
1

Paper 3573-2019

Exclusive Data Set Access in a Stored Process Web Application:

Macros for mutexes in Windows® OS

Richard A. DeVenezia

ABSTRACT

Data sets used in stored process web applications can experience access contention errors

during high frequency usage. What can you do when attempts to use SAS® features such

as the LIBNAME statement option FILELOCKWAIT=wait-time and SAS/Share libnames fail?

This paper will demonstrate how these failures can occur in Windows OS servers and how to

prevent them using system mutexes. A discussion of creating a custom dynamic link library

(DLL) to interact with the mutexes, macros to interact with the DLL and systematic macro

usage is made. These techniques are both academically interesting and useful in actual

code.

INTRODUCTION

This paper will cover several aspects of creating a stored process web application and the

scenario in which mutexes would be needed. You will gain insight on the SAS Metadata

server, the Management Console, defining stored processes, Proc STREAM, 3rd party HTML 5

user interface (UI) components, Ajax, MODULEN, C, mutexes.

MUTUAL EXCLUSION

The mutex object is the goal and there will be a lot a groundwork to cover to get to it. Some

examples of mutual exclusion:

• Probability: "Two events are mutually exclusive if they cannot both occur at the

same time."1

• Physics: "Pauli’s exclusion principle says that two identical fermions cannot be in the

same quantum state."2

• Programming: "A concurrency control property requirement that only one thread of

execution can be in a critical section at a time."3

• Mutex object: "a synchronization object whose state is set to signaled when it is not

owned by any thread, and non-signaled when it is owned. … Only one thread at a

time can own a mutex object"4

Multiple threads coordinate concurrency by opening a mutex to lock it, performing their

processing and closing the mutex to release the lock. An attempt to open an already an

open mutex places the thread in a waiting state until the mutex lock is granted or timeout

occurs. The reality checks for a SAS stored process (which is a SAS program) are as

follows:

• Mutex object is a Windows system object, accessed through a WINAPI HANDLE.

• SAS code cannot invoke operating system calls that manipulate mutex objects.

• SAS code can use MODULEN to invoke DLL routines having SAS compatible

signatures

STORED PROCESS WEB APPLICATION

2

A SAS stored process can be simply described as a SAS program that is registered in a with

SAS Metadata Server. The stored process is run from a client connected to a SAS Server.

Some examples of clients are; SAS DMS session, Enterprise Guide, SAS Add-In for Microsoft

Office, SAS Studio, custom programs written in other coding languages that connect using

interfaces accessible through SAS Integrated Technologies Integrated Object Model (IOM),

and most importantly, for this paper, the SAS Stored Process Web Application.

The SAS Stored Process Web Application is HTTP endpoint that accepts the stored process

name to be run and the parameters to be passed. The phrase "Stored Process Web

Application" stated in paper's title is to mean "a collection of stored processes whose

generated output are the pages and data flows of an interactive website", not the installed

SAS application used to deliver the content.

SAS SERVER PAGE

For this discussion a SAS server page (SSP) will mean any content generated by a stored

process and viewed in a browser. A DATA Step in a stored process can send content

destined for a browser by using the _WEBOUT fileref and PUT statements. A far less

cumbersome way is to use the STREAM procedure.

proc stream outfile=_webout;

BEGIN

<html><head><title>Page 1</title></head>

<body>

<h1>Page 1</h1>

<p>Welcome &_METAPERSON (&_METAUSER);

</body>

</html>

;;;;

Figure 1. Screenshot of SAS Server Page

METADATA SERVER

For discussion the Stored Process Web Application will be called MyApp.

The SAS Metadata Server is the control nexus for managing all aspects of who, what, when,

where and how regarding stored processes. The SAS Management Console is the admin-

istrative UI for specifying and configuring settings.

USERS AND GROUPS

The "User Manager" Plug-in is used to create new groups named MyApp Users, My App

Testers and My App Automated Test Users. The automated test users are internal

accounts created programmatically5.

3

METADATA FOLDERS

The SAS programs that comprise the

web application are registered with

the Metadata Server in order to be

accessed through the Stored Process

Server. Figure 2 shows the metadata

folder, "MyApp", was created to

contain the stored process "Page1". This corresponds to the _Program path shown in the

address bar in Figure 1.

The stored process properties were edited to specify:

• The associated SAS program file and the kind of output produced ()

• The servers and users allow to run it ()

Figure 2. Folder and stored process in the Metadata Server

STORED PROCESS DEFINITION

Figure 3. Execution settings

Figure 4. Authorization settings

4

There are some rare cases when a test user will see the message:

STP: User has insufficient authorization to access <repository> <source-file>.

This can occur when the source file was copied into the repository through a network share,

or by a developer user account. Tip: All source files in the repository must be readable by

the sassrv account at the operating system level. The same policy applies to any data sets

the stored process will use.

What are some of the effects of the authorization settings shown in Figure 4? PUBLIC users

are denied ReadMetadata so they would see error message:

Stored process not found: /MyApp/Fantasy

MYAPP - FANTASY TEAM

For discussion suppose part of MyApp is making a roster for a Fantasy team

Figure 5. Screenshot of Fantasy Team page

BACKEND DATA STORE

The back-end data store for the page are SAS data sets named Rosters, RosterMembers and

Players. The primary keys, foreign keys and indices are shown in Figure 6 diagram.

5

Figure 6. Entity relationship diagram (ERD)

FANTASY PAGE – A SAS SERVER PAGE

The page content is delivered by a stored process using Proc STREAM. The HTML5 page

source is hand written and utilizes common web programming technologies such as jQuery

and 3rd party JavaScript UI components. The page in Figure 5 was built using Menu,

Splitter, ListView and Button components. The ListViews are dynamically populated and

interact with a remote sever using Ajax to invoke Create, Read, Update and Delete (CRUD)

service routines that pass information in JavaScript Object Notation (JSON) format.

The CRUD routines are stored processes that use the JSON Procedure. The Fantasy SSP

will have a corresponding stored process named FantasyData.

PROC STREAM OUTPUT

The page HTML is sent to _webout using Proc STREAM. Standard HTML tags with ID

attributes, such as id="menu", are hook points where the components are installed via

jQuery plug-ins invoked during the document ready closure.

proc stream outfile=_webout prescol;

BEGIN

<html><head>

 <title>Fantasy Team</title>

 <link rel="stylesheet" href="http://.../styles/kendo.common.min.css" />

 <link rel="stylesheet" href="http://.../styles/kendo.blueopal.min.css" />

 <script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>

 <script src="https://.../js/kendo.ui.core.min.js"></script>

</head>

<body>

<ul id="menu">

 Team maker

 SASGF 2019 - Dallas!

 &_METAPERSON (&_METAUSER) macro substitution occurs in output

…

<script>

 $(document).ready(function() {

6

 $("#menu").kendoMenu(); component built by plug-in

Code 1. Stored process code for a SAS Server Page. STREAMs HTML and JavaScript

COMPONENT DATA SOURCE

The Fantasy ListView components are:

• Letters – First letters of a player names

• Names – All the names of a selected letter

• Roster – Names selected to make a roster

The extract below shows how the HTML tag for the Splitter and ListView hooks are laid out.

<div id="across">

 <div class="split-pane" id="left-pane">

 <div id="letters"></div>

 </div>

 <div class="split-pane" id="center-pane">

 <div class="k-header">Click name to add to Roster</div>

 <div id="names"></div>

 </div>

 <div class="split-pane" id="right-pane">

 <div class="k-header">Roster <div id="save" class="k-button">Save</div>

Click name to remove</div>

 <div id="roster"></div>

 </div>

</div>

Code 2. HTML in Proc STREAM

The JavaScript that configures the data bound component specifies a URL that invokes the

CRUD endpoint stored process through the SAS Stored Process Web Application.

 $("#letters").kendoListView({
 template: kendo.template('<div class="letter k-widget k-button" data-

letter="#:letter#"><h3>#:letter#</h3>
<h4>(#:N#)</h4></div>'),

 dataSource: {

 schema: { type: "json", data: "letters", model: { fields: [

"letter", "N"] }},

 transport: {

 read: {

 dataType: "json",

 url:

"&_URL?_program=&_PROGRAM.Data%str(&)operation=Read%str(&)for=letters"

 }

 }

 }

 });

Code 3. JavaScript source in Proc STREAM

Remember, The HTML and JavaScript code are all within a stored process source code

within a Proc STREAM step. Normal macro processing rules apply and automatic macro

variables6 can be leveraged to create a URL corresponding to the FantasyData stored

process:

• &_URL contains the absolute path such as /SASStoredProcess/do

7

• &_PROGRAM contains the stored process name such as /MyApp/Fantasy. Notice

how Data appears after &_PROGRAM — together they are FantasyData.

• %str (&) masks macro ampersands, allowing them to be an ampersand (&)

separating the GET parameters in the URL query string

• The components configuration property schema: describes how the returned JSON

should be parsed for binding data into the component

• The #:<field># token is a resolver indicator, much like SAS macros &, that causes a

bound data value to appear in the at template rendering time.

The JavaScript that configures the ListView will:

• Cause Ajax to query endpoint
http: //hoopla.this.home:81/SASStoredProcess/do?_program=/MyApp/Fantasy

Data&operation=Read&for=letters

• Expect JSON returned to represent an object that describing a frequency table
{"letters":[{"letter":"A","N":6},{"letter":"B","N":42}…]}

Two techniques for examining SSP activities are browser Developer Tools feature (F12) and

tacking on query parameter &_DEBUG=LOG to the URL.

CRUD ENDPOINT - FANTASYDATA

A close examination of the configuration url: reveals the combination of parameters that the

example stored process will have to handle:

 Operation=

For= Create Read Update Delete

Letters X

Names X

Roster X

Table 1. Grid of CRUD Parameters

The complete CRUD implementation is not needed because the ListViews are only displaying

values in the case of Letters and Names and writing for the case of Roster. The

FantasyData endpoint is coded as a set of macros whose names correspond to the

expected combinations of operation and for. The invocation of the correct macro is

accomplished using a simple dispatch macro. Serialization of a data set into JSON is done

with Proc JSON

FantasyData, stored process source code

%macro dispatch(); define the dispatch macro

 %local routine; invoked at the end of STP

 %let routine = &for._&operation;

 %&routine

%mend;

%*--------------------------; define macro for combination

%macro Letters_Read(); for=letters & operation=read

%*--------------------------;

 proc sql;

 create table letters as work.letters is frequency table

 select of first letter in player name

8

 upcase(name) as letter length=1,

 count(*) as N

 from appdata.players

 group by letter;

 proc json out=_webout; yeah! Proc JSON

 write values 'letters'; open {"letters":

 write open array; open [

 export letters / nosastags; rows as name:value

 write close; close]

 run;

%mend;

%dispatch

Code 4. FantasyData - Dispatch according to parameters

CRUD ENDPOINT FANTASYDATA ROSTER_CREATE

The processing of the create operation is more complicated. There will be additional data

corresponding to the user actions that filled the Roster ListView. The data must be inserted

into the proper tables and the data must be returned to the component so it can update

itself as needed.

Roster ListView configuration

 transport: {

 create: {

 type: "POST",

 url:

"&_URL?_program=&_PROGRAM.Data%str(&)operation=Create%str(&)for=roster",

 dataType: "json"

 },

 parameterMap: function (options, operation) {

 return { roster: kendo.stringify({names:

 $.map(options.models,function(m){return {Name:m.Name}})}) };

 },

 },

 batch: true,

Code 5. Roster ListView configuration

The twist with the Roster ListView is that the operation is Create and the data sent is JSON

representing an array of JavaScript objects with a Name property. The data is POSTed to

the endpoint and not as part of the query string. Example of posted data:

roster=%7B%22names%22%3A%5B%7B%22Name%22%3A%22Robidoux%2C+Billy+Jo%22%7D%2C%7

B%22Name%22%3A%22Ray%2C+Johnny%22%7D%2C%7B%22Name%22%3A%22Howell%2C+Jack%22%7

D%2C%7B%22Name%22%3A%22Quinones%2C+Rey%22%7D%2C%7B%22Name%22%3A%22Winfield%2C

+Dave%22%7D%5D%7D

when decoded is human readable

roster={"names":[{"Name":"Robidoux, Billy Jo"},{"Name":"Ray,

Johnny"},{"Name":"Howell, Jack"},{"Name":"Quinones, Rey"},{"Name":"Winfield,

Dave"}]}

Proc JSON only create output, a different technique is needed to parse the incoming JSON

into a useable SAS data set. The SAS JSON library engine will parse a fileref containing

JSON and allow an array of objects property to be accessed as if the property was a SAS

9

data set. The Roster_Create macro in the CRUD endpoint stored process will write the

POSTed data to a temporary file and read it as data using the JSON libref. Saving, or

creating, a new roster requires the computation of a new identity value, and the names of

the roster need to be appended to an application data set. These requirements are the

reason a sharing or locking mechanism must be utilized.

What happens when there is no locking, or attempted locking techniques fail?

A mutex will ensure atomic operations in those critical sections. First, look at the Create

macro:

%macro waitLock; %mend; to be implmented later

%macro clearLock; %mend;

%macro Roster_Create();

 filename roster temp; copy JSON value into file

 data _null_;

 file roster; length roster $32767; roster = symget("roster");

 put roster; stop;

 run;

 libname roster json fileref=roster; access POST data as roster.names

 %local nextRosterId nextRosterMemberId;

 %let nextRosterId = .;

 %let nextRosterMemberId = .;

10

 %waitLock (appdata.Rosters) start crticial section

 %waitLock (appdata.RosterMembers)

 proc sql noprint; compute next identity values

 select max(RosterId)+1 into :nextRosterId from appdata.Rosters;

 select max(RosterMemberId)+1 into :nextRosterMemberId

 from appdata.RosterMembers;

 quit;

 data work.newRoster; create roster data to be appended

 if 0 then set appdata.Rosters;

 rosterId = coalesce(&nextRosterId,1);

 owner = symget("_METAUSER"); output; stop;

 run;

 data newRosterMembers; create rosterMember data to be appended

 if 0 then set appdata.RosterMembers;

 rosterId = coalesce(&nextRosterId,1);

 do rosterMemberId = coalesce(&nextRosterMemberId,1) by 1

 while (not lastItem);

 set roster.names(keep=name) end=lastItem; output;

 end; stop;

 run;

 proc append base=appdata.Rosters data=newRoster;

 proc append base=appdata.RosterMembers data=newRosterMembers;

 run;

 %clearLock (appdata.Rosters) end critical section

 %clearLock (appdata.RosterMembers)

 proc json out=_webout; send roster data with new ids

 write values 'roster'; back to the component .

 write open array;

 export newRosterMembers / nosastags;

 write close;

 run;

%mend;

Code 6. Roster_create macro as CRUD service routine

The use of macro %WaitLock and %ClearLock must bound critical sections. The SAS coding

within must be kept as small and fast as possible. The bounding of data set accesses within

critical sections must be consistent across all the stored processes that comprise the web

application.

MUTEX ADAPTER ROUTINES

SAS code can not directly call the system routines needed to manage mutexes. SAS code

can use the CALL MODULE Routine to run methods in a dynamic link library (DLL). DLL

methods written to interface with MODULE are adapters that provide new utility to the SAS

session. A compiler is needed to create a DLL, and the Tiny C Compiler is up to the task

and has a very small footprint. A full listing will be available by email contact.

DLL SIGNATURE

DLL_EXPORT void STP_WaitOnMutex

(

11

 const char* in_name // data set name, will be a system mutex name

 , const char* in_timeout

 , char* update_handle // create mutex handle

 , char* update_status1 // get last error

 , char* update_status2 // wait rc

 , char* update_status3 // wait time

 , char* update_status4 // tick when wait achieved (for elapsed comp.)

 , char* update_status5 // current thread id

) {

DLL_EXPORT BOOL STP_ReleaseMutex

(

 const char* in_hMutex

 , const char* in_timeAcquired

 , char* update_status1

 , char* update_status2

 , char* update_status3

 , char* update_status4

) {

All the parameters are character pointers (char*). Character values, even for numeric

information, are the easiest to manage and debug within the macro environment. Special

attention to this detail is important.

SASCBTBL SPECIFICATIONS FOR MODULE ROUTINE

The C signatures are communicated to MODULE through information specified in the

SASCBTBL fileref. The name of the DLL is indicated in the module parameter and must be

findable by the thread, either in current directory or one listed in %PATH%.

routine STP_WaitOnMutex

 minarg=8 maxarg=8 stackpop=called module=stp_helper;

arg 1 char input byaddr format=$cstr200.;* // mutex name;

arg 2 char input byaddr format=$cstr20.; * // timeout (seconds) atoi

arg 3 char update byaddr format=$cstr20.; * // mutex handle;

arg 4 char update byaddr format=$cstr20.; * // LastError from CreateMutex;

arg 5 char update byaddr format=$cstr20.; * // RC WaitForSingleObject;

arg 6 char update byaddr format=$cstr20.; * // time waited (ms);

arg 7 char update byaddr format=$cstr20.; * // timestamp at acquired (ms);

arg 8 char update byaddr format=$cstr20.; * // current thread id;

routine STP_ReleaseMutex

 minarg=6 maxarg=6 stackpop=called module=stp_helper;

arg 1 char input byaddr format=$cstr20.; * // hMutex as a string;

arg 2 char input byaddr format=$cstr20.; * // timestamp at acquire

arg 3 char update byaddr format=$cstr20.; * // LastError from ReleaseMutex;

arg 4 char update byaddr format=$cstr20.; * // LastError from CloseHandle;

arg 5 char update byaddr format=$cstr20.; * // duration in acquired (ms);

arg 6 char update byaddr format=$cstr20.; * // current thread id;

routine GetCurrentThreadId

 minarg=0 maxarg=0 stackpop=called module=kernel32 returns=long;

MACROS - %WAITLOCK AND %CLEARLOCK

The lock macros use global macro variables to track acquired mutex handles, names and

timing values. %SYSCALL is used to invoke MODULE to run the DLL method. Values

12

passed into the routines suffixed with a letter or string. For example, "360" is passed in as

"360sec". Experience shows the "360" value is implicitly eval'd by the macro processor into

a numeric value and type and used as such for the %SYSCALLed MODULE invocation. The

implicit eval means the MODULE call is not honoring the DLL routine signature nor SASCBTL

declaration. A "360sec" value is passed as pointable memory and the C routine uses

atoi() to obtain the actual needed integer value. The handle and status macro variables

have the same caveat and an additional requirement of needing a filler value, such as

``````````````, assigned prior to the call. The filler ensures there is memory allocated to 

be written to through the char* declaration.  

%macro waitLock(data); 

  %local control routine mutex timeout symbolgen; 

  %local handle status1 status2 status3 status4 status5; 

… 

  %global MUTEX_COUNT; 

  %if %length(MUTEX_COUNT)=0 %then %let MUTEXT_COUNT=0; 

 

  %let MUTEX_COUNT = %eval (&MUTEX_COUNT+1); 

  %global MUTEX_HANDLE_&MUTEX_COUNT; 

  %global MUTEX_NAME_&MUTEX_COUNT; 

  %global MUTEX_TIME_&MUTEX_COUNT; 

 

  %let control = *E; 

  %let routine = STP_WaitOnMutex; 

  %let mutex   = Global\MyApp.&data; 

  %let timeout = 360sec;                         %*  4 minutes; 

  %let timeout = 45sec;                          %* testing, quick timeout; 

  %let handle  = ````````````````````;  %* fill with backtick to alloc mem; 

… 

  %syscall MODULE (control, routine, mutex, 

             timeout, handle, status1, status2, status3, status4, status5); 

… 

The clearLock macro iterates through the global tracking macro variables to find the 

handle(s) corresponding to the data  

%macro clearLock(data); 

  %local control routine mutex handle symbolgen; 

  %local status1 status2 status3 status4; 

… 

  %global MUTEX_COUNT; 

  %put NOTE: MUTEX_COUNT=&MUTEX_COUNT; 

 

  %let control = *E; 

  %let routine = STP_ReleaseMutex; 

  %let mutex = Global\MyApp.&data; 

  %let status1 = ````````````````````; %* release mutex get last error; 

… 

 

  %do index = &MUTEX_COUNT %to 1 %by -1; 

    %global MUTEX_HANDLE_&index MUTEX_NAME_&index MUTEX_TIME_&index; 

    %if "&&MUTEX_NAME_&index" eq "&mutex" %then %do; 

 

      %syscall MODULE (control, routine, MUTEX_HANDLE_&index, 

                    MUTEX_TIME_&index, status1, status2, status3, status4); 

… 



13 

Code 7. Wait and Clear Macros use %SYSCALL MODULE 

DLL INNARDS 

The DLL routines have two very simple tasks; acquire a mutex handle and then do 

something with it.  The routines also perform sides task such as zeroing memory of the 

status arguments, gathering timing values and handle rare cases of timeout or error. 

STP_WaitOnMutex  

… 

    hMutex = OpenMutex(SYNCHRONIZE, 0, in_name);             Opens a Handle 

… 

    DWORD rc = WaitForSingleObject (hMutex, timeout);    Wait for exclusive 

… 

The in_hMutex value passed in (below) is from information tracked in global macro variables 

managed by waitLock and clearLock macros. 

STP_ReleaseMutex  

… 

    HANDLE hMutex = (HANDLE) atoi (in_hMutex);          Handle to exclusive 

    BOOL rc1 = ReleaseMutex (hMutex);            Release it for next Waitee 

… 

    BOOL rc2 = CloseHandle (hMutex);                        Closes a Handle 

… 

Code 8. Open, Wait / Release, Close mutex mantra for critical sections 

The success of Open and Closing a mutex handle mark the start and end of a critical section 

in the SAS code. 

The OpenMutex system call will create a Mutex if one does not already exist.  However, the 

system-wide mutex is only persistent for the lifetime of the thread that creates it.  When 

process A creates a mutex M and process B acquires M before A terminates (the SAS stored 

process finishes) there will eventually be an error for abandonment or timeout when B 

releases a 'vanished' mutex.  

An external process, P, not connected to a SAS thread can remove this problem. P creates 

all the mutexes needed for MyApp apriori and hibernates with sleep(INFINITE).  The 

existent but unacquired mutex belong to P.  The stored processes, as may be running 

concurrently, use the waitLock and ClearLock macros to without worry of abandonment 

issues. 

MUTEX MASTER 

A mutex master program is written to read a list of data sets that will be used in MyApp, 

and creates a mutex for each one.  The master program is started before the MyApp pages 

are server, at either boot time or prior to Application Server startup. 

A more dynamic mutex master would operate as a service and the DLL would make a 

request to the master for a mutex, of the desired name, to be created.  The master process 

being a separate infinite thread would own but not use the mutexes.  The master would also 

have an algorithm for acquiescing the mutexes that are not being requested. 

Mutex Master – monolith 

… 

  err = fopen_s (&fp, MUTEXT_LIST_FILE, "r");       text file list of names 

… 

  while (++linenum) { 

    if (fgets(line, sizeof(line), fp) == NULL) break;  get a name from list 



14 

    strcpy (buffer, "Global\\MyApp.");                     preface the name 

    strncat_s (buffer, sizeof(buffer), line, strlen(line)); 

    CreateMutex (NULL, 0, buffer);  

    printf ("%2d. createMutex %s\n", linenum, buffer); 

  _fcloseall(); 

  Sleep (INFINITE); 

Code 9. Mutex master program 

Naming the mutexes with a preface MyApp. makes troubleshooting easier when examining 

system resource use with a tool like SysInternals Process Explorer. 

CONCLUSION 

SAS Stored Processes can surface a complex web application that uses the single page 

approach for dynamic and responsive views.   HTML components can use Ajax to reach 

stored processes as CRUD endpoints.  Coordination between application developer and SAS 

administrator is needed for a successful deployment that will benefit the organization.  

Concurrency issues require thinking outside the box, ensuring the user experience is error 

free and productive.  The capabilities of SAS never cease to amaze me. 

RECOMMENDED READING 

• PROC STREAM and SAS® Server Pages: Generating Custom HTML Reports, 

Don Henderson 

• SAS® Server Pages <?sas and <?sas=, 

Richard A. DeVenezia 

• SAS® 9.4 Stored Processes: Developer’s Guide, Third Edition 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author at: 

Richard DeVenezia 

(315) 351-6774 

rdevenezia@gmail.com 

https://www.devenezia.com 

  

1 https://en.wikipedia.org/wiki/Mutual_exclusivity 
2 https://www.quora.com/What-is-the-Pauli-Exclusion-Principle 
3 https://en.wikipedia.org/wiki/Mutual_exclusion 
4 https://docs.microsoft.com/en-us/windows/desktop/Sync/mutex-objects 
5 https://stackoverflow.com/questions/52810999/programmatically-create-a-new-person-having-an-internal-login 
6 SAS® 9.4 Stored Processes: Developer’s Guide, Third Edition, Using Reserved Macro Variables 
https://documentation.sas.com/?docsetId=stpug&docsetTarget=p184mqqbi9w6qjn1q0619x19eg02.htm&docsetV
ersion=9.4&locale=en 

                                                           

mailto:rdevenezia@gmail.com
https://www.devenezia.com/

