collection analytic, the only additional work needed in code is to specify an 
analytic field name. 
from sascyber.analytics.wh.logins.Logins import Logins 
 
 
class WhFailedLogins(Logins): 
    # Default constructor 
    def __init__(self): 
        super().__init__() 
        self.set_analytic_field_name("whFailedLogins") 

Separately, the wh_analytics.json requires more configuration. Due to the length of the 
file, we refer you to the file itself. The fields that require configuration include: 

• custom_analytics_allowed 

• custom_analytics_path 

• input_caslib 

• import_options.vars 

• index_vars 

• aggregation_fields 

• comparison_fields 

• filters.EventsFailedLogins 

• tasks.ResolveEventsFailedLogins 

• tasks.WindowsHostFailedLoginsAnalytic 

The 03_FailedLoginsProduction.ipynb notebook demonstrates how to execute a 
production instance of the Failed Logins analytic. A series of environment variables are set. 
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These enable the Python module to find all relevant configuration files. After the 
configuration file is loaded and logging enabled, a DAGServer object is created. This object 
orchestrates all analytics as defined by the tasks section of the wh_analytics.json 
configuration file. Upon completion of the calculations, each user is assigned a score for the 
calculation based on how anomalous their activity is during the period represented by the 
dataset.  

CONCLUSION 
In this paper, we demonstrated how existing SAS® Viya™ solutions, open source Viya 
connection, and Python language features combine to deliver a flexible and expandable 
analytics framework. Using Windows Host Events data as an example, we conducted 
exploratory analysis, tested a hypothesis about failed logins, and used the test results to 
guide development of a production analytic that will run on streaming data and provide 
alerts to a security analyst when anomalous activity is detected. 

A simplified version of the exploration and discovery analytic environment is provided in an 
associated Github repository. The repository contains instructions on how to instantiate a 
Docker container, how to load data into CAS, how to conduct the exploratory analysis, and 
finally how to test the production analytic. We also provide a simplified version of the SAS 
Cybersecurity Python Analytic Module. 
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