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ABSTRACT  

Nonlinear mixed-effects models are models in which one or more coefficients of the model 
enter in a nonlinear manner, such as appearing in the exponent of the growth function. This 
talk is intended for users already familiar with linear mixed-effects models who are 
interested in extending their modeling options to include more complex functions. Unlike 
linear mixed-effects models for longitudinal data, nonlinear mixed-effects models enable 
researchers to apply a wide range of nonlinear growth functions to data, including multi-
phase functions. This talk reviews the syntax for the NLMIXED procedure for fitting a variety 
of nonlinear mixed-effects models. 

INTRODUCTION  

Behavioral studies can require repeated assessments of a target behavior to understand its 
developmental progression. Repeated measures reflect individual differences in the target 
response as it evolves, either according to time or to changes in experimental conditions. 
These differences may be reflected in dissimilar behavioral courses, such as those marked 
by different rates of change or differences in the timing of transition from one distinct 
developmental phase to another. Nonlinear mixed-effects models provide a flexible 
framework for the study of many kinds of complex behaviors often studied in the behavioral 
and social sciences. This paper provides an introduction to these models and presents 
examples of different types of complex patterns of change, including growth that follows 
two distinct phases of development. Syntax is provided for fitting different nonlinear growth 
models using SAS® PROC NLMIXED, a procedure that allows users to tailor a growth 
function to a particular measured response.      

NONLINEAR MIXED-EFFECTS MODELS 

Nonlinear mixed-effects models (Davidian & Giltinan, 2003) offer a general structure for 
characterizing repeated measures data. An extension of linear mixed-effects models 
developed for normally distributed response data and for which coefficients of the model are 
strictly linear, nonlinear mixed-effects models provide a means for users to specify models 
that may better describe a measured response whose pattern of change is complex.  

For example, repeated measures data for 437 patients (Lorr & Klatt, 1966) show individual 
differences in a global rating assessment of severity of illness, beginning with a baseline 
assessment (week 0) and reported on weekly thereafter for up to 6 weeks. Higher scores on 
the 7-point rating scale correspond to relatively poor functioning. The patients were 
assigned to either a treatment group in which patients received one of three psychiatric 
drugs or to a control group in which patients received a placebo. Figure 1 displays the raw 
scores for six patients, with separate plots for individuals assigned to a drug or to the 
placebo condition.  



2 

 



3 

 

Figure 1 

As shown in the displays, individual differences are apparent. For instance, among those 
receiving a therapeutic drug, many patients showed an overall improvement in ratings with 
time but at different rates, with some patients showing improvements earlier than others. 
In the control group, responses exhibit patterns that differ from those of the treatment 
group, with individual trajectories lacking the more apparent path to improvement 
illustrated by patients receiving a psychiatric drug. What is apparent with these data is that 
there is a general course in the responses of individuals within the same group, yet within 
groups, individuals differ in their response levels and rates of change.  

Nonlinear mixed-effects models are well suited to the analysis of these data. A nonlinear 
mixed-effects model is a subject-specific model in which a general growth model is assumed 
to characterize the population, but the coefficients of the growth model can be unique to the 
individual. For the illness rating data, a nonlinear mixed-effects model is specified in which a 
common growth function is assumed for all patients, but one or more of the coefficients of 
the function vary between both groups and patients within groups to evaluate important 
differences related to the treatment conditions. Thus, the model provide a meaningful way 
to parameterize differences between the treatment groups, as well as individual differences 
in aspects of the responses both within and between treatment groups. 

In a different study, participants provided four measures of salivary cortisol, a stress 
hormone, over the course of a day (Ryff & Almeida, 2017).  For many people, morning 
cortisol levels increase shortly after waking, followed by a general decreasing response level 
over the course of the day. Similar to the illness ratings, there is a similar pattern of 
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response across people, but individual differences in cortisol measures apparent, as 
illustrated in Figure 2.  

  

Figure 2 

FITTING AN EXPONENTIAL GROWTH MODEL TO ILLNESS RATINGS 

PROC NLMIXED syntax for fitting a logistic growth curve model to the illness severity ratings 
is: 

title1 'exponential growth model'; 
PROC NLMIXED; 
PARMS  
f10 = 0.97   f11 = 0.01  f20 = 0.53 
f21 = -0.2529   f30 = 0.12  f31 = 0.15 
s1 = 0.0004 
c21 = 0.009  s2 = 0.308 
se = 0.077; 
b1=f10 + f11*tx + u1;  
b2=f20 + f21*tx + u2; 
b3=f30 + f31*tx; 
pred = b2-(b2-b1)*exp(-b3*week); 
 
MODEL imps79b ~ normal(pred,se); 
RANDOM u1 u2 ~ NORMAL([0,0],[s1,c21,s2]) SUBJECT=id; 
bounds s1 s2 se >= 0;  
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FITTING A TWO-PHASE MIXED-EFFECTS MODEL TO CORTISOL MEASURES 

PROC NLMIXED syntax for fitting a linear-quadratic growth curve model to the cortisol 
measures is: 

title1 'linear-quadratic growth model'; 
proc nlmixed;  
parms  
f00 = 2.92 f10 = 0.591 
f20 = -0.21 f30 = 0.007 
tau0 = -1.53 
s2u0 = 0.19 
cu1u0 = 0.03   s2u1 = 0.13 
cu2u0 = -0.008 cu2u1 = -0.003 s2u2 = 0.001; 
s2e = .1;  
tau = 0; 
a0 = f00 + u0; 
a1 = f10 + u1; 
b1 = f20 + u2; 
b2 = f30; 
bounds s2u0 s2u1 s2u2 >0; 
if (CORTpctime <= tau) then predv = a0 + a1*CORTpctime ; 
if (CORTpctime  > tau) then predv = a0 + a1*tau + b1*(CORTpctime-tau) + 
b2*(CORTpctime*CORTpctime - tau*tau); 
model logcort ~ normal(predv,s2e); 
random u0 u1 u2 ~ normal([0,0,0],[s2u0, 
                                  cu1u0,s2u1, 
                                  cu2u0,cu2u1,s2u2]) subject=m2id;  

CONCLUSION 

Nonlinear mixed-effects models, like linear mixed-effects models, are subject-specific 
models that assume a common trajectory for the population. A growth model is specified 
that is assumed to be common to all individuals but one or more of the coefficients of the 
model are unique to the individual. SAS PROC NLMIXED allows for estimation of these 
models in which users may specify the growth function directly. This naturally includes 
nonlinear growth models where one or more of the model coefficients can enter a growth 
model in a nonlinear way. Estimation of these models is not necessarily straightforward, 
however, and so careful consideration should be made about the suitability of a given model 
in describing a set of data. Paper 332-2012, “Tips and Strategies for Mixed Modeling with 
SAS/STAT®  Procedures” offers many helpful suggestions.  

Some aspects of fitting a linear mixed-effects model for longitudinal data are not so routine 
when fitting a nonlinear mixed-effects model but are possible. For instance, Harring and 
Blozis (2014) and Blozis and Harring (2018) show how PROC NLMIXED can be used to fit 
nonlinear mixed-effects models where the level-1 residual covariance structure does not 
necessarily assume independence of the residuals with constant variance across occasions. 
They show how to fit nonlinear mixed-effects models allowing for heterogeneity of variance 
or covariances between residuals.  

Generalized linear mixed-effects models, estimated using PROC GLIMMIX, allow for a wide 
range of continuous and discrete distributions. PROC NLMIXED also includes a number of 
alternative response distributions, and so the procedure may be used to fit generalized 
nonlinear mixed-effects models.  

Finally, with increasing model complexity often comes increasing computational demands. 
Sometimes it is suggested that users rely on a first-order linearization method available in 
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PROC NLMIXED (specify method=FIRO). Although suitable in some circumstances, models 
estimated using this procedure can generate results that are consistent with a different 
statistical model, namely a structure latent curve model. Unlike a nonlinear mixed-effects 
model that is a subject-specific model, a structured latent curve model is a population-
average model, and so it has a very different interpretation (Blozis & Harring, 2016). 
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Figure 1. Severity of Illness Ratings for Treatment (upper figure) and Control 
(lower figure)  

Figure 2. Log-Cortisol Response for a Single Day 

 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or 
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA 
registration. 

Other brand and product names are trademarks of their respective companies.  

 


