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ABSTRACT  

Models are specific units of work that have one job to perform: scoring new data to make 

predictions. Containers are self-contained workers that can be easily created, destroyed, 

and reused as needed. They are portable and easily integrate into numerous modern cloud 

and on-premises execution engines. SAS® users can now follow a recipe to turn advanced 

model functions into on-demand containers such as Docker for both on-premises and cloud 

deployment. SAS® Model Manager can be used to organize the model content from many 

sources, including SAS and open source, to create containers. This presentation presents 

the basics and shows you how to turn your SAS analytical models into modern containers. 

INTRODUCTION  

THE ANALYTICAL LIFE CYCLE 

Figure 1 illustrates the analytical life cycle. 

 

Figure 1. Analytical Lifecycle 

Discovery environments have encompassed data mining and model training activities in 

collaborative workspaces, historically using virtual machines that are manually scaled for 

the expected workloads. Today, on-demand use cases are becoming more popular. 

Individual workspaces started with locally installed PCs. Data governance initiatives have 

evolved the architecture to use containers to provide governed access to data and code, as 

opposed to propagating multiple copies of data and code. Containers provide infrastructure 
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and compute usage cost savings, while providing a responsive user experience for the data 

scientist. 

Organizations are exponentially increasing the number of models that are being built, due to 

their digital transformations. Machine learning and automation have lowered the costs to 

build a model. However, the cost of model governance has skyrocketed due to deployment 

and monitoring complexities. Model code developed in a Discovery environment will be 

registered in a Governance environment, such as a SAS Model Manager, or in a source code 

management system, such as GitHub. 

The digital transformation has also necessitated the need for more robust execution options 

to deal with the explosion of data. Vast amounts of data need to be analytically enriched 

both at-rest in data lakes and enterprise data warehouses and in-flight in high-performance 

real-time business applications. Most organizations using SAS currently deploy their 

analytics using virtual machines and grids to manage disparate and on-demand workloads. 

Industry-leading organizations now use containers to facilitate on-demand and scalable 

processing for both batch and real-time workloads. Containers are providing similar 

infrastructure and compute usage cost savings as those experienced in a Discovery 

environment. 

The feedback loop, providing operational results to the Governance environment, enables 

model performance monitoring and triggers automated model retraining in the Discovery 

environment. Operational data feedback closes the loop of the analytical life cycle. 

A DAY IN THE LIFE OF A DATA SCIENTIST 

A data scientist can spend weeks constructing a good model for prediction or classification 

using statistical, machine learning, or deep learning techniques. These models can be used 

to provide insight and inference into existing processes, or to predict outcomes based on 

new data values. These predictions are used to improve the effectiveness of automated 

decision making systems such as the next best offer, credit scoring, loan originations, fraud 

detection, robotic process automation, and hundreds of other applications. Modern 

businesses require the use of predictive models to remain competitive. 

The building of predictive models is often termed model training and typically takes place 

offline in a development environment with saved historical data. The result of training a 

model is a fixed function that can be used for making predictions with new data values. The 

deployment of models is often termed model scoring and takes place in a production system 

running batch jobs or real-time recommendations. This step is where the model contributes 

real business value. However, there are several challenges in model deployment, as noted 

below: 

• The discrepancy between model training systems and model scoring systems often 

results in the need to modify or completely rewrite model score code. This step is time 

consuming and requires expert staff resources. 

• Delays in model deployment represent a loss of potential benefit derived from using the 

new model. This can have a large negative impact on the bottom line of the business. 

• Model performance generally degrades over time as data values change with time and 

trends. Delays in deploying the model create delays in acquiring new data for model 

decay measurements. That period will delay training a new replacement model. 

• The model must be deployed accurately. If the original trained model and the 

subsequent scoring model have even minor differences in floating-point values, missing 

value handling, or sequence of operations, errors can accumulate and create 

inaccuracies that will negatively impact model performance. 
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• The model deployment must be scalable. There are typically many models running in a 

production system. There can be multiple versions of the same model. Batch processes 

are scheduled to run in specific time periods or with constrained service level 

agreements. The load on real-time systems will vary by time of day, season, or external 

events, such as product discount sales. 

• The model deployment must use standard information technology tools. The business’s 

model production systems are often managed by staff that does not have experience 

with analytical tools. They are reluctant to add new processes every time the data 

scientists produce a new model. IT departments are also looking to reduce costs 

associated with maintaining too much hardware or acquiring upgraded hardware.   

One remedy to these problems can be the use of modern light-weight containers. These 

devices are rapidly growing in popularity for systems and process management. The most 

popular container technology is Docker. A container is a compressed file that contains all the 

resources needed to execute a computational process. In this case we are creating 

containers to execute model scoring steps for both batch and real-time applications. The 

containers include the model score code and all the software that is needed to execute the 

model. This provides several benefits: 

• The model does not need to be re-coded for different systems, eliminating several 

potential delays and errors. 

• Model deployment can be much faster by standardizing the deployment process for any 

form of the model function. 

• IT staff can use the same tools to manage model execution as any other IT-managed 

process, reducing staff training and expertise requirements. 

• Multiple container instances provide a shared-nothing high availability. Failures in one 

instance will not affect other instances. 

• New software releases can be added to new containers without affecting currently 

running systems. 

• New models can be added to new containers without affecting currently running 

systems. 

• Systems can be managed using standard container tools, such as Kubernetes. As 

demand increases, new container instances can be quickly created. As demand 

decreases, instances can be destroyed, freeing up resources for other tasks. 

The traditional method of model deployment onto dedicated systems requires a large 

amount of resources and labor. The systems and processes must be carefully and 

expensively maintained. This is likened to owning a herd of cows. Each cow is precious and 

expensive. In contrast, containers are small replaceable units of labor. They can be quickly 

created and terminated. This is likened to a flock of chickens. Each chicken is disposable 

and cheap. Thus, the comparison can be represented as “cows versus chickens.” 

(https://thenewstack.io/pets-and-cattle-symbolize-servers-so-what-does-that-make-

containers-chickens/) 

The remainder of this paper describes the details needed to turn both SAS models and 

open-source models into containers that can be treated as chickens. The paper uses the 

SAS® Viya® API to access model details and the Docker API to define and instantiate 

container instances. The result is a more scalable, more maintainable, and more efficient 

future. 
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DOCKER IMAGE OVERVIEW 

A Docker image consists of multiple layers. Each of the layers is a read-only filesystem. The 

recipe for how to install the layers is defined in a Dockerfile. The last installed layer sits on 

top of the previous layers and hides the folders/files of previous layer if the folders/files 

have the exact same path. If a layer needs to modify the file in the lower layer, it first 

copies the file up to the target layer and then modifies it. 

A container is an instance of the Docker image (from the docker run, docker create or 

Kubernetes commands). The Docker engine takes an image snapshot and adds a read/write 

filesystem on the top. It initializes the instance settings, such as IP address, system disk 

and memory resources, and so on. 

To make bootup easier, the ENTRYPOINT statement in the Dockerfile could define an 

executable command after the instance has completed the initialization. 

A Docker repository is a collection of different Docker images with same name but different 

tags. A tag is identified by an alphanumeric string. For example, semantic version number 

or build number is a common tag representation. The Docker registry is a service that hosts 

and distributes Docker images, such as Docker Hub and AWS/Google Container Registry. 

After the model image has been generated on the local host, we tag it and then push the 

tagged repository to a registry. Thus, the image could be referenced as format of an HTTP 

URL, for example, registryhost:5000/namespace/repo-name:tag. 

MODEL IMAGE PUBLISHING 

Transforming analytical models into containers is a very detailed and lengthy process. The 

remainder of this paper demonstrates how to publish a model image and test the model 

image with the Python utility library that SAS is developing. 

Figure 2 shows the Python utility and its run-time environments 

 

Figure 2. Python Utility  
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The model is stored in the SAS model repository. We can use the Python utility to pull the 

model ZIP file from the repository to the host machine. Then, we pack the model with the 

associated model base image and generate the model Docker image. After the model image 

is tagged with a version, the utility can push the image to the Docker repository and 

register it in the Docker registry.  

We currently support three types of model base images (this might increase in the future): 

• SAS® Micro Analytic Service (MAS) base image – to score SAS DS2 models 

• PYML base image – to score Python models 

• R base image – to score R models 

Figure 3 shows the structure of the MAS base image. 

 

Figure 3. MAS Base Image Structure 

The REST layer services web service calls from outside the container instance. In this base 

image we have included popular Python libraries and the MAS Python library under 

MiniConda as well as SAS threaded kernel (TK) libraries for MAS.  

Figure 4 and Figure 5 show an example of querying model information, generating the 

model image, and pushing the image to the Docker repository. 

 

Figure 4. Jupyter Notebook - Execute the initConfig and listmodel Commands 
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Figure 5. Jupyter Notebook – Execute the publish Command 

MODEL VALIDATION 

After the model image is generated and pushed to the Docker repository, users can launch 

the container instance at any time to score the model in the container instance. The launch 

command is shown in Figure 6. 

 

Figure 6. Jupyter Notebook – Execute the launch Command 

The launch command calls the Kubernetes API to create the deployment service object that 

exposes the deployment. Once the container instance is deployed, the service URL is 

available for scoring and querying. 

MODEL SCORING 

The initial version of the container REST API interface accepts only CSV as the input/output 

data format. Figure 7 shows the scoring and query test results. 

 

Figure 7. Jupyter Notebook - Scoring and Query Test Results 
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Figure 8 illustrates stopping a container instance and the related cleanup activities. 

 

Figure 8. Jupyter notebook – Execute the stop Command 

As a best practice, stop a container when you are finished with your work. This minimizes 

infrastructure, compute usage, and related costs. The score command is a convenience 

command. It combines several commands that are commonly used together. Figure 9 

shows the score command. 

 

Figure 9. Jupyter Notebook – Execute the score Command 

MODEL ASSESSMENT 

The utility log and input/output data are organized in an SQLite file. Because the container 

life cycle could be very short, it is better to retrieve the score results from the container and 

store it in the host filesystem or an external database. 

The SAS SWAT package is a Python interface to SAS® Cloud Analytic Services (CAS). With 

this package, you can load and analyze data sets of any size from your desktop or in the 

cloud. In addition, you can analyze extremely large data sets using as much processing 

power as you need, while still retaining the ease-of-use of Python on the client side. 

Next, we can load the scoring output data into CAS for further analysis, for example, to 

assess the model’s performance. 

Figure 10 shows the loading of CSV data and using the SAS SWAT package to upload the 

test results into CAS. 
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Figure 10. Using the SAS Swat Package to Upload Test Results into CAS 

Figure 11 shows the assessment of the model. 

 

Figure 11. Assessing the Model 

The next several figures are related to drawing plots.  
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Figure 12 shows the CAS table with lift. 

 

Figure 12. Generate CAS Table – Lift 

Figure 13 shows a lift chart. 

 

Figure 13. Generate Lift Chart 

Figure 14 shows a CAS ROC table.  
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Figure 14. Generate CAS Table – ROC 

Figure 15 shows a ROC chart. 

 

Figure 15. Generate ROC chart 

We can also call the compare function to assess the model with multiple scoring results. 

Figure 16 shows the comparison between two scoring results. 
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Figure 16. Side by Side Compare the Scoring Results 

BEYOND THE MODEL 

CLOUD 

In addition to a private docker registry, we can upload a model image to a public docker 

registry, such as Docker Hub, Amazon Elastic Container Registry (ECR) or Google Container 

Registry (GCR), and then deploy the container instance in multiple cloud platforms.  

Amazon Web Service (AWS) 

Here is an example that illustrates how to register and store a model image in AWS and 

launch an AWS Elastic Container instance with Amazon Kubernetes. 

First, we create and configure at least one Amazon Elastic Container Service for Kubernetes 

(EKS) cluster and its work nodes. This is shown in Figure 17. 

 

Figure 17. AWS - CloudFormation for Kubernetes Cluster 

Next, we set AWS properties in the cli.properties file. This is shown in Figure 18.  
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Figure 18. Configure cli.properties File to Switch to AWS Cloud 

By setting the provider type to AWS, the CLI utility publishes the model image to AWS ECR, 

and then deploys the model to an Amazon Elastic Container instance. 

Figure 19 show the execution of initConfig and listmodel. 

 

Figure 19. AWS – Execute initConfig and listmodel Commands 
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Figure 20 shows the publishing of the model. 

 

Figure 20. AWS – Execute publish Command 

When the publish command is compete, the results can be verified in the AWS ECR Console. 

This is shown in Figure 21. 

 

Figure 21. AWS – Use Elastic Container Registry (ECR) to Verify Results 

Figure 22 shows the launching of the container instance in EKS. 

 

Figure 22. AWS - Launch Container Instance in EKS 

Using the kubectl command line, we can verify information about the exposed service and 

the external IP address of the node. This is shown in Figure 23. 

 

Figure 23. AWS – Verify Information with kubectl 
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Figure 24 shows scoring in an AWS container instance. 

 

Figure 24. AWS - Perform Scoring in an AWS Container Instance 

Figure 25 shows the execution of the query and stop commands. 

 

Figure 25. AWS – Query Test Results and Delete the Deployment 

Google Cloud Platform (GCP) 

This section shows an example of deploying to Google Cloud Platform. The following images 

demonstrate how to push a model to Google Container Registration, how to launch a 

container instance in a Google Kubernetes cluster, and how to perform scoring and query 

results. 

Figure 26 and Figure 27 show an example of executing the initConfig and listmodel 

commands, and then executing the publish command.  
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Figure 26. GCP – Execute initConfig and listmodel Commands 

 

Figure 27. GCP – Execute the publish Command 

Figure 28 shows an example of using the Google Cloud Platform console to verify the 

results. 

 

Figure 28. GCP – Use Google Cloud Platform Console to Verify Results 
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Figure 29 shows an example of executing the launch command. 

 

Figure 29. GCP - Launch Container Instance in a Google Kubernetes Cluster 

Figure 30 shows an example of verifying the deployment.  

 

Figure 30. GCP – Verify Deployment in Google Kubernetes Engine Workloads 

Figure 31 shows an example of verifying the service pod. 

 

Figure 31. GCP – Verify Service Pod in Google Kubernetes Engine 

Figure 32 shows scoring in an GKE container instance. 
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Figure 32. GCP - Perform Scoring in an GKE Container Instance 

Figure 33 shows an example of querying the test results and deleting the deployment. 

 

Figure 33. GCP - Query Test Results and Delete the Deployment 

DEPENDENCY SUPPORT 

Our predefined base images could include the most popular libraries or packages. In the 

real world, a user’s model might have extra dependencies on other software libraries or 

packages. Our solution to provide a mechanism to adapt to dynamic user requirements is as 

follows. The user: 

1. Creates a file named requirements.json 

2. Describes the steps about how to install extra dependencies in the file  

3. Inserts this specification file in the model content list 

When packing the model into the model image, the utility scans the specification file from 

model content list and includes those step commands as part of Dockerfile. The Dockerfile 

will be rendered by Docker Engine. For example, one data model is based on a Python H2O 

library that the base image has not packaged yet. This is illustrated in Figure 34. 
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Figure 34. Support Extra Model Dependency 

Figure 35 shows the specification file in the model content. 

 

Figure 35. Specification File in the Model Content 
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Figure 36 shows the installation of the dependent packages in the image generation. 

 

Figure 36. Installing the Dependent Packages in Image Generation 

When Verbose is set to True, the utility displays more useful output for each command. This 

is shown in Figure 37. 

 

Figure 37. Displaying More Information with Verbose Enabled 
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CONCLUSION 

The goal of this paper is to show how to use our CLI utility library to pack a SAS or open-

source model in a Docker image and perform scoring in a Docker container. It introduced 

the features of the current development stage of the CLI utility library. This paper might be 

updated in the future if we support more model types and additional cloud environments. 
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