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ABSTRACT

How might the clinical trial that you design today perform in the future? Will your design
enable you to reach the target patient enroliment fast enough while staying within budget?
This paper shows how SAS® Clinical Trial Enrollment Simulator, built on SAS® Optimization
software and integrated with machine learning, gives pharmaceutical companies and clinical
research organizations the power to predict the future performance of their clinical trial
enrollment designs in real time. Furthermore, combined use of simulation, machine learning,
and optimization creates the option to deploy enroliment simulations in real-time analytical
portals. A numerical example is used to describe the development of a clinical trial enrollment
process simulation and to outline the steps of using output data generated from this
simulation to instantaneously predict patient enrollment for any given scenario and to
recommend site activationsto deliver target enroliment with high confidence.

INTRODUCTION

SAS recognizes how critical it is for clinical research organizations and pharmaceutical
companies to have access to strategic decision-support tools to design better patient
enrollment plans and accurately estimate cost. Cognizant (2015) reports that 80% of clinical
trials fail to meet enrollment timelines and that one-third of phase III clinical trial study
terminations stemfrom poor patient enrollment planning. Often the problemis caused by the
lack of accuracy in gauging the time that it takes to reach target patient enroliment and in
estimating the total cost of starting clinical research efforts in new countries, activating clinical
research sites, and screening and enrolling patients in clinical trials. All of this leads to delays
in getting medicines to the market and can result in significant budget shortfalls.

This paper presents the SAS technology that will help you overcome the three primary
challenges of clinical trial enrollment planning (Handelsman 2012):

e The patient enrollment process consists of a long sequence of dynamic events.

e The hierarchical relationship among country startups, site activations, and patient
screening and enrollment complicates the process of design and analysis of patient
enroliment.

e Enrollment planning must be driven by country, site, and patient data sets, and the
solution must be robust to the data uncertainty and scalable to any humber of countries
and sites.

SAS Clinical Trial Enrollment Simulator addresses clinical trial enrollment planning questions
for SAS customers. It is made available through a web interface as software as a service. This
paper has two objectives:

e tointroduce you to SAS® Simulation Studio of SAS Optimization software and showcase
how this technology enables you to create flexible, scalable, data-driven discrete-event
stochastic simulation models of clinical trial enrollment processes



e to demonstrate how an integrated use of SAS Simulation Studio with machine learning
and optimization will enable you to almost immediately make patient enroliment
predictions and site-selection recommendations

You will learn how to exploit scalable and data-driven discrete-event stochastic simulation
models of SAS Simulation Studio to develop risk-sensitive enrollment plans. Furthermore, you
will be equipped with the capability to perform fast scenario analysis and make real-time site-
selection decisions.

AN ILLUSTRATIVE CLINICAL TRIAL ENROLLMENT PROCESS

This section discusses how you can use SAS Simulation Studio to represent the illustrated
process flow. As a realistic representation of a clinical trial enrollment process, consider the
illustration in Figure 1, which demonstrates the need to estimate the number of patients who
can be enrolled in a clinical trial within a specified time horizon (such as within the next 12
months). This time-dependent key performance indicator (KPI) is denoted throughout the
paper as Y(t) to represent the total number patients enrolled in the clinical trial—summed
across all site enrollments—by time t (measured in days).

There are three consecutive events that represent the clinical trial timeline and contribute to
the construction of a risk profile for Y(t):

e starting clinical research effortsin a country
e activating the clinical research sitesin a country
e enrolling and tracking patients who arrive at eachsite

These events connect through a sequence of random subprocesses: country startup delay;
site identification delay; site activation delay; site enrollment capacity; arrivals of patients to
the site; and finally, the screening of each patient, which might result in the enrollment of the
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patient in the clinical trial. Notice that a patient is enrolled in the clinical trial after passing
the screening and before the execution of the patient’s response model and the visit schedule.
Therefore, generation of any patient-specific data fromthe patient’s response model and visit
schedule takes place after the KPI of interest in this paper is updated. It is for this reason that
the focus is naturally on country-specific and site-specific events.

The software that is used to create the clinical trial enrollment process flow in Figure 1 is SAS
Simulation Studio, which is a Java-based application for building and working with discrete-
event simulation models (Hughes, Pratt, and Biller 2018). SAS Simulation Studio models
dynamic systemoperations as a discrete sequence of events, each of which occurs at a specific
point in time and triggers a change in system state. Furthermore, objects move within the
discrete-event simulation as entities. The three types of entities present in clinical trials are

listed in Table 1 along with their attributes.

Entity Attributes

Country Startup delay
Number of sites

Site Startup delay

Identification delay

Site enroliment capacity

Site patient enroliment rate
Patient screening failure probability
Patient Arm identification

Patient armassignment

Patient site visit schedule

Patient dropout probability

Table 1. Clinical Trial Enroliment Simulation Entities and Attributes

In the planning phase, there is uncertainty about country-specific startup delay, site-specific
startup and identification delays, enroliment capacity, patient enrollment rate, and patient
screening failure probability listed in Table 1. Information is provided by expert users for
minimum, most likely, and maximum values for each country and site attributes. Table 2 lists
these attributes.

Source of Uncertainty | Expert Opinion 1 | Expert Opinion 2 | Expert Opinion 3
Country startup delay Minimum Most likely Maximum
Site startup delay Minimum Most likely Maximum
Identification delay Minimum Most likely Maximum
Enroliment capacity Minimum Most likely Maximum
Site enrollment rate Minimum Most likely Maximum
Screen failure probability Minimum Most likely Maximum

Table 2. Information Elicited from Expert Users for Enroliment Simulation Inputs

SAS considers any stochastic simulation to consist of systemlogic and simulation inputs. For
a clinical trial enrollment simulation, the process flow in Figure 1 plays the role of the system
logic, and the information in Table 2 leads to the construction of the probabilistic models to
represent the simulation inputs. Sampling realizations of system inputs and applying the
systemlogic in SAS Simulation Studio enable you to generate predictions of KPIs, such as the
number of patients who are expected to enroll in the clinical trial within the next sponsor-
specified number of days. Traditional simulation output analysis quantifies the uncertainty



about the values that are predicted for enrollment within a given time horizon. Finally,
integration with machine learning and optimization enables fast scenario analysis and real-
time site selection to attain a target patient enrollment within the minimum number of days.

As an illustrative example, this paper presents an example application where a single country
with 10 sites is considered. The inputs of Table 3 describe uncertainty for the numerical
example at the most basic level.

Simulation Inputs Characterization Simulation Inputs Characterization
Country startup delay TRI (5,10,30) Site 1 startup delay TRI (90,105,120)
Identification delay TRI (0,5,15) Site 2 startup delay TRI (30,45,60)
Enrollment capacity TRI (1,150,300) Site 3 startup delay TRI (90,105,120)

Screen failure chance | TRI (0.00,0.15,0.30) Site 4 startup delay TRI (120,135,150)

Site 1 enrollment rate | TRI (0.25,0.50,0.75) Site 5 startup delay TRI (150,180,190)

Site 2 enrollment rate | TRI (0.15,0.30,0.45) Site 6 startup delay TRI (90,120,150)

Site 3 enrollment rate | TRI (0.20,0.40,0.60) | Site 7 startup delay TRI (90,120, 150)

Site 4 enrollment rate | TRI (0.25,0.50,0.75) Site 8 startup delay TRI (75,90,105)

Site 5 enrollment rate | TRI (0.35,0.70,1.05) Site 9 startup delay TRI (150,180,210)

Site 6 enrollment rate | TRI (0.15,0.30,0.45) | Site 10 startup delay TRI (75,90,105)

Site 7 enrollment rate | TRI (0.35,0.70,1.05) | Site 9 enrollment rate | TRI (0.40,0.80,1.20)

Site 8 enrollment rate | TRI (0.25,0.50,0.75) | Site 10 enrollment rate | TRI (0.35,0.70,1.05)

Table 3. Representative Numerical Example: Simulation Inputs (unit of time: day)

As is the common practice, the three-parameter triangular distribution (denoted by TRI in
Table 3) is used to capture the uncertainty associated with each of the six sources of
randomness (Elkins et al. 2007). Despite Table 2 having only six entries, note that those
starting fromthe third row are repeated for each of the 10 countries, resulting in 51 different
stochastic inputs to be modeled for the single-country, 10-site setting. The following questions
are to be answered via SAS Simulation Studio and its integrated use with machine learning
and optimization:

1. Under the country, site, and patient assumptions of Table 3, how many patients could be
enrolled in this clinical trial within the next 12 months, and how much risk is in this
prediction?

2. Which of the stochastic inputs in Table 3 has the highest impact on the mean enroliment?

3. How fast would patient enroliment increase with time, and what would be the value of
patient enrollment at a specific point in time and at specific values of the simulation inputs
in Table 3?

4. What is the optimal set of sites to activate in order to enroll at least ¢ patientsin the
minimum amount of time?

Answering these questions can be challenging, especially under high levels of uncertainty.
The rest of the paper demonstrates the power of SAS Simulation Studio to help you find
answers. For the first time, you will also see the most recent SAS technology for scenario
analysis and site selection in real time so that you are better equipped to answer your
sponsor’s what-if questions almost immediately. First, the paper describes how you can use
SAS Simulation Studio for KPI generation and uncertainty quantification to answer the first
two questions. Then, it builds on machine learning and optimization to address the last two
questions and deliver on-demand performance prediction and site selection.




KPI GENERATION, RISK CALCULATION, AND SENSITIVITY ANALYSIS

CLINICAL TRIAL ENROLLMENT SIMULATION: LOGIC AND INPUTS

SAS Simulation Studio captures the logic in Figure 1 by using the entities and attributes shown
in Table 1 in drag-and-drop construction. The power of SAS Simulation Studio stems from
scalable, data-driven, flexible modeling of dynamic and stochastic systems by building on this
construction method. Figure 2 illustrates a simplified view of how the blocks available in SAS
Simulation Studio for drag-and-drop construction lead to a clinical trial enrollment simulation
model and experimental design view. The scalability, data-driven nature, and flexibility of this
simulation model are discussed next.

SAS Simulation Studio - Clinical Trial Simulation Model View

Standard A)| | Advanced D) &
2| | =
<? Entity Generator @ Batch e 3 £ ‘_,J o 3 : N
4 L - . =

o 2% ¢ & -
SE; Value Generator @ Unbatch = 5
r M - - = -A ':; ! z A ":V
J\é Disposer | D Clone i N By 1 =
,]ﬂﬁ Queue # Gate - - )
— T N s

val % .
$£ Delay E Valve 3 - —
Sdz Server ﬁa) Formula e =:

r - N
Z Modifier {3 Connector ,‘ kb
. R
7 = = A
Er Extractor ‘t» | Caster & = I o C &
= Gt +er Py
= r — . X P o/ & — IS
Wi Submodel 3Ry Tiedar |} 2 R
ij Switch p’ 7 E| “‘s &
EN Selector lﬂ SAS Program e

i | Number Holder

A String Holder

\‘_:j Entity Filter
s

@ Entity Group Holder

Factors

D\;nar¥1ic Input Détapath

;lj Numeric Source @ Stopper =
é? Text Source Resource
Dl seize
Counter [ 3 Seize
D )
( L) Time Now (3 Release
.

Data and Display

>»

5%3¢ Resource Pool
o

Clinical Trial Simulation

9 Bucket r\g-& Fissource Sckatibir Experimental Design View
ﬁt} Probe \;_s‘:}é Resource Agenda

Figure 2. SAS Simulation Studio: Blocks, Model Design, and Experimental Design

e SAS simulation of clinical trial enrollment planning is scalable because it gives you the full
power to choose any number of countries and any number of sites, each with its own
patient enrollment model, without making any changes to the logic of the existing
simulation. This is because SAS Simulation Studio reads country and site characterizations
from SAS data tables. In the numerical use case, there is a single country with 10 sites.
Therefore, the country data set contains a single row, and the site data set contains 10
rows. If you want to use the simulation for 200 different sites, all you have todo is update
the country and site SAS data sets without changing the simulation logic (that is, the
model view of SAS Simulation Studio in Figure 2). This is how SAS Simulation Studio
enables you to build scalable simulations.

e SAS clinical trial enrollment simulation is data-driven because it enables you to
dynamically create input data paths and store the clinical trial enroliment input and output
data in the SAS data tables. As illustrated in Figure 2, you can specify the path to each
country, site, and patient data set as a factor in the experimental design window. This
enables you to readily change the content of the input data outside the simulation by
directly replacing existing sets of input data with different data sets that you might want



to experiment with. Furthermore, you can easily change the location that the input data
are read from; this aspect of the simulation design is treated independently from the
simulation model and simulation output analysis. Finally, input data are not necessariy
read at the beginning of the simulation. The input data can be called into the simulation
logic at any time during the simulation run.

e SAS clinical trial enrollment simulation is flexible because the modular model development
of SAS Simulation Studio makes it possible for you to easily incorporate the changes to
the process timeline through drag-and-drop construction, frequently without any impact
on a significant portion of the existing model. Often, modifying a portion of the process
flow can cause gridlock during a simulation run. But because of the nonblocking queue
block—unique to SAS Simulation Studio—this is almost nevera concern. Thus, the clinical
trial enrollment model, developed in SAS Simulation Studio, is entirely flexible and plays
a key role during the validation phase of the underlying discrete-event simulation.

After you use its drag-and-drop functionality to construct the patient enrollment simulation
logic, SAS Simulation Studio captures the uncertainty in the inputs that drive the process
logic. It propagatesinput uncertainty through the simulation during execution and quantifies
the impact of the input uncertainty in the KPIs through confidence intervals and risk profiles
that are obtained from many potential future sample paths of the clinical trial enrollment
plans. Because SAS Simulation Studio can perform automated collection of output data for
experimental design of any size and can store the resulting simulation outputs in SAS data
tables, you can conduct extensive statistical output analyses and learn from the enroliment
simulation outputs.

ANALYZING OUTPUTS FOR KPI GENERATION AND RISK QUANTIFICATION

When researchers weigh the benefits of using discrete-event simulations for studying complex
and dynamic stochastic systems, such as clinical trial patient enrollment processes, the
emphasis is usually on being able to represent the system behavior as it is. However, any
discrete-event simulation is foremost a data generation program to answer questions 1 and
2 earlier in the paper. Figure 3 displays the results of using simulation-generated output data
to predict the KPI and to analyze the risk in KPI prediction and sensitivity of mean KPI to the
means of inputs.

With the KPI chosenas the number of patients enrolled in the clinical trial within the next 12
months, 5,000 independent replications of the clinical trial enrollment simulation are
performed; the resulting 5,000 rows and 52 columns of data are stored as the simulation
output data in SAS data tables. There are 5,000 rows of simulation outputs because 5,000
replications of the clinical trial enrollment simulation were performed. There are 52 rows of
data because one column stores the realizations of the KPI (one per replication); one colurm
stores the realizations of the country startup delays that are generated from the triangular
distribution with a minimum of 5 days, a most likely value of 10 days, and a maximum of 30
days; and the remaining 50 columns store the realizations of the site-specific inputs shown
in Table 3. This is the simulation-generated output data set that has been statistically
analyzed by JMP® Pro software and results in the simulation output analysis presented in
Figure 3.

A close look at the KPI risk profile that is displayed in the left-hand side of Figure 3 reveals
an expected enrollment of 889 patients. This average prediction of patient enrollment is
further estimated to fall between 887 patients and 892 patients with a 95% probability. There
is also a 10% chance of enrolling fewer than 780 patientsand a predicted 2.5% chance that
1,054 or more patients might be enrolled in the study within the next 12 months. This
completes the answer to the first question and presents an example of the risk analysis that
you can carry out using SAS Simulation Studio and JMP Pro software for enrollment planning.
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Figure 3. Clinical Trial Enroliment Simulation Output Analysis (Unit of Time: Day)

MEASURING SENSITIVITY OF MEANKPI TO SIMULATIONINPUTS AND TIME

The right-hand side of Figure 3 displays results of the sensitivity analysis and answers the
second question: the site enrollment capacity, especially at Site 7 and Site 10, appears to be
the input with the highest impact on the mean number of patients who can be enrolled in the
clinical trial within the next 12 months. However, what is missing from the output analysis in
Figure 3 is how the patient enrollment changes with time. Figure 3 considers only a planning
horizon of 12 months. If you start with a planning horizon of 3 months, you can further
analyze a simulation output data set obtained from, for example, 34 different scenarios in
which each scenario corresponds to a different horizon length. Consequently, you would be
analyzing a 53-column simulation output data set with 170,000 (=34*5000) rows and obtain
a plot with patient enroliment on the Y axis, time in months on the X axis, and each curve

corresponding to a value of the quantile. An example of such a plot is shown in Figure 4.
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Figure 4. Sensitivity of Patient Enroliment Quantiles (Y Axis) to the Time (X Axis)

USING MACHINE LEARNING FOR FAST SCENARIO ANALYSIS

Despite such a comprehensive analysis of the risk in strategic patient enroliment planning,
the results displayed in Figures 3 and 4 might not be sufficient to answer what-if questions in
real time. Forexample, your sponsor might define a completely new scenario—say, Scenario
1—which you have not simulated and which you have not used for any of the analyses
reported in Figures 3 and 4. Here are the details of Scenario 1:

e All simulation inputs except site enroliment capacity and site-dependent patient screening
probability are assumed to be equal to the average values of probability distributions
tabulated in Table 3. For example, Scenario 1 sets the country startup delay to 15 days;
this is the average of 5 days, 10 days, and 30 daysin Table 3, where these three numerical
values represent minimum, most likely, and maximum values for country startup delay,
as described in Table 2.

e Enrollment capacity and screening probability are 200 patients and 20%, respectively.
e The sponsorwantsto know the number of patients who might enroll within 13.5 months.
The objectiveis twofold:
e to predict the enrolliment in real time for Scenario 1 that is specified by the sponsor
e toanswerthree additional questions, each representing a different scenario, in real time:
v" Scenario 2: What would enrollment predictions be six months later?
v' Scenario 3: What if the site enrollment capacities were reduced by 10%?
v' Scenario 4: What could push enrollment predictions to the lower quantile curves?



What is important to notice is that none of the four scenarios have been simulated in the
previous section. SAS machine learning learns from the simulation outputs, which are a
170,000-row, 53-column data set shown in Figure 5, to approximate the cumulative patient
enroliment by a specified time. Specifically, patient enroliment is approximated by a neural
network whose response variable correspondsto 170,000 different observations of Y(t)—the
total number of patients enrolled in the clinical trial by time t—recorded during the clinical
trial enrollment simulation runs. This is the first column of the simulation output data set in
Figure 5. The second column representsthetime (in days) by which the patient enrollment is
predicted. The remaining 51 columns—startup delay for one country and startup delay,
identification delay, enrolliment capacity, enroliment rate, and screen failure probability for
each of the 10 sites—correspond to inputs of the neural network, each of which is sampled
during 170,000 replications of the simulation model. The probability distributions fromwhich
these inputs are sampled in each replication of the simulation are given in Table 3.
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Figure 5. Illustration of the Simulation Output Data in JMP Pro Software

The 170,000-row simulation output data setis divided into training, validation, and test data
sets (80% training, 10% validation, 10% test). The three tasks of training, validation, and
testing are performed using SAS Visual Data Mining and Machine Learning through the SWAT
package—a Python interface to SAS® Cloud Analytic Services (CAS). You can use the following
code to carry out these steps:

import swat

import os

import pandas as pd

conn = swat.CAS(os.environ['CASHOST'], os.environ['CASPORT'])

df=pd.read csv('SimulationOutputDataSet.csv"')
conn.loadactionset ('sampling"')
conn.upload(df, casout=dict(name='data', replace=True))

res=conn.sampling.stratified (table='data', partind=True, output=dict(
casout=dict (name='data partitioned', replace=True), copyvars='ALL"',
partindname='partition') ,samppct=10, samppct2=10, seed=388264836)



train=

conn.CASTable (name='data partitioned', where='partition=0', casout='train')
valid=

conn.CASTable (name='data partitioned', where='partition=1', casout='valid')
test=

conn.CASTable (name='data partitioned', where='partition=2', casout='test')

inputs = [x for x in df.columns if x != "NumEnrolled']

from dlpy.applications import *
from dlpy.model import *

from dlpy.layers import *

from swat import CAS, CASTable

model = Sequential (conn, model table=CASTable('model', replace=True))
model.add(InputLayer (name="input'))

model.add(Dense (20, act='relu', name='dense'))

model.add (Outputlayer (act="AUTO', name='output'))

optimizer = Optimizer (algorithm=AdamSolver (learning rate=0.001,
learning rate policy='step', gamma=0.9, step size=5),
mini batch size=1, max epochs=200, log level=l)

model.fit(train, inputs=inputs, target='NumEnrolled',6 optimizer=optimizer,
gpu=Gpu(devices=[0]))

res=model.predict (test)

out =

pd.DataFrame (conn.CASTable (res['OutputCasTables'].Name[0]) .to frame())
test set = pd.DataFrame(test.to frame())

test set['out']=out['P NumEnrolled']

from sklearn.metrics import r2 score
r2 score (test set['NumEnrolled'], test set['out'])

model.deploy (path="ENTER YOUR CHOICE', output format='table')
model.get model info ()

Testing exhibits a mean square error of 951.0284 and an R-square of 99.4740%. The entire
process of loading the simulation output data, training a neural network, and testing the
trained model in the cloud takes a total of 3 minutes, 2.86 seconds. By using the resulting
machine learning model of the patient enrollment, you can determine what the four scenarios
correspond to in Figure 6 for a 20% screening probability, and you can observe and measure
sensitivity as you change focus from one scenario to another. Specifically, Scenario 4
represents a reduction of 40% in enrollment capacity and pushes enrollment predictionto a
lower quantile curve in Figure 6. Furthermore, you can find the neural network prediction
accuracy—in comparison to enrollment simulation that estimates mean patient enrollment
within = 1 patient—in Table 4. Although each neural network prediction in Table 4 and Figure
6 is a point estimate with no quantification of risk around the prediction, you can readily
address this issue by performing a Monte Carlo simulation of the neural network fit to
propagate any specified level of variation in the inputs through the patient enrollment process.

Description Scenario 1 Scenario 2 Scenario 3 Scenario 4
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ML Prediction

1,102 patients

1,676 patients

1,593 patients

1,166 patients

Sim Prediction

1,117 patients

1,720 patients

1,626 patients

1,185 patients

RMSE 14.75 23.42 32.22 18.54
ML Run Time 0.0274s 0.0291s 0.0289s 0.0273s
Sim Run Time 6.865 7.86s 7.62s 7.39s

1 Replication

Table 4. Real-Time Enroliment Predictions Obtained from Trained Neural Network
and Comparison to Simulation Mean Enroliment Predictions with £ 1 Patient Error

Why not use the simulation model directly to predict the enroliments presented in Table 4?
The reason is that the neural network allows for nearly instantaneous calculation of the
desired metrics. This is in comparison to the 6.86 seconds that it takes to run a single
replication of clinical trial enrollment simulation lasting 405 days in Scenario 1. Furthermore,
Scenario 1 has been simulated for 1,000 replications to predict mean enrollment within £ 1
patient, resulting in a total run time of 5 minutes, 9.67 seconds. When you are on the phone
with a client trying to win the business, you might need to quickly explore the implications of
a variety of scenarios in real time. Therefore, the solution that is built on the integration of
simulation and machine learning might be better suited to your need to make patient
enrollment predictionsin real time. Furthermore, you are now able to deploy your enrollment
simulation in a real-time analytical portal. Therefore, you have an opportunity to turn this
solution into a widely used analytics within your organization for enrollment planning.

2000 —

Scenario 2

Scenario 1

1,676 patients
1,102

patients &7~

Scenario 4 Scenario 3

1,593 patients

<

Time (Months Time (Months)

Figure 6. Visualizing Fast Scenario Analysis for 20% Screening Failure Probability
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WHAT-IF ANALYSES FOR SITE SELECTION IN REAL TIME

This section considers the situation in which you might want to identify the optimal
combination of the sites to activate in order to ensure that the 0.95 quantile of the total
patient enrollment exceeds 800 patients in the shortest amount of time. This is a stochastic
optimization problem that is formulated as follows:

1. Playing the role of a synthetic data program, the clinical trial enrolilment simulation
generates predictions of site-specific enroliments in each of the 5,000 replications at 34
different points in time. This resultsin a 170,000-row simulation output data set. A subset
of this data set is used in the previous section to perform fast sensitivity analysis. This
section uses another subset of the simulation-generated data set to make site-selection
recommendations in real time. For each site/, the data subset contains 170,000 rows and
two columns, where one column is associated with site enrollment Y;(t) and the other
column is associated with time t. In this section, these data sets are used to characterize
the number of patients enrolled at site i by time t, Yi(t) through its mean E[Y;(t)] and
standard deviation V¥?[Yi(t)].

2. Notice that thetotal patient enroliment Y(t) is the sumof the number of patientsenrolled
at all activated sites. Therefore, Y(t) can be alternatively written as the sum of Y;(t)*Z;, i
=1,2,..,10, where Z;is a decision variable that takes a value of 1 if site j is activated and
0 otherwise. The numerical example considers only 10 sites, but the number of sites
involved in clinical trial enrollment planning can be significantly higher. In that case, Y(t)
can be represented by a normal distribution with a mean that is the sum of E[Yi(t)]*Z;, i
=1,2,..,10, and a variance thatis thesumof V[Y(t)]*zZ,i=1,2,...,10. Denoting the 0.95
quantile of this characterization of Y(t) as Q(t;0.95, Z;, i = 1,2,...,10), the site selection
problem can be formulated as the minimization of T subjecttoQ(7;0.95,2,i=1,2,...,10)
> 800 as a function of the continuous decision variable T = 0 and the binary decision
variables Z;, i = 1,2,...,10. Thus, the identification of the optimal combination of the sites
to exceed a given patient enrollment target with confidence is complicated by the
nonconvex function Q(7;0.95, Z,i=1,2,...,10) with discreteelements z;, i = 1, 2,...,10.

You can solve this stochastic optimization problem by integrating simulation and optimization
with SAS machine learning capability. The functions are identified that best represent the
mean E[Y,(t)] and the standard deviation V¥?[Y/(t)] of the patient enrollment Y/(t) at site i for
i=1,2,...,10. This corresponds to the identification of 20 different function approximations for
the one-country, 10-site numerical example, reducing the stochastic site selection problemto
a deterministic optimization problemthat you can solve using SAS Optimization.

In particular, the local search optimization algorithm enables you to solve problems that have
user-defined black-box constraints such as Q(7;0.95, Z;,i = 1,2,...,10) = 800. Therefore, by
using the local search optimization algorithm of SAS Optimization, you would identify the
optimal action as the activation of all sites and enroll 800 patientsin 306.89 days. You would
also construct an efficient frontier for a range of values for the target patient enrollment (e.g.,
[20,1,800], including the target of 800 patients for the numerical example) on the Y axis and
the corresponding optimal objective function values for the enrollment time on the X axis.
You can use the following code to achieve these objectives:

proc optmodel printlevel=0;
set <num> SITES;
set <num> WEIGHTS;
read data weightData into WEIGHTS=[r];

number A{SITES, WEIGHTS};

read data meanW into SITES=[i= N ] {J in WEIGHTS} <A[i,j]l=col('A'[[])>;
print A;
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number B{SITES, WEIGHTS};
read data stdDevW into SITES=[i= N ] {j in WEIGHTS} <BI[i,jl=col('B'||j)>;
print B;

var Z {SITES} binary;
var T >= 90;
min £ = T;

num alpha = 0.95;

num target;

con c¢l: sum {i in SITES} (Z[4i]*(A[i, 1]

+ sum {k in 2..8 by 3} A[i,k]*(TanH((0.5* (A[i,k+1] + A[i,k+2]1*T))))))

+ probit (alpha) *SQRT (sum {i in SITES} (Z[1]1*B[i,1]

+ sum {k in 2..8 by 3} B[i,k]*(TanH((0.5*(B[1i,k+t1] + B[i,k+2]1*T)))))**2))
>= target;

set TARGETSET = 20 to 1800 by 5;
num optimalT {TARGETSET};
do target = TARGETSET;
put target=;
solve with 1lso / popsize=100 feastol=le-6 absfconv=0 nabsfconv=100
maxgen=100;
solve with nlp relaxint;

optimalT [target] = T;
end;
create data optdata from [target] optimalT;
quit;

proc sgplot data=optdata;

scatter x=optimalT y=target;

xaxis label='Time (Days) ';

yaxis label='Target Patient Enrollment';
run;

In this code, meanW and stdDevW are the two primary data sets that are read into the
formulation of the site-selection optimization problem. Each row of these data sets represents
one of the 10 sites. The columns of meanW store the site-specific weights that are used to
characterize the approximation to the functions E[Yi(t)], i=1,2,...,10. The columns of stdDevW,
on the other hand, capture the site-specific weights that are used to characterize the
approximation to the functions V¥?[Yi(t)], i=1,2,...,10. Figure 6 presents the contents of these
data sets as displayed by the code.

SAS Optimization can solve the site-selection optimization problem from clients other than
SAS, e.g., from Python through the SWAT package. In that case, you need to load the data
sets weightData, meanW and stdDevW into CAS fromthe comma- separated-value (CSV) files
(weightData.csv, meanW.csv, and stdDevW.csv). You can use the following code to identify
the optimal combination of the sites to activate in order to ensure that the 0.95 quantile of
the total patient enrollment exceeds 800 patients in the shortest amount of time:

import swat

import os

import pandas as pd

conn = swat.CAS(os.environ['CASHOST'], os.environ['CASPORT'])

conn.upload file ('weightData.csv')
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conn.upload file ('meanW.csv')
conn.upload file ('stdDevW.csv')

conn.loadActionSet (actionset="optimization")
conn.runOptmodel (

COde= mwrwon

set <num> SITES;

set <num> WEIGHTS;

read data weightdata into WEIGHTS=[r];

number A{SITES, WEIGHTS};
read data meanw into SITES=[i= N ] {Jj in WEIGHTS} <A[i,jl=col ('A'|]|J)>;

number B{SITES, WEIGHTS};
read data stdDevw into SITES=[i= N ] {j in WEIGHTS}
<B[i,j]=col('B"[[])>;

var Z {SITES} binary;
var T >= 90;
min £ = T;

num alpha = 0.95;

num target;

con cl: sum {i in SITES} (Z[i]*(A[i,1l]+sum {k in 2..8 by 3}
A[i,k]*(TanH((0.5* (A[i,k+1] + A[i,k+2]1*T)))))) + probit(alpha)*SQRT (sum {i
in SITES} (Z[i]*(B[i,1]+ sum {k in 2..8 by 3} B[i,k]*(TanH((0.5* (B[i,k+1] +
B[i,k+2]*T)))))**2)) >= 800;

solve with lso / popsize=100 feastol=le-6 absfconv=0 nabsfconv=100
maxgen=100;

solve with nlp relaxint;

quit;

mwmn )

Figure 7 presents a graph of the efficient frontier produced by the code. You can gain two
primary insights from this illustration:

e It would not be possible to enroll 800 patientsin less than 306.89 days.

o Ifthe enrollment time fora combination of sitesis predicted to be, for example, 400 days,
then you could immediately detectthe existence of a better solution to activate the sites
that would be 93 days faster. This insight would be increasingly valuable if you have higher

numbers of potential site activations for the trial of interest.

The choice of objective function and constraints for site selection is restricted to the numerical
example of interest in this paper. You can relax the assumptions of this model to meet the
objectives and constraints of your patient enrollment settings, however complicated they
might be. You can easily incorporate a budget constraint into this formulation. You can also
account for deadlines by which the enrollment target is to be met. Furthermore, you can
extend underlying stochastic site-selection problem to jointly solve personnel capacity
planning problems, especially when you have an upper bound on the number of countries and

sites that you can start up at the same time.
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The SAS System

The OPTMODEL Procedure

A

1 2 3 4 5 6 i 8 9 10
1 | 1436158143 1507.0003482 -1.4014377 0.0013644 10703558556 27059576 -0.0019630  75.6401172 45179851 -0.0065854
2 | 1220197967  -2055.963841 -1.0874751 -0.0005170  -50.9594955 1.5696733  -0.0044860 -381.6923627 -1.2913216  0.0015559
& 46.9599216  7789.4570803 -2.1146813 0.0035098 7902.1326629 21386995 -0.0035018 4454979411 -0.9837982  0.0013828
4 1.3395587  -735.9921886  1.9734897 -0.0037890 -163.9827771 -4.0762237 0.0068157 -508.1686476 -1.7731490  0.0027836
5 | 2209545408 -333.5060595 -3.0427405 0.0088611 3776105198 0.2694441 -0.0059263 -637.8868579 24383769 -0.0082907
6 1249993443 | -96.8861600 0.0131121 0.0171431 87.0589671 -1.8921722 0.0047748 358155021 -1.6188598 0.0139480
T | 13162334593 2115014.6692  0.0037455 -0.0000089 -1449.226246 -2.4024355 00039474 -16657.10633 0.8265954 -0.0014824
8 | 3318833082 5762599919 85876351 -0.1519262 3299050949 25400786 -0.0001881 -123.3129056 13354352 -0.0067915
9 | -130.0887016  -541.9229874 85209830 -0.0249520 -467 3236379 -9.3021366 00270231 21255273926 01901233 0.0000050
10 636117840 1969659702 -3.9861450 0.0154786  -23.1462643 89368210 -0.0296191 1352580443 56558060 -0.0201332

1 2 3 4 5 6 7 8 9 10
1 | 6826.7374068 8037.2823260 -2.4828807 -0.0000054 2741585172  -2.9150497  0.0060597 = 2342023548 3.0861812 -0.0061525
2 -3.5342432 1 104.6277790 05343807 -0.0000137  59.1610915 -1.7640132 0.0035597  -27.6786876 -1.4551303  0.0022012
3 748031660  41.5165104 -2.1989112  0.0051566 1554294898 0.3002151 -0.0001212 | -97.2510418  1.7267496 -0.0000236
4 40.7908199  26.0688638 -2.9552879 0.0034655 = -66.5755257 | 22377680 -0.0059833 76.7363282 0.9807244  -0.0025464
5 | 1785762424 -1317.083046 21246635 -0.0034625 -636.3752726 -3.0625142 0.0046710  -1304.880357 -0.4426227 0.0011830
6 219194204 42.0808925 | 2.4518768 -0.0042534 | 16.0569954 07696596 -0.0023140 -12.5544173 -0.6473990 -0.0051086
7 949825625 37.2588593 -5.7383648 0.0061793 344 1564963 047442838 -0.0025662  -239.6555768  1.3215101  -0.0045732
8 | -101.4696786 440719183 -3.3256081 0.0058482  78.6004289 -2.6212974 0.0057714 | -226.9149321 -1.2324393 -0.0000466
9 127314717 467028731 -0.0002064 -0.0033581 -72.4751057 -1.8596144 00059769 751837158 -3.1766052 0.0089502
10| -739.7296285  -97.7970690 -1.8628756 00022303  23.7038807  -3.4481851 0.0112964  1515.0004194 09722893 0.0001922

Figure 6. Coefficients Characterizing Site Enroliment Function Approximations
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Figure 7. Illustration of Optimal Enrollment Times for Given Targets of Enroliments

15



CONCLUSION

This paper demonstrates how SAS Clinical Trial Enrollment Simulator, built on SAS
Optimization, integrates simulation, machine learning, and optimization to help you design
risk-sensitive enrollment plans in real time, accompanied by advanced analytics to determine
optimal site activations in order to achieve your target enrollments in the shortest time
possible. Throughout the paper, for ease of presentation, the focus is on a numerical example
with a single country and 10 sites, each with its own attributes. It is critical to emphasize that
SAS Simulation Studio is a tool that has been specifically designedto develop scalable, data-
driven, flexible models of dynamic systems that are exposed to high levels of uncertainty.
Therefore, the integration of simulation, machine learning, and optimization would readily
extend to your need to design clinical trial enrollment plans with large numbers of potential
country startups and site activations and with enrollment processes that are significantly more
complex than the one illustrated in Figure 1 of the paper. Furthermore, the solution to the
problem of strategic clinical trial enrollment planning would readily extend to the study of any
complex, dynamic, stochastic systemin any domain. Two examples of such applications are
data-driven decision support for supply chains in manufacturing and patient flow modeling in
health care. The key remains the integration of SAS Simulation Studio with machine learning
and artificial intelligence, which learns fromlarge volumes of simulation-generated data, and
SAS Optimization, which solves the underlying mathematical programs through its wide range
of optimization solvers.
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