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ABSTRACT  

How might the clinical trial that you design today perform in the future? Will your design 
enable you to reach the target patient enrollment fast enough while staying within budget? 
This paper shows how SAS® Clinical Trial Enrollment Simulator, built on SAS® Optimization 
software and integrated with machine learning, gives pharmaceutical companies and clinical 
research organizations the power to predict the future performance of their clinical trial 

enrollment designs in real time. Furthermore, combined use of simulation, machine learning, 
and optimization creates the option to deploy enrollment simulations in real-time analytical 
portals. A numerical example is used to describe the development of a clinical trial enrollment 
process simulation and to outline the steps of using output data generated from this 
simulation to instantaneously predict patient enrollment for any given scenario and to 

recommend site activations to deliver target enrollment with high confidence. 

 

INTRODUCTION  

SAS recognizes how critical it is for clinical research organizations and pharmaceutical 
companies to have access to strategic decision-support tools to design better patient 
enrollment plans and accurately estimate cost. Cognizant (2015) reports that 80% of clinical 
trials fail to meet enrollment timelines and that one-third of phase III clinical trial study 
terminations stem from poor patient enrollment planning. Often the problem is caused by the 

lack of accuracy in gauging the time that it takes to reach target patient enrollment and in 
estimating the total cost of starting clinical research efforts in new countries, activating clinical 
research sites, and screening and enrolling patients in clinical trials. All of this leads to delays 

in getting medicines to the market and can result in significant budget shortfalls.  

This paper presents the SAS technology that will help you overcome the three primary 

challenges of clinical trial enrollment planning (Handelsman 2012):  

• The patient enrollment process consists of a long sequence of dynamic events. 

• The hierarchical relationship among country startups, site activations, and patient 

screening and enrollment complicates the process of design and analysis of patient 

enrollment. 

• Enrollment planning must be driven by country, site, and patient data sets, and the 

solution must be robust to the data uncertainty and scalable to any number of countries 

and sites.  

SAS Clinical Trial Enrollment Simulator addresses clinical trial enrollment planning questions 
for SAS customers. It is made available through a web interface as software as a service. This 

paper has two objectives:  

• to introduce you to SAS® Simulation Studio of SAS Optimization software and showcase 
how this technology enables you to create flexible, scalable, data-driven discrete-event 

stochastic simulation models of clinical trial enrollment processes 
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• to demonstrate how an integrated use of SAS Simulation Studio with machine learning 
and optimization will enable you to almost immediately make patient enrollment 

predictions and site-selection recommendations 

You will learn how to exploit scalable and data-driven discrete-event stochastic simulation 
models of SAS Simulation Studio to develop risk-sensitive enrollment plans. Furthermore, you 
will be equipped with the capability to perform fast scenario analysis and make real-time site-

selection decisions.  

AN ILLUSTRATIVE CLINICAL TRIAL ENROLLMENT PROCESS 

This section discusses how you can use SAS Simulation Studio to represent the illustrated 
process flow. As a realistic representation of a clinical trial enrollment process, consider the 
illustration in Figure 1, which demonstrates the need to estimate the number of patients who 
can be enrolled in a clinical trial within a specified time horizon (such as within the next 12 
months). This time-dependent key performance indicator (KPI) is denoted throughout the 

paper as Y(t) to represent the total number patients enrolled in the clinical trial—summed 

across all site enrollments—by time t (measured in days). 

There are three consecutive events that represent the clinical trial timeline and contribute to 

the construction of a risk profile for Y(t):  

• starting clinical research efforts in a country 

• activating the clinical research sites in a country 

• enrolling and tracking patients who arrive at each site  

These events connect through a sequence of random subprocesses: country startup delay; 

site identification delay; site activation delay; site enrollment capacity; arrivals of patients to 
the site; and finally, the screening of each patient, which might result in the enrollment of the 

Figure 1. A High-Level View of Clinical Trial Enrollment Process Flow 
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patient in the clinical trial. Notice that a patient is enrolled in the clinical trial after passing 
the screening and before the execution of the patient’s response model and the visit schedule. 
Therefore, generation of any patient-specific data from the patient’s response model and visit 

schedule takes place after the KPI of interest in this paper is updated. It is for this reason that 

the focus is naturally on country-specific and site-specific events.  

The software that is used to create the clinical trial enrollment process flow in Figure 1 is SAS 

Simulation Studio, which is a Java-based application for building and working with discrete-
event simulation models (Hughes, Pratt, and Biller 2018). SAS Simulation Studio models 
dynamic system operations as a discrete sequence of events, each of which occurs at a specific 
point in time and triggers a change in system state. Furthermore, objects move within the 
discrete-event simulation as entities. The three types of entities present in clinical trials are 

listed in Table 1 along with their attributes.  

Entity Attributes 

Country Startup delay 

Number of sites 

Site Startup delay 

Identification delay  

Site enrollment capacity  

Site patient enrollment rate 

Patient screening failure probability 

Patient Arm identification 

Patient arm assignment 

Patient site visit schedule 

Patient dropout probability 

Table 1. Clinical Trial Enrollment Simulation Entities and Attributes 

In the planning phase, there is uncertainty about country-specific startup delay, site-specific 

startup and identification delays, enrollment capacity, patient enrollment rate, and patient 
screening failure probability listed in Table 1. Information is provided by expert users for 
minimum, most likely, and maximum values for each country and site attributes. Table 2 lists 

these attributes.  

Source of Uncertainty Expert Opinion 1 Expert Opinion 2 Expert Opinion 3 

Country startup delay Minimum Most likely Maximum 

Site startup delay Minimum Most likely Maximum 

Identification delay Minimum Most likely Maximum 

Enrollment capacity Minimum Most likely Maximum 

Site enrollment rate Minimum Most likely Maximum 

Screen failure probability Minimum Most likely Maximum 

Table 2. Information Elicited from Expert Users for Enrollment Simulation Inputs  

SAS considers any stochastic simulation to consist of system logic and simulation inputs. For 
a clinical trial enrollment simulation, the process flow in Figure 1 plays the role of the system 
logic, and the information in Table 2 leads to the construction of the probabilistic models to 
represent the simulation inputs. Sampling realizations of system inputs and applying the 

system logic in SAS Simulation Studio enable you to generate predictions of KPIs, such as the 
number of patients who are expected to enroll in the clinical trial within the next sponsor-
specified number of days. Traditional simulation output analysis quantifies the uncertainty 
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about the values that are predicted for enrollment within a given time horizon. Finally, 
integration with machine learning and optimization enables fast scenario analysis and real-

time site selection to attain a target patient enrollment within the minimum number of days. 

As an illustrative example, this paper presents an example application where a single country 
with 10 sites is considered. The inputs of Table 3 describe uncertainty for the numerical 

example at the most basic level.  

Simulation Inputs Characterization Simulation Inputs Characterization 

Country startup delay TRI (5,10,30) Site 1 startup delay TRI (90,105,120) 

Identification delay TRI (0,5,15) Site 2 startup delay TRI (30,45,60) 

Enrollment capacity TRI (1,150,300) Site 3 startup delay TRI (90,105,120) 

Screen failure chance TRI (0.00,0.15,0.30) Site 4 startup delay TRI (120,135,150) 

Site 1 enrollment rate TRI (0.25,0.50,0.75) Site 5 startup delay TRI (150,180,190) 

Site 2 enrollment rate TRI (0.15,0.30,0.45) Site 6 startup delay TRI (90,120,150) 

Site 3 enrollment rate TRI (0.20,0.40,0.60) Site 7 startup delay TRI (90,120,150) 

Site 4 enrollment rate TRI (0.25,0.50,0.75) Site 8 startup delay TRI (75,90,105) 

Site 5 enrollment rate TRI (0.35,0.70,1.05) Site 9 startup delay TRI (150,180,210) 

Site 6 enrollment rate TRI (0.15,0.30,0.45) Site 10 startup delay TRI (75,90,105) 

Site 7 enrollment rate TRI (0.35,0.70,1.05) Site 9 enrollment rate TRI (0.40,0.80,1.20) 

Site 8 enrollment rate TRI (0.25,0.50,0.75) Site 10 enrollment rate TRI (0.35,0.70,1.05) 

Table 3. Representative Numerical Example: Simulation Inputs (unit of time: day) 

As is the common practice, the three-parameter triangular distribution (denoted by TRI in 
Table 3) is used to capture the uncertainty associated with each of the six sources of 
randomness (Elkins et al. 2007). Despite Table 2 having only six entries, note that those 
starting from the third row are repeated for each of the 10 countries, resulting in 51 different 

stochastic inputs to be modeled for the single-country, 10-site setting. The following questions 
are to be answered via SAS Simulation Studio and its integrated use with machine learning 

and optimization: 

1. Under the country, site, and patient assumptions of Table 3, how many patients could be 
enrolled in this clinical trial within the next 12 months, and how much risk is in this 

prediction?  

2. Which of the stochastic inputs in Table 3 has the highest impact on the mean enrollment? 

3. How fast would patient enrollment increase with time, and what would be the value of 

patient enrollment at a specific point in time and at specific values of the simulation inputs 

in Table 3? 

4. What is the optimal set of sites to activate in order to enroll at least 𝜑 patients in the 

minimum amount of time? 

Answering these questions can be challenging, especially under high levels of uncertainty. 
The rest of the paper demonstrates the power of SAS Simulation Studio to help you find 
answers. For the first time, you will also see the most recent SAS technology for scenario 
analysis and site selection in real time so that you are better equipped to answer your 
sponsor’s what-if questions almost immediately. First, the paper describes how you can use 

SAS Simulation Studio for KPI generation and uncertainty quantification to answer the first 
two questions. Then, it builds on machine learning and optimization to address the last two 

questions and deliver on-demand performance prediction and site selection.  
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KPI GENERATION, RISK CALCULATION, AND SENSITIVITY ANALYSIS 

CLINICAL TRIAL ENROLLMENT SIMULATION: LOGIC AND INPUTS  

SAS Simulation Studio captures the logic in Figure 1 by using the entities and attributes shown 
in Table 1 in drag-and-drop construction. The power of SAS Simulation Studio stems from 
scalable, data-driven, flexible modeling of dynamic and stochastic systems by building on this 
construction method. Figure 2 illustrates a simplified view of how the blocks available in SAS 
Simulation Studio for drag-and-drop construction lead to a clinical trial enrollment simulation 

model and experimental design view. The scalability, data-driven nature, and flexibility of this 

simulation model are discussed next.  

Figure 2. SAS Simulation Studio: Blocks, Model Design, and Experimental Design 

• SAS simulation of clinical trial enrollment planning is scalable because it gives you the full 
power to choose any number of countries and any number of sites, each with its own 

patient enrollment model, without making any changes to the logic of the existing 
simulation. This is because SAS Simulation Studio reads country and site characterizations 
from SAS data tables. In the numerical use case, there is a single country with 10 sites. 
Therefore, the country data set contains a single row, and the site data set contains 10 
rows. If you want to use the simulation for 200 different sites, all you have to do is update 

the country and site SAS data sets without changing the simulation logic (that is, the 
model view of SAS Simulation Studio in Figure 2). This is how SAS Simulation Studio 

enables you to build scalable simulations. 

• SAS clinical trial enrollment simulation is data-driven because it enables you to 
dynamically create input data paths and store the clinical trial enrollment input and output 
data in the SAS data tables. As illustrated in Figure 2, you can specify the path to each 
country, site, and patient data set as a factor in the experimental design window. This 
enables you to readily change the content of the input data outside the simulation by 

directly replacing existing sets of input data with different data sets that you might want 



6 

to experiment with. Furthermore, you can easily change the location that the input data 
are read from; this aspect of the simulation design is treated independently from the 
simulation model and simulation output analysis. Finally, input data are not necessarily 

read at the beginning of the simulation. The input data can be called into the simulation 

logic at any time during the simulation run. 

• SAS clinical trial enrollment simulation is flexible because the modular model development 

of SAS Simulation Studio makes it possible for you to easily incorporate the changes to 
the process timeline through drag-and-drop construction, frequently without any impact 
on a significant portion of the existing model. Often, modifying a portion of the process 
flow can cause gridlock during a simulation run. But because of the nonblocking queue 
block—unique to SAS Simulation Studio—this is almost never a concern. Thus, the clinical 

trial enrollment model, developed in SAS Simulation Studio, is entirely flexible and plays 

a key role during the validation phase of the underlying discrete-event simulation. 

After you use its drag-and-drop functionality to construct the patient enrollment simulation 

logic, SAS Simulation Studio captures the uncertainty in the inputs that drive the process 
logic. It propagates input uncertainty through the simulation during execution and quantifies 
the impact of the input uncertainty in the KPIs through confidence intervals and risk profiles 
that are obtained from many potential future sample paths of the clinical trial enrollment 
plans. Because SAS Simulation Studio can perform automated collection of output data for 

experimental design of any size and can store the resulting simulation outputs in SAS data 
tables, you can conduct extensive statistical output analyses and learn from the enrollment 

simulation outputs.  

ANALYZING OUTPUTS FOR KPI GENERATION AND RISK QUANTIFICATION 

When researchers weigh the benefits of using discrete-event simulations for studying complex 
and dynamic stochastic systems, such as clinical trial patient enrollment processes, the 
emphasis is usually on being able to represent the system behavior as it is. However, any 
discrete-event simulation is foremost a data generation program to answer questions 1 and 
2 earlier in the paper. Figure 3 displays the results of using simulation-generated output data 

to predict the KPI and to analyze the risk in KPI prediction and sensitivity of mean KPI to the 

means of inputs. 

With the KPI chosen as the number of patients enrolled in the clinical trial within the next 12 
months, 5,000 independent replications of the clinical trial enrollment simulation are 
performed; the resulting 5,000 rows and 52 columns of data are stored as the simulation 
output data in SAS data tables. There are 5,000 rows of simulation outputs because 5,000 
replications of the clinical trial enrollment simulation were performed. There are 52 rows of 
data because one column stores the realizations of the KPI (one per replication); one column 

stores the realizations of the country startup delays that are generated from the triangular 
distribution with a minimum of 5 days, a most likely value of 10 days, and a maximum of 30 
days; and the remaining 50 columns store the realizations of the site-specific inputs shown 
in Table 3. This is the simulation-generated output data set that has been statistically 
analyzed by JMP® Pro software and results in the simulation output analysis presented in 

Figure 3. 

A close look at the KPI risk profile that is displayed in the left-hand side of Figure 3 reveals 

an expected enrollment of 889 patients. This average prediction of patient enrollment is 
further estimated to fall between 887 patients and 892 patients with a 95% probability. There 
is also a 10% chance of enrolling fewer than 780 patients and a predicted 2.5% chance that 
1,054 or more patients might be enrolled in the study within the next 12 months. This 
completes the answer to the first question and presents an example of the risk analysis that 

you can carry out using SAS Simulation Studio and JMP Pro software for enrollment planning. 
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MEASURING SENSITIVITY OF MEAN KPI TO SIMULATION INPUTS AND TIME 

The right-hand side of Figure 3 displays results of the sensitivity analysis and answers the 
second question: the site enrollment capacity, especially at Site 7 and Site 10, appears to be 
the input with the highest impact on the mean number of patients who can be enrolled in the 
clinical trial within the next 12 months. However, what is missing from the output analysis in 
Figure 3 is how the patient enrollment changes with time. Figure 3 considers only a planning 

horizon of 12 months. If you start with a planning horizon of 3 months, you can further 
analyze a simulation output data set obtained from, for example, 34 different scenarios in 
which each scenario corresponds to a different horizon length. Consequently, you would be 
analyzing a 53-column simulation output data set with 170,000 (=34*5000) rows and obtain 
a plot with patient enrollment on the Y axis, time in months on the X axis, and each curve 

corresponding to a value of the quantile. An example of such a plot is shown in Figure 4. 

Figure 3. Clinical Trial Enrollment Simulation Output Analysis (Unit of Time: Day) 
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Figure 4. Sensitivity of Patient Enrollment Quantiles (Y Axis) to the Time (X Axis) 

USING MACHINE LEARNING FOR FAST SCENARIO ANALYSIS 

Despite such a comprehensive analysis of the risk in strategic patient enrollment planning, 
the results displayed in Figures 3 and 4 might not be sufficient to answer what-if questions in 
real time. For example, your sponsor might define a completely new scenario—say, Scenario 
1—which you have not simulated and which you have not used for any of the analyses 

reported in Figures 3 and 4. Here are the details of Scenario 1: 

• All simulation inputs except site enrollment capacity and site-dependent patient screening 

probability are assumed to be equal to the average values of probability distributions 
tabulated in Table 3. For example, Scenario 1 sets the country startup delay to 15 days; 
this is the average of 5 days, 10 days, and 30 days in Table 3, where these three numerical 
values represent minimum, most likely, and maximum values for country startup delay, 

as described in Table 2. 

• Enrollment capacity and screening probability are 200 patients and 20%, respectively. 

• The sponsor wants to know the number of patients who might enroll within 13.5 months. 

The objective is twofold:  

• to predict the enrollment in real time for Scenario 1 that is specified by the sponsor 

• to answer three additional questions, each representing a different scenario, in real time: 

✓ Scenario 2: What would enrollment predictions be six months later? 

✓ Scenario 3: What if the site enrollment capacities were reduced by 10%? 

✓ Scenario 4: What could push enrollment predictions to the lower quantile curves?  
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What is important to notice is that none of the four scenarios have been simulated in the 
previous section. SAS machine learning learns from the simulation outputs, which are a 
170,000-row, 53-column data set shown in Figure 5, to approximate the cumulative patient 

enrollment by a specified time. Specifically, patient enrollment is approximated by a neural 
network whose response variable corresponds to 170,000 different observations of Y(t)—the 
total number of patients enrolled in the clinical trial by time t—recorded during the clinical 
trial enrollment simulation runs. This is the first column of the simulation output data set in 
Figure 5. The second column represents the time (in days) by which the patient enrollment is 

predicted. The remaining 51 columns—startup delay for one country and startup delay, 
identification delay, enrollment capacity, enrollment rate, and screen failure probability for 
each of the 10 sites—correspond to inputs of the neural network, each of which is sampled 
during 170,000 replications of the simulation model. The probability distributions from which 

these inputs are sampled in each replication of the simulation are given in Table 3.  

The 170,000-row simulation output data set is divided into training, validation, and test data 
sets (80% training, 10% validation, 10% test). The three tasks of training, validation, and 
testing are performed using SAS Visual Data Mining and Machine Learning through the SWAT 

package—a Python interface to SAS® Cloud Analytic Services (CAS). You can use the following 

code to carry out these steps: 

import swat  

import os 

import pandas as pd 

conn = swat.CAS(os.environ['CASHOST'],os.environ['CASPORT']) 

 

df=pd.read_csv('SimulationOutputDataSet.csv')  

conn.loadactionset('sampling') 

conn.upload(df, casout=dict(name='data', replace=True)) 

 

res=conn.sampling.stratified(table='data', partind=True,output=dict( 

casout=dict(name='data_partitioned',replace=True),copyvars='ALL', 

partindname='partition'),samppct=10,samppct2=10,seed=388264836) 

Figure 5. Illustration of the Simulation Output Data in JMP Pro Software 
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train= 

conn.CASTable(name='data_partitioned', where='partition=0', casout='train') 

valid= 

conn.CASTable(name='data_partitioned', where='partition=1', casout='valid') 

test= 

conn.CASTable(name='data_partitioned', where='partition=2', casout='test') 

 

inputs = [x for x in df.columns if x != 'NumEnrolled'] 

 

from dlpy.applications import * 

from dlpy.model import * 

from dlpy.layers import * 

from swat import CAS, CASTable 

 

model = Sequential(conn, model_table=CASTable('model', replace=True)) 

model.add(InputLayer(name='input')) 

model.add(Dense(20, act='relu', name='dense')) 

model.add(OutputLayer(act='AUTO', name='output')) 

 

optimizer = Optimizer(algorithm=AdamSolver(learning_rate=0.001, 

learning_rate_policy='step', gamma=0.9, step_size=5), 

mini_batch_size=1, max_epochs=200, log_level=1) 

  

model.fit(train, inputs=inputs, target='NumEnrolled', optimizer=optimizer, 

gpu=Gpu(devices=[0])) 

 

res=model.predict(test) 

 

out = 

pd.DataFrame(conn.CASTable(res['OutputCasTables'].Name[0]).to_frame()) 

test_set = pd.DataFrame(test.to_frame()) 

test_set['out']=out['P_NumEnrolled'] 

 

from sklearn.metrics import r2_score 

r2_score(test_set['NumEnrolled'], test_set['out']) 

 

model.deploy(path='ENTER YOUR CHOICE', output_format='table') 

model.get_model_info() 

 
Testing exhibits a mean square error of 951.0284 and an R-square of 99.4740%. The entire 

process of loading the simulation output data, training a neural network, and testing the 
trained model in the cloud takes a total of 3 minutes, 2.86 seconds. By using the resulting 
machine learning model of the patient enrollment, you can determine what the four scenarios 
correspond to in Figure 6 for a 20% screening probability, and you can observe and measure 
sensitivity as you change focus from one scenario to another. Specifically, Scenario 4 

represents a reduction of 40% in enrollment capacity and pushes enrollment prediction to a 
lower quantile curve in Figure 6. Furthermore, you can find the neural network prediction 
accuracy—in comparison to enrollment simulation that estimates mean patient enrollment 
within ± 1 patient—in Table 4. Although each neural network prediction in Table 4 and Figure 
6 is a point estimate with no quantification of risk around the prediction, you can readily 

address this issue by performing a Monte Carlo simulation of the neural network fit to 

propagate any specified level of variation in the inputs through the patient enrollment process.  

Description Scenario 1 Scenario 2 Scenario 3 Scenario 4 
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ML Prediction 1,102 patients 1,676 patients 1,593 patients 1,166 patients 

Sim Prediction 1,117 patients 1,720 patients 1,626 patients 1,185 patients 

RMSE 14.75 43.42 32.22 18.54 

ML Run Time 0.0274s 0.0291s 0.0289s 0.0273s 

Sim Run Time  

1 Replication  
6.86s 7.86s 7.62s 7.39s 

Table 4. Real-Time Enrollment Predictions Obtained from Trained Neural Network 

and Comparison to Simulation Mean Enrollment Predictions with ± 1 Patient Error 

Why not use the simulation model directly to predict the enrollments presented in Table 4? 
The reason is that the neural network allows for nearly instantaneous calculation of the 
desired metrics. This is in comparison to the 6.86 seconds that it takes to run a single 

replication of clinical trial enrollment simulation lasting 405 days in Scenario 1. Furthermore, 
Scenario 1 has been simulated for 1,000 replications to predict mean enrollment within ± 1 
patient, resulting in a total run time of 5 minutes, 9.67 seconds. When you are on the phone 
with a client trying to win the business, you might need to quickly explore the implications of 
a variety of scenarios in real time. Therefore, the solution that is built on the integration of 

simulation and machine learning might be better suited to your need to make patient 
enrollment predictions in real time. Furthermore, you are now able to deploy your enrollment 
simulation in a real-time analytical portal. Therefore, you have an opportunity to turn this 

solution into a widely used analytics within your organization for enrollment planning. 

 

Figure 6. Visualizing Fast Scenario Analysis for 20% Screening Failure Probability 
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WHAT-IF ANALYSES FOR SITE SELECTION IN REAL TIME 

This section considers the situation in which you might want to identify the optimal 
combination of the sites to activate in order to ensure that the 0.95 quantile of the total 
patient enrollment exceeds 800 patients in the shortest amount of time. This is a stochastic 

optimization problem that is formulated as follows: 

1. Playing the role of a synthetic data program, the clinical trial enrollment simulation 
generates predictions of site-specific enrollments in each of the 5,000 replications at 34 
different points in time. This results in a 170,000-row simulation output data set. A subset 

of this data set is used in the previous section to perform fast sensitivity analysis. This 
section uses another subset of the simulation-generated data set to make site-selection 
recommendations in real time. For each site i, the data subset contains 170,000 rows and 
two columns, where one column is associated with site enrollment Y i(t) and the other 
column is associated with time t. In this section, these data sets are used to characterize 

the number of patients enrolled at site i by time t, Y i(t) through its mean E[Y i(t)] and 

standard deviation V1/2[Yi(t)]. 

2. Notice that the total patient enrollment Y(t) is the sum of the number of patients enrolled 

at all activated sites. Therefore, Y(t) can be alternatively written as the sum of Y i(t)*Zi, i 
= 1,2,…,10, where Zi is a decision variable that takes a value of 1 if site i is activated and 
0 otherwise. The numerical example considers only 10 sites, but the number of sites 
involved in clinical trial enrollment planning can be significantly higher. In that case, Y(t) 
can be represented by a normal distribution with a mean that is the sum of E[Y i(t)]*Zi, i 

= 1,2,…,10, and a variance that is the sum of V [Y i(t)]*Zi, i = 1,2,…,10. Denoting the 0.95 
quantile of this characterization of Y(t) as Q(t;0.95, Zi, i = 1,2,…,10), the site selection 
problem can be formulated as the minimization of T subject to Q(T;0.95, Zi, i = 1,2,…,10) 
≥ 800 as a function of the continuous decision variable T ≥ 0 and the binary decision 
variables Zi, i = 1,2,…,10. Thus, the identification of the optimal combination of the sites 

to exceed a given patient enrollment target with confidence is c omplicated by the 

nonconvex function Q(T;0.95, Zi, i = 1,2,…,10) with discrete elements Zi, i = 1,2,…,10. 

You can solve this stochastic optimization problem by integrating simulation and optimization 

with SAS machine learning capability. The functions are identified that best represent the 
mean E[Y i(t)] and the standard deviation V1/2[Yi(t)] of the patient enrollment Y i(t) at site i for 
i=1,2,…,10. This corresponds to the identification of 20 different function approximations for 
the one-country, 10-site numerical example, reducing the stochastic site selection problem to 

a deterministic optimization problem that you can solve using SAS Optimization. 

In particular, the local search optimization algorithm enables you to solve problems that have 
user-defined black-box constraints such as Q(T;0.95, Zi, i = 1,2,…,10) ≥ 800. Therefore, by 
using the local search optimization algorithm of SAS Optimization, you would identify the 

optimal action as the activation of all sites and enroll 800 patients in 306.89 days. You would 
also construct an efficient frontier for a range of values for the target patient enrollment (e.g., 
[20,1,800], including the target of 800 patients for the numerical example) on the Y axis and 
the corresponding optimal objective function values for the enrollment time on the X axis. 

You can use the following code to achieve these objectives: 

proc optmodel printlevel=0;  

  set <num> SITES; 

  set <num> WEIGHTS; 

  read data weightData into WEIGHTS=[r]; 

     

  number A{SITES, WEIGHTS}; 

  read data meanW into SITES=[i=_N_] {j in WEIGHTS} <A[i,j]=col('A'||j)>; 

  print A; 



13 

 

  number B{SITES, WEIGHTS}; 

  read data stdDevW into SITES=[i=_N_] {j in WEIGHTS} <B[i,j]=col('B'||j)>; 

  print B; 

 

  var Z {SITES} binary; 

  var T >= 90; 

  min f = T; 

 

  num alpha = 0.95; 

  num target; 

  con c1: sum {i in SITES} (Z[i]*(A[i,1] 

  + sum {k in 2..8 by 3} A[i,k]*(TanH((0.5*(A[i,k+1] + A[i,k+2]*T)))))) 

  + probit(alpha)*SQRT(sum {i in SITES} (Z[i]*B[i,1] 

  + sum {k in 2..8 by 3} B[i,k]*(TanH((0.5*(B[i,k+1] + B[i,k+2]*T)))))**2)) 

  >= target; 

 

  set TARGETSET = 20 to 1800 by 5; 

  num optimalT {TARGETSET}; 

  do target = TARGETSET; 

put target=;  

solve with lso / popsize=100 feastol=1e-6 absfconv=0 nabsfconv=100 

maxgen=100;  

solve with nlp relaxint;  

optimalT[target] = T; 

  end; 

  create data optdata from [target] optimalT; 

quit; 

 

proc sgplot data=optdata; 

  scatter x=optimalT y=target; 

  xaxis label='Time (Days)'; 

  yaxis label='Target Patient Enrollment'; 

run; 

 

In this code, meanW and stdDevW are the two primary data sets that are read into the 
formulation of the site-selection optimization problem. Each row of these data sets represents 
one of the 10 sites. The columns of meanW store the site-specific weights that are used to 
characterize the approximation to the functions E[Yi(t)], i=1,2,…,10. The columns of stdDevW, 
on the other hand, capture the site-specific weights that are used to characterize the 

approximation to the functions V1/2[Yi(t)], i=1,2,…,10. Figure 6 presents the contents of these 
data sets as displayed by the code. 
 
SAS Optimization can solve the site-selection optimization problem from clients other than 
SAS, e.g., from Python through the SWAT package. In that case, you need to load the data 

sets weightData, meanW and stdDevW into CAS from the comma-separated-value (CSV) files 
(weightData.csv, meanW.csv, and stdDevW.csv). You can use the following code to identify 
the optimal combination of the sites to activate in order to ensure that the 0.95 quantile of 

the total patient enrollment exceeds 800 patients in the shortest amount of time:  

import swat  

import os 

import pandas as pd 

conn = swat.CAS(os.environ['CASHOST'],os.environ['CASPORT']) 

 

conn.upload_file('weightData.csv') 
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conn.upload_file('meanW.csv')  

conn.upload_file('stdDevW.csv')  

  

conn.loadActionSet(actionset="optimization") 

conn.runOptmodel( 

   code=""" 

   set <num> SITES; 

   set <num> WEIGHTS; 

   read data weightdata into WEIGHTS=[r]; 

 

   number A{SITES, WEIGHTS}; 

   read data meanw into SITES=[i=_N_] {j in WEIGHTS} <A[i,j]=col('A'||j)>; 

    

   number B{SITES, WEIGHTS}; 

   read data stdDevw into SITES=[i=_N_] {j in WEIGHTS} 

<B[i,j]=col('B'||j)>; 

 

   var Z {SITES} binary; 

   var T >= 90; 

   min f = T; 

 

   num alpha = 0.95; 

   num target; 

   con c1: sum {i in SITES} (Z[i]*(A[i,1]+sum {k in 2..8 by 3} 

A[i,k]*(TanH((0.5*(A[i,k+1] + A[i,k+2]*T)))))) + probit(alpha)*SQRT(sum {i 

in SITES} (Z[i]*(B[i,1]+ sum {k in 2..8 by 3} B[i,k]*(TanH((0.5*(B[i,k+1] + 

B[i,k+2]*T)))))**2)) >= 800; 

 

   solve with lso / popsize=100 feastol=1e-6 absfconv=0 nabsfconv=100 

maxgen=100;  

   solve with nlp relaxint; 

   quit; 

   """)   

   

Figure 7 presents a graph of the efficient frontier produced by the code. You can gain two 

primary insights from this illustration:  

• It would not be possible to enroll 800 patients in less than 306.89 days.  

• If the enrollment time for a combination of sites is predicted to be, for example, 400 days, 
then you could immediately detect the existence of a better solution to activate the sites 
that would be 93 days faster. This insight would be increasingly valuable if you have higher 

numbers of potential site activations for the trial of interest. 

The choice of objective function and constraints for site selection is restricted to the numerical 
example of interest in this paper. You can relax the assumptions of this model to meet the 

objectives and constraints of your patient enrollment settings, however complicated they 
might be. You can easily incorporate a budget constraint into this formulation. You can also 
account for deadlines by which the enrollment target is to be met. Furthermore, you can 
extend underlying stochastic site-selection problem to jointly solve personnel capacity 
planning problems, especially when you have an upper bound on the number of countries and 

sites that you can start up at the same time. 
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Figure 7. Illustration of Optimal Enrollment Times for Given Targets of Enrollments 

Figure 6. Coefficients Characterizing Site Enrollment Function Approximations 
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CONCLUSION 

This paper demonstrates how SAS Clinical Trial Enrollment Simulator, built on SAS 
Optimization, integrates simulation, machine learning, and optimization to help you design 
risk-sensitive enrollment plans in real time, accompanied by advanced analytics to determine 
optimal site activations in order to achieve your target enrollments in the shortest time 
possible. Throughout the paper, for ease of presentation, the focus is on a numerical example 

with a single country and 10 sites, each with its own attributes. It is critical to emphasize that 
SAS Simulation Studio is a tool that has been specifically designed to develop scalable, data-
driven, flexible models of dynamic systems that are exposed to high levels of uncertainty. 
Therefore, the integration of simulation, machine learning, and optimization would readily 
extend to your need to design clinical trial enrollment plans with large numbers of potential 

country startups and site activations and with enrollment processes that are significantly more 
complex than the one illustrated in Figure 1 of the paper. Furthermore, the solution to the 
problem of strategic clinical trial enrollment planning would readily extend to the study of any 
complex, dynamic, stochastic system in any domain. Two examples of such applications are 
data-driven decision support for supply chains in manufacturing and patient flow modeling in 

health care. The key remains the integration of SAS Simulation Studio with machine learning 
and artificial intelligence, which learns from large volumes of simulation-generated data, and 
SAS Optimization, which solves the underlying mathematical programs through its wide range 

of optimization solvers.  
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