
1 

Paper 3548-2019 

Integrating Python and Base SAS® 

Venu Gopal Lolla, Oklahoma State University 

 

ABSTRACT  

This paper presents a new framework for integrating Python into Base SAS® on the 

Microsoft Windows platform. Previous attempts at invoking Python functionality through 

Base SAS involved the use of a Java object in the DATA step. This paper aims to present a 
more comprehensive framework that includes support for the following: transferring data 

and parameters from SAS to Python; transferring data from Python to SAS; transferring 
figures generated in Python (using Matplotlib) back to SAS reports; and transferring 

contents from standard output and error streams from the Python process back to SAS 
reports. Although the components required to invoke Python from Base SAS have been 

available for a while, the lack of ease-of-use could prove to be a barrier to widespread use. 
The proposed framework aims to improve the usability of Python functionality through Base 

SAS by making the process more user-friendly. The framework is implemented through 

helper SAS macros, helper Python scripts, and helper binaries. 

INTRODUCTION  

Integration pathways between SAS and popular open source analytics software such as R 

and Python allow data scientists and data analysts to use the best features of both worlds. A 
solid integration pathway between SAS and R was introduced through SAS/IML® in 2009 

(SAS Institute Inc., 2009). However, Python does not seem to enjoy similar first-class 

integration support yet.  

A white paper published in 2015 (Hall, Myneni, and Zhang, 2015) provides a practical way 

to achieve this using the Base SAS Java Object. The approach presented is not even specific 
to (or restricted to) Python; it can be used to integrate with R or any other program. 

Perhaps due to the broad range of programs that can be targeted using the approach, it 
does not address certain specific usability issues that could deliver an improved integration 

experience to SAS users.   

This paper attempts to: enumerate various features/options that are needed to provide a 

comprehensive SAS-Python integration experience; propose an architecture to support such 
features; and provide an implementation of the proposed architecture. An open-source 

implementation is made available under the permissive MIT License (for commercial use, 

modification, distribution, and private use) at: https://github.com/svglolla/sasnpy.  

A point to note: while SAS-Python integration is referred to in this paper multiple times, it 

focuses on the case of trying to use/invoke Python capabilities from SAS and excludes the 
case of trying to use SAS from within Python. Ample development seems to be occurring 

and available through SAS-sponsored open-source GitHub repositories (SAS Institute Inc., 

2015) in the context of using SAS functionality (and feature set) through Python.  

 

 

 

https://github.com/svglolla/sasnpy


2 

DESIRABLE FEATURES  

Several features are needed to provide a complete SAS-Python integration solution. An 
integration pathway that supports the following feature subset is likely to cover a significant 

number of use cases arising in the SAS-Python integration context: 

 Ability to invoke Python scripts: the ability to invoke Python scripts from SAS is the 

first and perhaps the only strictly necessary requirement.   

 Ability to transfer data from SAS to Python and Python to SAS: the ability to transfer 

data between SAS and Python semi-automatically is one of the first steps that could 

enhance the usability of the integration significantly. Data to be transferred could be: 
(a) tables representing datasets used by (or produced during) analyses; (b) scalar 

values that could be used to govern specific behaviors in the Python script; (c) 
binary payloads representing data that might not readily fit into a tabular form (for 

example, PMML models or network graph representations).  

 Ability to capture output and error streams from Python: the ability to automatically 

capture output and error streams and inject them into SAS logs, outputs, or reports 
will make information that is potentially not present in data returned from Python 

available to the user without the user having to process/search log files. 

 Ability to retrieve plots generated in Python: the ability to automatically capture plots 
and inject them into SAS reports is likely to make information (and insights) that is 

potentially not readily available in the data returned from Python available to the 

user.   

 Ability to set/modify various parameters that modify the behavior of the integration 
component such as Python installation to use, turning on (or off) plot capture, 

whether or not to keep the Python program alive, etc. Whenever there is a design 
decision to be made and no clear winner emerges, it is probably desirable that the 

user be able to switch between various options elegantly without having to modify 

the code of the integration component. 

It is also desirable that the integration component is light-weight and minimally intrusive in 

both the SAS and Python environments. 

While the feature subset is enumerated in the context of SAS-Python integration, they are 

likely to apply to other similar integration use-cases and should probably be considered 

during the development of similar integration components. 

ARCHITECTURE OVERVIEW 

While it is possible to provide a platform-independent mechanism that works on various 

operating systems, the remainder of this paper restricts its scope to the Windows platform. 

The general idea driving the design of the architecture for the SAS-Python integration 

solution proposed in this paper is to hide from the end-user, as much as possible, the 
technical details relating to the integration and let the user focus on using the integration 

instead. In other words, the integration solution should allow the end-user to focus on using 
the integration as opposed to having to exercise (or learn) the nitty-gritty technical details 

about the integration itself. The user should be allowed to focus on their task (for example, 
perform network analytics computations using the igraph library on data from SAS) instead 

of worrying about how to capture the output stream from Python.  

Python provides an ability to specify the script to run in a file form as a command line 

argument; it is also possible to provide the script through an input stream. The ability to 

invoke Python (or any other program) through SAS will satisfy the first requirement 



3 

discussed in the previous section. SAS provides multiple mechanisms to achieve this: the 
SYSTASK statement, the X statement, the CALL SYSTEM routine, and the %SYSEXEC 

macro. However, when the other requirements from the previous section are considered, 
the idea of a separate component managing interactions with the Python program begins to 

gain traction. This component will be in-charge of creating temporary folders, managing 
temporary files, managing the Python program (process) lifetime, capturing the output and 

error streams, etc.  

The details of using the aforementioned component can be encapsulated into a SAS helper 

script file that the end-user can use. This script will surface macros to the end-user that can 

be used as entry points into the integration pipeline. This script file will also be responsible 
for insulating the end-user from the details relating to data transfer between SAS and 

Python and injecting output and error streams from the Python process into SAS reports. 

A helper Python script (module) will be responsible for insulating the end-user from the 

details relating to capturing plots, converting data between SAS datasets to pandas data 
frames (or other Python-native representations), installing required Python packages if 

necessary etc.  

The SAS-Python integration solution described in this paper is delivered as single a 

component (referred to as “SASnPy integration component”; .ZIP file) that can be 

downloaded and used. The component will have three major subcomponents: a helper SAS 
script file (.SAS file), a core integration binary component (.DLL file), and a helper Python 

script file (.PY file); see Figure 1. The component will also contain other files (text files 

serving as templates etc.) that might be used by any of the three major subcomponents.  

 

 

Figure 1: Sub-components of the SAS-Python integration component 

 

The SAS helper file will be included into the user’s SAS program (%INCLUDE) and will be 
executing in the SAS session along with the user’s SAS script. The integration binary 

component will be loaded into the SAS session upon initialization and will instantiate a 
Python process. The helper Python script and the user’s Python script will be running in the 

Python process instantiated by the integration binary. Figure 2 illustrates the activity 
sequence involved in executing a Python script from the user’s SAS script using the SASnPy 

integration component. Separate sequences are involved in other activities such as 

transferring data between SAS and Python. 

 



4 

 

 

 

Figure 2: Example activity diagram for the execution of a Python script from SAS. 

 

 

IMPLEMENTATION OVERVIEW 

The implementation, source code, and related information are available under the MIT 

license at https://github.com/svglolla/sasnpy. This section will provide an overview of some 

of the key implementation details. 

CORE INTEGRATION COMPONENT (SASNPY.DLL) 

The core integration binary component (sasnpy.dll) is developed as a .NET class library in 

C#. The community edition of Visual Studio 2017 was used to develop this component. The 

project uses a set of compile-time libraries through the UnmanagedExports nuget 
(Giesecke, 2012) to expose the various methods in the component as C-style methods for 

use in SAS.  

 

https://github.com/svglolla/sasnpy


5 

Some of the key methods exposed by this component are as follows: 

 PyStartSession(): initialize a Python process and load helper modules. 

 PyEndSession(): shutdown an open Python session, close the process, and conduct 

clean-up activities. 

 PySetPath(): used to set the Python installation to be used to execute the user's 

Python script. 

 PyExecuteScript(): used to execute the user's Python script. This method is also 
responsible for capturing (and processing) output and error streams from the Python 

process and making them available for use by the SAS helper script. 

 PySessionTempLocation(): used to get the temporary folder location where 

intermediate files are created for the consumption of various sub-components. 

 PySetInputTable(): used to induce information relating to a SAS dataset into the 

Python session. 

 PySetInputScalar(): used to induce a scalar value into the Python session. 

 PyGetOutputTable(): used to get information relating to a dataset in Python into the 

SAS session. 

 PyGetOutputScalar(): used to get the value of a scalar object in the Python session 

into the SAS session. 

The end-user does not have to be aware of these methods or their usage. These methods 

will be invoked almost exclusively through the SAS helper script file sub-component.  

PYTHON HELPER SCRIPT (SASNPY.PY) 

The .NET component instantiates a Python process and then loads the Python helper script 

file as a module. The Python helper script/module exports various methods to manage the 

execution of the user's Python script.  

This script defines various helper methods that are used by the .NET component. These 

methods are used to set input tables, set input values, get output tables, get output values, 
and to run user scripts. Data tables sent from the SAS session are converted to pandas data 

frames if the pandas library is installed; if pandas is not installed, data tables are 
represented as a list of lists. If matplotlib is available, the script loads the package and then 

reroutes the pyplot.show() from matplotlib to automatically capture any plots created by the 

user script. 

Some of the key methods exported by this script/module are as follows: 

 execute_script(): used to execute user's Python code in the current session. 

 reroute_pyplot_show(): used to reroute the pyplot.show() from matplotlib to 

pyplot_show_handler(). 

 pyplot_show_handler(): save a plot generated by user code to the disk instead of 

showing it on the screen. 

 entry_handler(): used to conduct initialization tasks during module load. 

 exit_handler(): used to conduct clean-up tasks during session end. 

 set_input_table(): used to induce a data table from SAS into the global namespace. 

 set_input_scalar(): used to induce a scalar value from SAS into the global 

namespace. 



6 

 get_output_table(): used to route a table-like object (for example, a pandas data 

frame) from Python back into the SAS session. 

 get_output_scalar(): used to route a scalar value from the Python back into the SAS 

session. 

The end-user does not have to be aware of these methods or their usage. These methods 

will be invoked almost exclusively through the .NET binary component. 

SAS HELPER SCRIPT (SASNPY.SAS) 

The SAS helper script defines various SAS macros that make using various features of the 
SAS-Python integration component easy to use. The macros encapsulate various details 

relating to loading the .NET binary component and insulate the user from the same. These 
macros are to be used directly in the user's SAS script and hence the user should familiarize 

themselves with the usage of these macros. The user will have to include (using 

%INCLUDE) this script file in their SAS script to use the SAS-Python integration component. 

Some of the key macros exported by this script are as follows: 

 %PyInitialize(): after including the helper script file in the user's SAS script, this is 
the first macro that is to be used. This macro uses the PROTO procedure to 

prototype the various methods exported by the .NET component for further use. This 
macro also uses FCMP procedure to define various functions used by other macros 

defined in the SAS helper script. 

 %PySetPath(): used to specify the path of the Python installation to use for 

executing the user's Python script. 

 %PyStartSession(): used to initiate a Python session through the integration 

component. 

 %PyEndSession(): used to terminate a Python session currently in use through the 

integration component. 

 %PySetInputTable(): used to induce a SAS dataset into the Python session. 

 %PySetInputScalar(): use to induce a scalar value into the Python session. 

 %PyGetOutputTable(): used to bring back a table-like object from the Python 

session back into SAS. 

 %PyGetOutputScalar(): used to bring back a scalar value from the Python session 

back into SAS. 

 %PyExecuteScript(): used to send Python code to the integration component for 

execution in the Python session. 

 %PySetOption(): used to set/modify the values for various options that govern the 

behavior of the SAS-Python integration component. 

 

USING THE IMPLEMENTATION 

The following code snippets provide an example of how the user’s SAS and Python scripts 
could use the SAS-Python integration component. More examples can be found at 

https://github.com/svglolla/sasnpy. 

 

https://github.com/svglolla/sasnpy


7 

To use the component, the SAS-Python integration component zip file matching the bit-ness 
(32-bit or 64-bit) of the SAS installation has to be downloaded and extracted. For the 

purpose of the following example, assume that the files have been extracted to "C:/sasnpy". 
Also assume that the Python installation to use is located at "C:/Python3.6/Python.exe" and 

the user’s Python script is located at "C:/scripts/test.py". 

 

Example SAS script file: 

 

/* Include SASnPy helper script */ 

%include "C:/SASnPy/sasnpy.sas"; 

 

/* Initialize/define functions required for SAS-Python Integration */ 

%PyInitialize("C:/SASnPy"); 

 

/* Set Python installation to use */ 

%PySetPath("C:/Python3.6/Python.exe"); 

 

data _null_; 

 

/* Start Python session */ 

%PyStartSession(); 

 

/* Send data tables to Python */ 

%PySetInputTable("air_ds", sashelp.air); 

%PySetInputTable("comet_ds", sashelp.comet); 

 

/* Send scalar data to Python */ 

%PySetInputScalar("max_iter", 42); 

%PySetInputScalar("my_name", "sasnpy"); 

 

/* Execute script */ 

%PyExecute("C:/scripts/test.py", result); 

 

/* Get data tables from Python */ 

%PyGetOutputTable("py_ds1", work.pyd1); 

%PyGetOutputTable("py_ds2", work.pyd2); 

 

/* Get scalar data from Python */ 

%PyGetOutputScalar("py_res1", abc); 

%PyGetOutputScalar("py_res2", xyz); 

 

put "abc = " abc; 

put "xyz = " xyz; 

 

/* End Python session */ 

%PyEndSession(); 

 

run; 

 

proc print data=work.pyd1; run; 

proc print data=work.pyd2; run; 

 

 



8 

Example Python script file: 

 

import pandas as pd 

 

# Induced from SAS 

# air_ds: pandas data frame 

# comet_ds: pandas data frame 

# max_iter: numeric scalar 

# my_name: string scalar 

 

air_ds.describe() 

comet_ds.describe() 

for i in range(max_iter): 

    print(i) 

     

print("My name is " + my_name) 

 

data1 = {'Name': ['Alpha', 'Bravo', 'Charlie'], 

        'Age': [22, 35, 29]} 

 

data2 = {'Name': ['Alpha', 'Bravo', 'Charlie'], 

        'Code': ['AG', 'BT', 'CQ']}      

 

py_ds1 = pd.DataFrame.from_dict(data1) 

py_ds2 = pd.DataFrame.from_dict(data2) 

py_res1 = 12.34 

py_res2 = "This works" 

 

# Available for retrieval from SAS 

# py_ds1, py_ds2: data frames 

# py_res1, py_res2: scalars 

 

CONCLUSIONS & FUTURE WORK 

A new framework for integrating Python into Base SAS® on the Microsoft Windows platform 
has been presented. An enumeration of desirable features for SAS-Python integration and 

an architecture to achieve those features have been presented. An open-source 
implementation of the architecture (under the MIT license) can be accessed at 

https://github.com/svglolla/sasnpy. The implementation allows end users to focus on using 

the SAS-Python integration instead of having to focus on the technical details of the 
integration itself. Technical details are abstracted away from the user and encapsulated into 

sub-components in the implementation that can be used via convenient macros.  

While the new framework presents a light-weight and easy-to-use SAS-Python integration 

pathway, there is still plenty of scope for improvement. Following are some points to be 

considered for future work: 

 The current implementation is limited to the Microsoft Windows platform; the 
proposed architecture could be implemented in a platform-independent manner to 

remove the limitation. 

 The current implementation does not provide support for the transfer of binary 
objects between SAS and Python; adding this feature will allow users to exchange 

non-tabular data objects (such as model representations) easily. 

https://github.com/svglolla/sasnpy


9 

 The current implementation does not support the use of non-local Python engines; 
adding this feature will allow SAS-Python integration to take advantage of remote 

Pythons installations (possibly as services) that offer better performance.  

 The current implementation does not support asynchronous script execution or 

multiple concurrent Python sessions; adding this feature will allow SAS-Python 
integration to allow the user to execute large Python jobs without blocking the 

execution of the user’s SAS scripts when warranted. 

 The current implementation does not provide any fault-tolerance; if a Python process 

shuts down unexpectedly or is stopped, the job/script submitted to the Python 

process is lost. Adding this feature to the implementation will improve the reliability 

of the integration. 

 Further abstraction (and parametrization) of the implementation is possible in a 

manner that will allow the use of the implementation for engines other than Python. 

 

REFERENCES 

SAS Institute Inc. 2009. “Enhancements in SAS/IML® 9.22 Software.” Accessed March 23, 

2019. https://support.sas.com/rnd/app/iml/IML922.html  

Hall, Patrick, Myneni, Radhika and Zhang, Ruiwen. 2015. "Open Source Integration using 

the Base SAS Java Object." Accessed March 23, 2019. 
https://github.com/sassoftware/enlighten-

integration/blob/master/SAS_Base_OpenSrcIntegration/SAS_Base_OpenSrcIntegration.pdf  

SAS Institute Inc. 2015. "SAS Software: Open Source from SAS Software." Accessed March 

23, 2019. https://github.com/sassoftware  

Giesecke, Robert. 2012. "UnmanagedExports 1.2.7: Unmanaged Exports (DllExport for 

.Net)." Accessed March 23, 2019. https://www.nuget.org/packages/UnmanagedExports 

 

CONTACT INFORMATION  

Your comments and questions are valued and encouraged. Contact the author at: 

Venu Gopal Lolla 
Oklahoma State University 

venu.lolla@okstate.edu 
 

 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or 
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA 

registration.  

Other brand and product names are trademarks of their respective companies.  

 

https://support.sas.com/rnd/app/iml/IML922.html
https://github.com/sassoftware/enlighten-integration/blob/master/SAS_Base_OpenSrcIntegration/SAS_Base_OpenSrcIntegration.pdf
https://github.com/sassoftware/enlighten-integration/blob/master/SAS_Base_OpenSrcIntegration/SAS_Base_OpenSrcIntegration.pdf
https://github.com/sassoftware
https://www.nuget.org/packages/UnmanagedExports

