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ABSTRACT 

This paper shows how to use regression with autocorrelated errors. It features examples using the ®SAS 
procedures AUTOREG and ARIMA. Issues arising in the use of these procedures and a comparison of features 
of each to those of the other are presented. The emphasis is on when to use each procedure, how to 
understand the results, and how to use diagnostics to improve the model.  

INTRODUCTION  

Multiple regression is probably the most often used tool for relating a target variable of interest 
to a set of predictor variables.  Collecting the responses into a single column Y and the 
predictors into a matrix X, the regression model is Y=Xβ+Z. Here β is a vector of unknown 
coefficients to be estimated, one coefficient for each predictor variable, and Z is a vector of 
errors.  The best linear unbiased estimate vector b of the coefficients β is given by the formula 
b=(X’V-1X)-1X’V-1Y where V is the error variance-covariance matrix. The variance-covariance  
matrix for the estimates is (X’V-1X)-1.  Use of these formulas is referred to as using “Generalized 
Least Squares” or GLS.  In beginning courses on regression it is often assumed for simplicity that 
V=Iσ2 where σ2 is an assumed common variance of uncorrelated error terms and I is an identity 
matrix. Note that the REG and GLM procedures use this simplifying assumption. This is often, but 
not always, reasonable. When V=Iσ2 the formulas simplify greatly, to b=(X’X)-1X’Y for the 
estimates and (X’X)-1σ2 for their variance-covariance matrix.  The term “Ordinary Least Squares” 
or OLS is used.   

With observations taken over time, there can be autocorrelation, meaning that the matrix V 
contains some nonzero elements off the diagonal.  When this happens, or in general when there 
is nonzero correlation and/or unequal variances in the errors, the GLS, “Generalized Least 
Squares,” formulas should be used. Whether it is a common variance σ2 or a whole variance 
covariance matrix V that applies, the elements are typically unknown. They must be estimated.  

A Toeplitz matrix is one in which all elements with the same |r-c| are the same where r and c are 
the row and column indices of the elements.  In the time series case, if the data are observed at 
equally spaced time points (with possibly some missing values) and the V matrix has the Toeplitz 
structure then the error terms Zt form a stationary series. Models for Zt are typically selected 
from the ARMA class of models. These have the form  

Zt – α1Zt-1 – α2Zt-2–  … – αpZt-p = εt−θ1εt-1− θ2εt-2 −...−θqεt-q 

where the q lags of ε are “moving average” terms, the p lags of Z are “autoregressive” terms. 
The ε sequence is assumed to be a sequence of independent mean 0, constant variance random 
variables, known in time series as “white noise.”  For forecast intervals, the procedures discussed 
here assume normality. Methods for estimating the unknown ARMA coefficients have been 
around for some time. They produce an estimated V matrix to use in Estimated Generalized 
Least Squares or EGLS.  
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PROC AUTOREG: BASIC IDEA 

Under some common conditions (namely that all roots of the moving average’s characteristic 
polynomial Xq −θ1 Xq-1− θ2 Xq-2 −...−θq are less than 1 in magnitude) the ARMA process is referred to 
as “invertible” and can be approximated arbitrarily closely by a long autoregressive process. For 
example, the moving average Zt = et - 0.8et-1 has characteristic polynomial X-0.8 with root 0.8. 
Repeated back substitution in the model gives  et = Zt + 0.8et-1 =  Zt + 0.8(Zt-1 + 0.8et-2) = Zt + 
0.8Zt-1 + 0.64et-2 =  Zt + 0.8Zt-1 + 0 .64(Zt-2 + 0.8et-3)  = Zt + .8Zt-1+.64Zt-2+0.83Zt-3 +….  This 
expresses et as an infinite weighted sum of current and past Z with exponentially declining 
weights.  It shows that (1) a good estimate of et can be extracted from the Z series as needed 
for forecasting Zt+1 and (2) the invertible ARMA model can be approximated by a long 
autoregressive model with coefficients quickly approaching 0.  To see this second item, note that 
a simple rearrangement of terms in the expression for et above gives the infinitely long 
autoregressive process as Zt = −0.8Zt-1 −0.64Zt-2−0.83Ζt-3+ ...+et.  The coefficients (weights) decline 
exponentially fast. The largest (in magnitude) root of the moving average characteristic 
polynomial determines the decay rate.   

Note that this condition on the roots of the moving average characteristic equation is analogous 
to the condition on the corresponding autoregressive characteristic equation that determines if 
the process is stationary. Stationarity ensures a Toeplitz V matrix. The take home message here 
is that, as an approximation, every stationary invertible ARMA model is approximately an 
autoregressive process. Moving average terms serve simply to give a more parsimonious (less 
lag terms) model.  Thus, at least to start with, an autoregressive process can be used to 
estimate the V matrix for EGLS estimation.  

Using matrices, we can see that OLS estimates are linear (linear combinations of the responses) 
and are unbiased, but are, perhaps, not the best linear unbiased estimates. The model is 
Y=Xβ+Z where the elements of Z form a mean 0, stationary invertible ARMA series, Y, β and Z 
are vectors and X is a matrix.  The difference between the OLS estimate b and the true vector of 
coefficients β is given by the equation   b−β = (X’X)-1X’Y−β  =  (X’X)-1X’(Xβ+Z)−β = (X’X)-1X’Z. 
Because the expected value of Z is 0, the expected value of the difference in the estimated and 
true β is 0, this being the definition of unbiased. As before, let V represent the variance matrix of 
Z which is defined as an expected value E{ZZ’}. Using basic facts from the theory of random 
vectors, the variance of b is given by  E{ (X’X)-1(X’ZZ’X)(X’X)-1 } = (X’X)-1(X’VX)(X’X)-1 which 
further simplifies to the formula (X’X)-1σ2 used in PROC GLM and PROC REG in the case that V is 
Iσ2, but not otherwise.  The take home message is that PROC REG and PROC GLM will give 
unbiased estimates of the parameters but their standard errors will be incorrect and cannot be 
trusted unless V = Iσ2. The same is true of any inference coming from them when the 
assumption that V = Iσ2 is violated. The residual vector from the OLS estimates is a reasonable 
estimate of the vector Z of true errors and thus the OLS residual autocorrelation function helps 
to identify the type of ARMA model appropriate for Z.  If we further use the autoregressive 
approximation for the error series then the identification is just a matter of figuring out which 
lags to use.   

EXAMPLE 1: (GENERATED)   

Variables OURS and THEIRS simulate possible advertising expenditures in hundreds of dollars for 
us and for our competitor.  SALES represents our company’s sales, in thousands of dollars.  The 
observations are 2 years of generated weekly data, generated from the model SALES = 500 + 
0.8*OURS – 0.5*THEIRS + Z where the error term Z is the stationary autoregressive order 1 
time series Zt = 0.8Zt-1+et with the standard deviation of e being 20.  Figure 1 shows SALES (left 
Y axis) and OURS, THEIRS (right Y axis): 



proc sgplot;  
   series Y=sales X=week;  
   series Y=ours X=week/y2axis;  
   series Y=theirs X=week/y2axis;  
run; 

 

Figure 1. Sales (solid) and Advertising Expenditures (dashed).  

All three series seem to have more or less constant means and variances. These are two of three 
characteristics of stationary series. The plot does not clearly indicate the association between the 
response and the predictors.  Figure 2 overlays scatter plots of sales versus our advertising 
expenditures and versus theirs. Ordinary least squares regression lines are shown. These are 
just exploratory in that they ignore autocorrelation and each ignores the effect of the other 
advertising expenditure. They show simple correlations rather than the multivariate relationship 
(partial correlation). Even so, they are at least consistent with the idea that increasing our 
advertising increases our sales and that increasing our competitor’s advertising decreases our 
sales.   

 

Figure 2. Our Sales Compared to Our Advertising (blue circles, solid line) and to Our 
Competitor’s Advertising (red Xs, dashed line). Lines are Naïve Simple Linear 
Regression Lines.  

The code follows: 



proc sgplot noautolegend;  
   title "Sales";  
   reg Y=sales X=ours;  
   reg Y=sales X=theirs; 
   Label theirs = "our ad $s solid, theirs dashed";   
run;  

 

Suppose we naively run a bivariate least squares regression. The Analysis of Variance F test (Pr 
> F = 0.0005) suggests that at least one of the two advertising inputs is significant but in trying 
to see which of the two inputs matters, one finds p-values exceeding 0.10 for both t statistics as 
shown in Output 1 below.  If these p-values could be trusted, the interpretation would be that 
either input could be eliminated as long as the other remains. There is, however, no justification 
for interpreting p-values when autocorrelation in the errors is present but not modelled. The data 
were generated with autocorrelated errors. The main point here is that the REG and GLM 
procedures are inappropriate when there is autocorrelation. Tests for autocorrelation are 
available. 

 
                                       Analysis of Variance 
 
                                              Sum of           Mean 
          Source                   DF        Squares         Square    F Value    Pr > F 
 
          Model                     2          27536          13768       8.19    0.0005 
          Error                   101         169811     1681.29547 
          Corrected Total         103         197347 
 
                                       Parameter Estimates 
 
                                    Parameter       Standard 
               Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
               Intercept     1      483.00281       47.04252      10.27      <.0001 
               ours          1        0.88580        0.59691       1.48      0.1409 
               theirs        1       -0.64724        0.42609      -1.52      0.1319 

Output 1. OLS Regression of Sales on Advertising.   

The AUTOREG procedure goes through three steps: (1) Run a least squares regression (matching 
the results above), (2) Fit an autoregressive model to the error series Zt then (3) re-estimate the 
regression with EGLS using an estimated variance matrix V constructed from the estimated Zt 
model. In step 2, there is an option, BACKSTEP, for removing insignificant terms from the 
autoregressive error model:   

 proc autoreg;  
  model sales = ours theirs/nlag=8 backstep;  
 run; 

For these data, the BACKSTEP option correctly identifies an autoregressive order 1 model. 
Starting from a lag 8 model, it eliminates lag 2, then lag 8, etc. until only lag 1 remains.  It 
estimates the error model  as Zt -0.857970*Zt-1=et. Note the way this is parameterized and that 
it is equivalently written  Zt = 0.857970Zt-1+et. It is a positive autocorrelation situation.  
 
 
 
 



                                      Backward Elimination of 
                                       Autoregressive Terms 
 
                             Lag      Estimate    t Value    Pr > |t| 
 
                               2     -0.024456      -0.18      0.8548 
                               8      0.025465       0.25      0.8052 
                               5      0.049289       0.38      0.7054 
                               6     -0.049314      -0.43      0.6696 
                               7      0.025885       0.37      0.7117 
                               4      0.137511       1.37      0.1725 
                               3     -0.061967      -0.79      0.4291 

Output 2. Diagnosing the Zt Series. 

The MSE estimate 430.9 is reasonably close to the 202=400 that was used to generate the white 
noise e series and the autoregressive parameter estimate 0.85797 is only about 1 standard error 
away from the 0.80 that was used in generating the data.  The model form selected matches 
that used in the data generation and the model becomes  

0 1 2t t t tS O T Zβ β β= + + +  where  1t t tZ Z eρ −− =  

Here St represents our Sales, Ot is Our advertising and Tt is Theirs (our competitor’s advertising), 
each at time t. The paper on which PROC AUTOREG is based estimates the negative of ρ so here 
ρ is estimated as 0.85797, a positive correlation. Substituting  0 1 2( )t t t tZ S O Tβ β β= − + + and 

its lag into 1t t tZ Z eρ −− =  and gathering up similar terms shows that  

1 0 1 1 2 1 1[ ] [1 ] [ ] [ ] [ ]t t t t t t t tS S O O T T Z Zρ ρ β β ρ β ρ ρ− − − −− = − + − + − + −  

so regressing (noint) 1[ ]t tS Sρ −−  on 1 1[1 ], [ ], and [ ]t t t tO O T Tρ ρ ρ− −− − −  gives a transformed 

regression whose parameters are precisely those that are to be estimated ( 0 1 2, ,β β β ) and with 

a white noise error 1t t te Z Zρ −= − . This justifies ordinary least squares regression on these 

transformed [ ] variables. The conversion from the original variables to these transformed 
variables is a form of prewhitening. In summary, use least squares (recall the estimates are 
unbiased) to produce an initial Zt series which is modelled, then use that to get improved (EGLS) 
estimates and more appropriate standard errors.  The improved parameter estimates produce a 
new Zt series and the process can be iterated. PROC AUTOREG automates this otherwise tedious 
process.  

There are two remaining problems. One is that the first observation has no lagged value for the 
transformation. The other is that the autoregressive parameter ρ is unknown. Estimating ρ as 
described above solves the second problem. The first can be overcome as well. The AUTOREG 
procedure does this and reports the results of this second, prewhitened, regression as shown 
below.  Because the parameters in the transformed regression are the same as those in the 
original regression, the interpretation is that every increase of 1 (hundred dollars, $100) in our 
advertising is associated with a 1.0605 (thousand dollar, $1,060.50) increase in sales and every 
hundred dollar increase in advertising by our competitor is associated with a $691.00 drop in our 
sales. A Durbin Watson statistic near 2 suggests little evidence of remaining autocorrelation but 
it is important to note that the theory that underlies the distributional results of Durbin and 
Watson does not hold when a regression uses lagged values of the response variable as 
predictors. The transformed variable 1[ ]t tS Sρ −− has a lagged dependent variable in it.  



Preferable checks for autocorrelation are discussed later. Output 3 shows the final parameter 
estimates. The initial OLS estimates are the same as in Output 1.  The Durbin-Watson statistic 
differs little from 2, the theoretical value indicating no autocorrelation. Because it is 
inappropriate, a p-value for the difference, though available, was not requested. The less 
commonly used Durbin t and h are also available in the AUTOREG procedure.  

           Durbin-Watson        2.0469    Transformed Regression R-Square        0.5927 
                                          Total R-Square                         0.7812 
 
                                       Parameter Estimates 
 
                                                   Standard                 Approx 
               Variable        DF     Estimate        Error    t Value    Pr > |t| 
 
               Intercept        1     478.6702      23.3229      20.52      <.0001 
               ours             1       1.0605       0.2432       4.36      <.0001 
               theirs           1      -0.6910       0.1691      -4.09      <.0001 

Output 3. Partial Results from the Final Phase of the AUTOREG Procedure.  

Dramatically illustrating the effect of this transformation, both parameter estimates are now very 
highly significant. Neither can be omitted. Reported standard errors for the slopes have changed 
from 0.59691 and 0.42609  to 0.2432 and 0.1691. Note that the reported OLS standard errors 
are not really the true standard errors that apply when OLS is used on data with correlated 
errors as in the first step of analysis. They come from X’X-1σ2, not from the correct OLS variance 
formula (X’X)-1(X’VX)(X’X)-1.  Two R-square measures are given. Recall that R-square can be 
computed as 1 minus the ratio of error to total sums of squares. In PROC AUTOREG the idea is to 
use the one step ahead error sum of squares and the usual sum of squared deviations from the 
mean as the total sum of squares. This gives the total R-square. It uses both the regressors and 
the autocorrelation in Z. The Transformed Regression (formerly labelled just “Regression”) R-
Square is that from the prewhitened regression. The idea here is to separate the predictive 
power coming from the regression from the total predictive power that also includes the 
autocorrelation in the Z error series.   

In order to predict future values of sales, one must input future values of advertising so this 
would be useful for analyzing hypothetical scenarios. Our competitor is unlikely to reveal her 
advertising strategy. Even if forecasted values of advertising are used, the procedure has no way 
to incorporate their uncertainty when computing the uncertainty in forecasted sales. On the 
other hand, notice that even if forecasts are not of interest, one still needs to have correct 
standard errors for proper inference in the model and the AUTOREG procedure should be used. 

To summarize and finish this section consider Table 1 of standard errors:  

Table 1.  Standard Errors from Different Variance Matrices.  

Printed  OLS 
from  
  (X’X)-1(mse) 

Using σz
2 in 

OLS formula  
(X’X)-1σz

2 

True OLS  
 
(X’X)-1(X’VX)(X’X)-1 

Printed GLS 
 

1 1( ' )X V X− −

 

True GLS  
 

1 1( ' )VX X− −  
47.043 38.243 34.686 23.323 21.032 
0.5969 0.4852 0.4262 0.2432 0.2406 
0.4261 0.3464 0.3076 0.1691 0.1674 

 

Items V and σz
2 are only available because the data are generated and these true parameters 

known. They appear in red. The first three columns deal with OLS standard errors. The first 
column is what appears above in the PROC REG output. The violation of the assumption of 



uncorrelated errors causes this to be incorrect. The Zt series has a variance σz
2=σ2/(1-ρ2) where 

σ2 is the variance of the white noise series, et, and Zt=ρZt-1+et. A theoretical version of the PROC 
REG standard errors can be computed as square roots of the diagonal elements of (X’X)-1 σz

2 as 
shown in column 2. Column 2 shows what the estimates in column 1 are estimating. Standard 
errors shown in columns 1 and 2 are inappropriate because V is not Iσ2. As shown previously, if 
one uses OLS the correct standard errors are square roots of the diagonal elements of the matrix 
(X’X)-1(X’VX)(X’X)-1 using the true V matrix as in column 3. The point here is that ordinary least 
squares procedures like the REG and GLM procedures do not give valid standard errors, t tests, 
or p-values when V is not Iσ2.   

Columns 4 and 5 give estimated (from the printout) and theoretical (available because the data 
are generated) standard errors for the GLS estimates of the parameters. An interesting 
comparison is between columns 3 and 5. This comparison illustrates the theoretical result that 
the true standard errors from GLS are smaller than those (correct ones) from OLS. The true GLS 
variances of parameter estimates will never exceed those for OLS.  This can be confusing 
because the printed standard errors from REG or GLM are sometimes smaller than those from 
GLS which would seem to suggest that the OLS estimates are superior. That conclusion is 
unjustified. The printed OLS standard errors are not estimating the true standard deviations of 
the estimated regression parameters. Comparing printed standard errors from REG or GLM to 
those from AUTOREG to see which is best is not justified.  

EXAMPLE 2:  DAILY RIVER FLOWS, NEUSE RIVER IN NC 

The Neuse River flows through North Carolina and into the Atlantic Ocean, passing first through 
Goldsboro NC then Kinston NC on its way. As is typical with series like this that cannot be 
negative but have values near 0 along with high ones, there is more variation in the high flow 
rates than the low ones, suggesting heterogeneous variances and thereby violating an important 
model assumption.  Sometimes analyzing natural logarithms of such data will alleviate the 
problem. An added benefit of analysis on the logarithmic scale is that predicted values converted 
to the original scale will never be negative regardless of the sign of the logarithm.  

 

Figure 3. Neuse River Flow Rates at Goldsboro and Kinston NC, Original Data. 

Streamflows were taken on 400 consecutive days at Goldsboro (the lower blue curve) and 
downstream at Kinston (the upper red curve). The plot suggests analysis of the data on the 
logarithmic scale.  The corresponding (base e) log scale data are plotted in Figure 4. In Figures 3 



and 4, the downstream location can be identified by noticing that its peaks seem to occur one 
day later than those of the upstream location and the flows are also larger, as would be expected 
from a downstream location.  

 

Figure 4. Log Transformed Flows at Goldsboro (lower curve) and Kinston NC.  

In Figure 4, an almost sinusoidal trend appears. This suggest that the sine and the cosine of 
2πt/365.25 might be useful predictor variables. The AUTOREG procedure code for the log 
transformed Goldsboro flows (Lgold) is given below.  A similar code for Kinston, Lkins, was run 
as well: 

proc autoreg data=river; 
  model Lgold = sine cos /nlag=5 backstep ; 
  output out=outgold  
   predicted=plgold pm=pmlgold residual=rlgold rm=rmlgold; 

Output 4 shows that a lag 2 autoregressive model is chosen.   

 
                              Estimates of Autoregressive Parameters 
 
                                                      Standard 
                           Lag     Coefficient           Error    t Value 
 
                             1       -1.305266        0.046737     -27.93 
                             2        0.370404        0.046737       7.93 

Output 4. Autoregressive Error Model is Zt-1.3053Zt-1+0.3704=et 

The autoregressive (AR) characteristic polynomial is X2 -1.305266X+0.370404 (recall the 
AUTOREG parameterization Z1+α1Zt-1+α2Zt-2=et). Figure 5 shows this polynomial for log 
transformed data from both stations.  



       

Figure 5. AR Characteristic Polynomials, Goldsboro (left) and Kinston (right).  

The largest root (rightmost crossing of 0) of the Goldsboro polynomial is 0.8883 and that of 
Kinston is 0.9198. Both are somewhat close to 1. Such a root causes the next forecasted residual 
to be near the current residual and suggests that the estimated Z variance will be much larger 
than that of the white noise e variance.  This phenomenon manifests itself in Output 5 where the 
Total R-Square, 0.9636, which uses both the sine-cosine function and the error model for Z, is 
much larger than the Model R-Square, 0.0499, that uses only the sine-cosine function. The 
interpretation is that most of the one step ahead forecasting performance is due to the 
autoregressive model with a root near 1 (that is, the momentum in the residuals). The 
trigonometric inputs seem to provide little additional explanatory power. On the other hand it is 
common knowledge that temperatures, rainfall, and streamflows have a seasonal pattern that is 
somewhat sinusoidal in nature. The trigonometric functions will thus remain in the model.  

           Durbin-Watson        1.8831    Transformed Regression R-Square        0.0499 
                                          Total R-Square                         0.9636 

Output 5. More AUTOREG Output.  

The DWPROB option gives the probability that there is autocorrelation. It is justified if the model 
does not involve lagged dependent variables. Lagged dependent variables enter the model 
through the use of the prewhitening transformation, so the p-values are only rigorously validated 
in the initial OLS regression.  The DWPROB option is thus not used here.   

The final sinusoidal model from PROC AUTOREG is given in this output: 

                                         Parameter Estimates 
 
                                                   Standard                 Approx 
               Variable        DF     Estimate        Error    t Value    Pr > |t| 
 
               Intercept        1       7.3563       0.1533      48.00      <.0001 
               SINE             1       0.8113       0.2060       3.94      <.0001 
               COS              1       0.5598       0.2222       2.52      0.0121 

Output 6. Final Sinusoid Parameter Estimates.  

The output variables that have M (for mean) in their names, such as the “PM=” or “RM=” 
variable, predict only from the regressors and do not take advantage of the momentum in the 
residuals.  The PM prediction is 7.3563+0.8113*SINE+0.5598*COS and the RM residual is the 
observed value minus this PM prediction.  Because the sine and cosine variables are 
deterministic they can easily be extended into the future and thus the associated PM predictions 
can be computed.  Figure 6 shows these PM trigonometric predictor functions, both throughout 



the historical data and into the future several months.  Because the data end on a relatively high 
value and the Zt model has a root near 1, it takes a couple of months for the forecasts to 
become visually indistinguishable from the deterministic sinusoidal functions.  

 

Figure 6. Log of Flow: Historical Data and Forecasts, With and Without Accounting 
for Autocorrelation.  

Figure 7 shows the RM residuals (estimates of Zt) for both stations as solid lines and the R 
residuals (estimates of et), i.e. the deviations from forecasts that use the regressors and the 
error model, as circles. This shows the rather large reduction in forecast error variance due to 
the use of the error model to forecast the next Z.  The circles are much more tightly clustered 
around 0 than are the points on the series plots. This further illustrates the difference between 
the total and model R-square values.  

 

Figure 7. The Zt (lines, rm) and et (circles, r) Residuals over Time.  

Large negative residuals rm on the left and large positive ones on the right suggest possibly 
adding a trend. This improves the fit but suggests a long term large linear increase in flow that is 
nonsensical. Similarly a unit root model could be fit but the implied unbounded variance for such 
models is also an untenable assumption for a river.  

 



DISCUSSION AND ALTERNATE MODEL FOR KINSTON: 

The river example illustrates several things about analysis in general and time series in 
particular. River flows, rainfall, and other seasonal series typically have a yearly cycle of some 
kind. Periodic predictors, like the sine and cosine pair used here, are well motivated.  While a 
linear trend makes the fit look better in this example, it would be hard to believe that river flows 
will follow a linear trend over time.  Common sense must come into play.  It is possible to find a 
model that uses Goldsboro flows to predict the downstream flow at Kinston.  From the graphs it 
is obvious that using Goldsboro to predict Kinston will give excellent one step ahead forecasts in 
the historical data and one step into the future but how do we forecast further with such a 
model?  This is the problem with using stochastic inputs rather than deterministic inputs like the 
sine and cosine whose future values are known perfectly. On the logarithmic scale two Goldsboro 
lags supply most of the predictability for Kinston. The problem in forecasting more than 1 step 
ahead is that we do not know what the required Goldsboro inputs will be for insertion into the 
predicting equation.  One possible solution is to use the Goldsboro predictions from the sine and 
cosine analysis that produced Figure 6 whenever future Goldsboro flows are needed.  PROC 
AUTOREG has no way of knowing the uncertainty induced by using these predicted flows rather 
than actual future Goldsboro flows so any prediction intervals computed will be too narrow.  The 
following code fits the model under discussion:  

proc autoreg data=laggold;   
  model lkins = lgold_1 lgold_2 /nlag=15 backstep;  
  output out=out2 pred=p pm=pm residualm=rm residual=r;  run; 
 
where the laggold data set has variables lgold_1 and lgold_2 that hold the lag 1 and 2 
log(Goldsboro flow) values in the historical data and predictions as just described for the future. 
The resulting predictions and actual values are plotted, in Figure 8, as in Figure 6.  

 

Figure 8.  Kinston Predictions using Lagged Goldsboro Flows. 

The predicted mean function for Kinston no longer appears as a sine wave in the historical data. 
That is because the one step ahead Kinston predictions are computed from observed lagged 
Goldsboro values, not sine and cosine values. They follow the observed Kinston values much 
more closely.  The sinusoidal Goldsboro predictions are shown throughout just as in Figure 6 but 
only the future sinusoidal values for Goldsboro are used in forecasting.   



Important point: Excellent one step ahead forecast performance in the historical data does not 
imply excellence in the future forecasts more than one or two steps out. In the opinion of this 
author, there is not much improvement here over the deterministic sine and cosine approach 
previously shown. One difference to note is that in Figure 8, the future Kinston forecasts are 
closer to the Goldsboro forecasts than they are in Figure 6. This is due to the use of the 
Goldsboro forecasts (that approach the sinusoidal curve) in place of actual future Goldsboro 
values and the dependence of the Kinston forecasts on these forecasted future values.  In fact 
the total R-square for this model exceeds 99%. It seems that when 2 actual previous values of 
Goldsboro flow are available an excellent one step ahead Kinston forecast results. Clearly a 99% 
R-square in the historical data and does not suggest excellent forecasts far into the future.  

Example 3: Energy Demand, NC State University  

This is an excellent example of PROC AUTOREG working well and illustrates some additional 
features not yet discussed. The data are real as were the river flows. The data are historical daily 
demands for energy at NC State University during the 1979-80 school year. A few years earlier 
an oil embargo had caused gasoline shortages and concern about energy usage in general. Now 
a second shortage was in progress. NC State University posted a sign showing the previous day’s 
usage at the campus entrance each day. Upon request, the Facilities Division sent the usage 
numbers on paper. These numbers and data from the academic calendar were entered.  The 
academic year features (1) vacation days and weekends, (2) work days, and (3) class days. 
Class days are a subset of work days. A sine and cosine of period 1 year capture seasonal effects 
as in the river data. A third data source supplied daily temperatures.  The type of day and values 
of the sine and cosine are perfectly known into the future but temperature is a stochastic process 
and future values are not perfectly known. If the sine and cosine pick up enough seasonality to 
substitute for temperature, problems with stochastic inputs would be avoided.  

Figure 9 presents a graph of the energy usage data against time (left) and temperature (right).  
Vacation days and weekends are plotted in blue (lowest curve and scatter), non-class work days 
in green (middle group) and class days in red (top). Overlaid on the observations are exploratory 
least squares fits of parallel sinusoids (left) and quadratics in temperature (right). Each predictor 
appears effective alone, but is either still important in the presence of the other?  

   

Figure 9. Energy Usage Versus Time (left) and Temperature (right).  

The following code gives an initial analysis showing all sources discussed thus far are significant:  

 
 



proc autoreg data=energy;  
  model demand = temp tempsq class work s c  
   /nlag=15 backstep dwprob; 
   output out=out3  
   predicted = p predictedm=pm  
   residual=r residualm=rm;  
run; 
 
Recall the steps in the fitting process. After fitting an initial OLS model, the residuals are 
diagnosed and an estimated GLS fit is performed based on the diagnosed correlation structure. 
Below is the selected autoregressive model structure 

             Estimates of Autoregressive Parameters 
                                     Standard 
          Lag     Coefficient           Error    t Value 
            1       -0.559658        0.043993     -12.72 
            5       -0.117824        0.045998      -2.56 
            7       -0.220105        0.053999      -4.08 
            8        0.188009        0.059577       3.16 
            9       -0.108031        0.051219      -2.11 
           12        0.110785        0.046068       2.40 
           14       -0.094713        0.045942      -2.06 

Output 7. Energy Data Autocorrelation Diagnosis.  

Some of the lags are intuitive like lags 1, 7, and 14. Other lags are not so intuitive and there are 
quite a few of them.  Some of the autocorrelation might be due to a day of the week effect that 
was not modelled. Next we see the parameter estimates from the GLS fit in which standard 
errors and t tests are valid. It seems that all of the effects in the model are highly significant.  

 
                            Parameter Estimates 
 
                                  Standard               Approx 
 Variable       DF    Estimate       Error   t Value   Pr > |t| 
 
 Intercept       1        6076    296.5261     20.49     <.0001 
 TEMP            1     28.1581      3.6773      7.66     <.0001 
 TEMPSQ          1      0.6592      0.1194      5.52     <.0001 
 CLASS           1        1159    117.4507      9.87     <.0001 
 WORK            1        2769    122.5721     22.59     <.0001 
 S               1   -764.0316    186.0912     -4.11     <.0001 
 C               1   -520.8604    188.2783     -2.77     0.0060 

Output 8. Final Estimates and Tests.  

In this table, S and C are the sine and cosine. Temperature and its square appear and there are 
two dummy variables. CLASS indicates the effect of a day in which classes are in session. WORK 
indicates a work day.  Since the “weekend and vacation” dummy variable is omitted, the two 
dummy variable coefficients are deviations from that effect.  They describe the shifts between 
the parallel curves in Figure 9.  On days in which classes are in session, both the WORK and 
CLASS dummy variables are 1 so that the predictions on those days are 1159+2769= 3928 units 
above the weekend predictions.  The Total R-square for this model is just over 95%, an 
impressive number but recall that this is obtained for known temperatures whose future values 
are unknown. Having asked for residuals (rm) from the model that uses input variables only, we 
next plot them in PROC SGPLOT with the NEEDLE statement and a reference line at rm=0. Unlike 
the r residuals, the rm residuals are autocorrelated.  



 

Figure 10. Autocorrelated Residuals rm (Zt).  

A striking feature is the very large negative residual on January 2. The legend indicates that this 
was a work day but not a class day. Looking back at Figure 9 carefully we see the corresponding 
green X within the cluster of blue (non workday) points near January 2 in the left plot and at 
about 70 degrees in the right plot.  It seems January 2 was a work day but its effect on energy 
was like another vacation day. There were no classes on January 2 so many employees may 
have chosen to use a vacation day. 

 

Figure 11. White Noise Residuals r (et) from Predictions that use Inputs and 
Autocorrelation.  

In Figure 11, the forecast residuals, those that result from using both the inputs and the 
autoregressive error structure, are shown. Strangely, the unusually low value on January 2 is 



followed by a large residual on January 3.  Two other outliers identified by PROC ARIMA are 
shown (as thick lines with dots on the ends) each with a similar “rebound outlier” following it.  
Why is this happening?  The answer lies in the positive lag 1 autocorrelation. On January 2 there 
is an exceptionally low residual so the model predicts that the next observation will be far below 
what is predicted by the X variables alone. When it turns out that the next observation is closer 
to what is predicted by the inputs, a positive “rebound” residual is produced. It is not that the 
observation is too high but rather that the prediction is too low.  

Because the autoregressive lag structure is somewhat complex and includes some unexpected 
lags, the next step is to move to the more sophisticated ARIMA procedure.  When inputs are 
present, one must include them in the CROSSCOR list as well as in the INPUT= option of the 
ESTIMATE statement. Perhaps with the added possibility of moving average terms a more 
explainable lag structure will arise.  ARIMA also has an outlier detection feature.  The data set 
has 366 observations. We might have anticipated a January 2 effect but for “discovering” other 
outliers it is prudent to account for the multiple tests that we are doing. A conservative way to 
do this is to insist on a p-value less than 0.05/365 as suggested by the Bonferroni correction for 
declaring a point an outlier. Each of 365 points is being tested, hence the denominator 365.  

The following code shows the PROC ARIMA analysis. It includes the search for outliers:  

proc arima data=energy;  
  identify var=demand crosscor=(temp tempsq class work s c) noprint; 
   estimate input = (temp tempsq class work s c);   
   estimate input = (temp tempsq class work s c) p=(1)(7) q=(14) ml;                            
   forecast lead=0 out=outarima id=date  interval=day; 
               * 0.05/365 = .0001369863 (bonferroni) *;  
  outlier type=additive alpha=.0001369863 id=date;   
run; 
 
The first ESTIMATE statement fits a least squares regression, much like what PROC AUTOREG 
does and it produces diagnostic plots from which an ARMA model diagnosis can be made. Doing 
so, along with some trial and error, produces a more intuitive structure: a multiplicative 
autoregressive structure that produces lag 1, 7, and 8 effects, and an almost significant (at the 
traditional 0.05 level) moving average coefficient at lag 14. Here are the resulting parameter 
estimates:  

                Maximum Likelihood Estimation 
 
                        Standard           Approx 
 Parameter   Estimate      Error t Value Pr > |t|  Lag Variable 
 
 MU            6256.0  298.89104   20.93   <.0001    0 DEMAND 
 MA1,1       -0.10191    0.05489   -1.86   0.0634   14 DEMAND 
 AR1,1        0.67921    0.04048   16.78   <.0001    1 DEMAND 
 AR2,1        0.19973    0.05427    3.68   0.0002    7 DEMAND 
 NUM1        26.07617    3.85393    6.77   <.0001    0 TEMP 
 NUM2         0.63087    0.12242    5.15   <.0001    0 TEMPSQ 
 NUM3       960.27699  123.88594    7.75   <.0001    0 CLASS 
 NUM4          2914.3  126.20869   23.09   <.0001    0 WORK 
 NUM5      -771.98511  162.30684   -4.76   <.0001    0 S 
 NUM6      -573.09106  171.88681   -3.33   0.0009    0 C 
 

Output 9. Analysis using the ARIMA Procedure.  



An advantage of the ARIMA procedure is its sophisticated collection of diagnostics along with its 
ability to use moving average terms in the error model and to handle differencing when needed.  
As mentioned, diagnostics superior to the Durbin Watson test are available. They are based on 
the autocorrelation in the residuals.  The ARIMA and AUTOREG procedures use residual 
correlation to produce the forecasts.  If there remains correlation in the residuals why was it not 
used? It must mean that the chosen model is not rich enough, that is, a good model should 
result in 0 residual autocorrelation. Box and Pierce (1970) and Ljung and Box (1978) developed 
the Chi Square test that is used in PROC ARIMA. Box’s student Pierce used the asymptotic 
normality of autocorrelations to show that the sum of k squared autocorrelations, multiplied by 
n, has approximately a Chi-square distribution in large samples under the null hypothesis of no 
residual correlation. It is a lack of fit test.  Under the null hypothesis the chosen autocorrelation 
structure is sufficient while under the alternative the fit is not good enough, a lack of fit. As with 
any lack of fit test, a good model should result in a p-value larger than 0.05.   

Following Pierce’s work, another Box student, Greta Ljung, showed that multiplying the jth term 
in Pierce’s sum by (n+2)/(n-j) provided better finite sample performance and it is her version of 
the test that appears in PROC ARIMA. The test is sometimes referred to as the Ljung-Box Q 
statistic.  Neither Pierce nor Ljung suggested how many squared correlations to sum. SAS 
procedures show the statistics and approximate p-values for several cumulative sums. Output 10  
shows the results for the energy data. 

From Output 9, all parameter estimates are significant at the 0.05 level with one exception 
having p=0.0634. The lack of fit tests look reasonable even out to lag 48 (48 normalized squared 
residual autocorrelations summed) 

                              Autocorrelation Check of Residuals 
 
    To        Chi-             Pr > 
   Lag      Square     DF     ChiSq    --------------------Autocorrelations-------------------- 
 
     6        4.19      3    0.2415    -0.044     0.024    -0.023     0.019     0.060     0.066 
    12       11.30      9    0.2555    -0.004    -0.012     0.121     0.044    -0.028    -0.038 
    18       13.91     15    0.5327    -0.051     0.009    -0.023     0.044    -0.007    -0.040 
    24       15.97     21    0.7711    -0.021    -0.024     0.012    -0.054     0.020    -0.028 
    30       24.44     27    0.6061     0.008     0.055    -0.103     0.080    -0.003     0.034 
    36       35.38     33    0.3564    -0.021    -0.072     0.066    -0.005     0.122    -0.044 
    42       40.09     39    0.4215     0.005    -0.007     0.090     0.012     0.001     0.055 
    48       43.59     45    0.5319    -0.042     0.044    -0.027    -0.048    -0.023    -0.031 

Output 10. Lack of Fit Results.  

All of these results support the model but there is still the problem of unaccounted for outliers.  
The outlier statement produced these three results:  

                                     Outlier Details 
                                                                                Approx 
                                                                        Chi-     Prob> 
            Obs    Time ID        Type                  Estimate      Square     ChiSq 
 
            186    02-JAN-1980    Additive               -3225.4       97.10    <.0001 
            315    10-MAY-1980    Additive                1843.1       34.03    <.0001 
            247    03-MAR-1980    Additive               -1509.8       22.83    <.0001 

Output 11. Outliers Using the ARIMA Procedure (Bonferroni adjustment).  

The January 2 result was expected. The positive outlier in May occurred on a Saturday and 
another look at the academic calendar revealed that this was graduation day. The negative 



outlier in March remained a mystery until an internet search of local newspaper headlines 
revealed that one of the largest snowstorms in NC history occurred on the Sunday before this 
Monday class day.  An unsubstantiated but quite likely guess is that classes were called off that 
day. These outliers can be explained which suggests including a dummy variable for each. 
Because the dummy variable will devote a parameter to capturing each of these effects (Jan 2, 
graduation, and the storm) the three residuals should now be smaller in magnitude, possibly 
eliminating the rebound effect.  That is, it is not advisable to put dummy variables in the model 
for those large rebound effects.  They are an artifact of ignoring the three outliers. Here are the 
parameter estimates for the final model with January 2 facetiously called “hangover day.” 

                                      The ARIMA Procedure 
 
                                  Maximum Likelihood Estimation 
 
                                Standard                 Approx 
   Parameter      Estimate         Error    t Value    Pr > |t|     Lag    Variable      Shift 
 
   MU               6127.4     259.43918      23.62      <.0001       0    DEMAND            0 
   MA1,1          -0.25704       0.05444      -4.72      <.0001       7    DEMAND            0 
   MA1,2          -0.10821       0.05420      -2.00      0.0459      14    DEMAND            0 
   AR1,1           0.76271       0.03535      21.57      <.0001       1    DEMAND            0 
   NUM1           27.89783       3.15904       8.83      <.0001       0    TEMP              0 
   NUM2            0.54698       0.10056       5.44      <.0001       0    TEMPSQ            0 
   NUM3          626.08113     104.48069       5.99      <.0001       0    CLASS             0 
   NUM4             3258.1     105.73971      30.81      <.0001       0    WORK              0 
   NUM5         -757.90108     181.28967      -4.18      <.0001       0    S                 0 
   NUM6         -506.31892     184.50221      -2.74      0.0061       0    C                 0 
   NUM7            -3473.8     334.16645     -10.40      <.0001       0    hangover          0 
   NUM8             2007.1     331.77424       6.05      <.0001       0    graduation        0 
   NUM9            -1702.8     333.79141      -5.10      <.0001       0    storm             0 

Output 12. Incorporating Three Special Cases (outliers).  

The January 2 effect, a reduction of 3474 in energy usage, is near the difference 3258 in going 
from a vacation day to a work day, that is, the expectation that January 2 would be taken as a 
vacation day seems consistent with these results.  Note too that the previously near significant 
MA1,2 term at lag 14  is now significant with p=0.0459.  Have the good diagnostics been 
retained with this change?  The table of Ljung-Box Q statistics below shows large (supportive) p-
values like those in  the previous model that ignored the outliers, except in the last two rows 
where the previous model had larger (more supportive) p-values. It seems that a large residual 
correlation or two (like the 0.122 at lag 42) have caused the Q statistic to become large. 
Inserting a moving average term or dummy variable at a large lag like 42 seems, to this author, 
unjustified and will not be pursued.  

                               Autocorrelation Check of Residuals 
 
    To        Chi-             Pr > 
   Lag      Square     DF     ChiSq    --------------------Autocorrelations-------------------- 
     6        2.74      3    0.4342     0.035    -0.034    -0.046    -0.024     0.047    -0.005 
    12        9.16      9    0.4225    -0.001    -0.006     0.120     0.021    -0.046     0.010 
    18       16.93     15    0.3229    -0.105     0.019    -0.047     0.080    -0.002    -0.011 
    24       21.41     21    0.4340    -0.034    -0.040     0.056    -0.072    -0.018     0.002 
    30       31.71     27    0.2431     0.031    -0.004    -0.077     0.123    -0.045     0.043 
    36       42.34     33    0.1279    -0.036    -0.092     0.034     0.049     0.109    -0.031 
    42       57.33     39    0.0293     0.004    -0.037     0.100     0.022    -0.096     0.122 
    48       61.21     45    0.0541     0.000     0.022     0.020    -0.060    -0.046    -0.051    

Output 13. Lack of Fit (residual check) for New Model.  



 
EXAMPLE OF ARCH MODELS: DOW JONES 
 
For some stock series the closing prices Yt are used to compute an overnight return 
approximation ln(Yt/Yt-1) which is approximately the daily proportional change in the closing 
price. In a model with only a mean as input, such as what is about to be presented for the Dow 
Jones Industrials Average, the square of each residual can be thought of as an estimate of the 
local error variance. Because forecasts coming from ARIMA models are linear combinations of 
past data points, the application of such models to these squared return residuals can provide 
smoothed local variance estimates that depend mostly on their recent predecessors and 
relatively little on squared residuals from the distant past. The data used here are historical Dow 
Jones returns in the first part of the 20th century. The data are of historical interest in that there 
were periods of great stock market volatility as well as calmer periods – exactly the type of data 
for which ARCH (AutoRegressive Conditionally Heteroscedastic) models and their relatives 
(GARCH, IGARCH, EGARCH, etc.) are meant.  Figure 12 on the left shows the Dow Jones returns 
and the right panel shows prediction bands in blue.  
 
 

       
 
Figure 12. Dow Jones Returns (left) and IGARCH Prediction Bands (right).  
 
The red vertical reference lines are, left to right, the Great Depression, FDR enters office, WW II 
starts, Pearl Harbor, FDR leaves office, and VJ day. The ARCH model, developed by Robert Engle, 
and its relatives use a likelihood in which the variance ht at time t follows an ARIMA model. The 
following code produces the analysis by fitting a 2 lag autoregressive process with an integrated 
GARCH(2,1,1), or IGARCH, model. The middle argument, 1, indicates a unit root model (the 
INTEG option in PROC AUTOREG) for the local variance ht. As usual, a unit root model produces 
forecasted variances that are very close to their predecessors making the ARCH model very 
responsive to changes. In unit root models, an intercept in the differences gives a nonzero slope 
in the original levels, which are variances here, so it is prudent to use the NOINT option unless it 
is clear that the variance is increasing or decreasing linearly:  
 
proc autoreg data=dowjones; 
   model ddow = / nlag=2 garch=(p=2,q=1,type=integ,noint); 
   output out=out2 predicted=f lcli=l ucli=u; 
run; 
 
Graphing the prediction limits L and U separately from the data, in Figure 12, avoids the 
excessive overlap that would arise from overlaying the data.  Notice that the prediction limits 
into the future appear consistent with the most recent interval widths. These data as well as the 



NCSU energy demand and Neuse River data are discussed in more detail in SAS for Forecasting 
Time Series 3rd ed. by Brocklebank, Dickey, and Choi (2018).  
 
CONCLUSION  
 
The AUTOREG and ARIMA procedures provide a time series practitioner with the ability to use 
both predictor variables and autocorrelation to produce forecasts. The effect of autocorrelation is 
important in the short run but forecasts far out in the future are determined almost exclusively 
by the inputs as in Figures 6 and 8, the river data.  Deterministic predictors have the obvious 
advantage of known future values. AUTOREG is easy to use and serves as a good initial 
modelling tool even if ARIMA is later used as in the campus energy data. Advantages of ARIMA 
include the inclusion of moving average terms in the autocorrelation model, differencing (not 
illustrated here) and the detection of outliers.  
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