Paper SAS3489-2019
Cows or Chickens: How You Can Make Your Models into
Containers
Hongjie Xin, Jacky Jia, David Duling, Chris Toth

SAS Institute Inc.

ABSTRACT

Models are specific units of work that have one job to perform: scoring new data to make
predictions. Containers are self-contained workers that can be easily created, destroyed,
and reused as needed. They are portable and easily integrate into numerous modern cloud
and on-premises execution engines. SAS® users can now follow a recipe to turn advanced
model functions into on-demand containers such as Docker for both on-premises and cloud
deployment. SAS® Model Manager can be used to organize the model content from many
sources, including SAS and open source, to create containers. This presentation presents
the basics and shows you how to turn your SAS analytical models into modern containers.

INTRODUCTION
THE ANALYTICAL LIFE CYCLE

Figure 1 illustrates the analytical life cycle.

From Discovery to Deployment

GOWVERMANCE
DISCTIVERY ENVIRONMENTS Elrr'u:l'ru:w-ﬂ:rn"a DEFLOMENT EMVERONMENTS

b

Mugl Machines — —— Had dats —
Model ; IreDiatabase Seonng |

fanagement b Iy

Pl [o s

Mode BaposRory Hatch Aunbime Engnns
il Edie Anaytics [37)
| Feedbac Ly Aradptcs
Workfiow

Aeal-Tenn [MAS]

Figure 1. Analytical Lifecycle

Discovery environments have encompassed data mining and model training activities in
collaborative workspaces, historically using virtual machines that are manually scaled for
the expected workloads. Today, on-demand use cases are becoming more popular.
Individual workspaces started with locally installed PCs. Data governance initiatives have
evolved the architecture to use containers to provide governed access to data and code, as
opposed to propagating multiple copies of data and code. Containers provide infrastructure

and compute usage cost savings, while providing a responsive user experience for the data
scientist.

Organizations are exponentially increasing the number of models that are being built, due to
their digital transformations. Machine learning and automation have lowered the costs to
build a model. However, the cost of model governance has skyrocketed due to deployment
and monitoring complexities. Model code developed in a Discovery environment will be
registered in a Governance environment, such as a SAS Model Manager, or in a source code
management system, such as GitHub.

The digital transformation has also necessitated the need for more robust execution options
to deal with the explosion of data. Vast amounts of data need to be analytically enriched
both at-rest in data lakes and enterprise data warehouses and in-flight in high-performance
real-time business applications. Most organizations using SAS currently deploy their
analytics using virtual machines and grids to manage disparate and on-demand workloads.
Industry-leading organizations now use containers to facilitate on-demand and scalable
processing for both batch and real-time workloads. Containers are providing similar
infrastructure and compute usage cost savings as those experienced in a Discovery
environment.

The feedback loop, providing operational results to the Governance environment, enables
model performance monitoring and triggers automated model retraining in the Discovery
environment. Operational data feedback closes the loop of the analytical life cycle.

A DAY IN THE LIFE OF A DATA SCIENTIST

A data scientist can spend weeks constructing a good model for prediction or classification
using statistical, machine learning, or deep learning techniques. These models can be used
to provide insight and inference into existing processes, or to predict outcomes based on
new data values. These predictions are used to improve the effectiveness of automated
decision making systems such as the next best offer, credit scoring, loan originations, fraud
detection, robotic process automation, and hundreds of other applications. Modern
businesses require the use of predictive models to remain competitive.

The building of predictive models is often termed model training and typically takes place
offline in a development environment with saved historical data. The result of training a
model is a fixed function that can be used for making predictions with new data values. The
deployment of models is often termed model scoring and takes place in a production system
running batch jobs or real-time recommendations. This step is where the model contributes
real business value. However, there are several challenges in model deployment, as noted
below:

e The discrepancy between model training systems and model scoring systems often
results in the need to modify or completely rewrite model score code. This step is time
consuming and requires expert staff resources.

¢ Delays in model deployment represent a loss of potential benefit derived from using the
new model. This can have a large negative impact on the bottom line of the business.

e Model performance generally degrades over time as data values change with time and
trends. Delays in deploying the model create delays in acquiring new data for model
decay measurements. That period will delay training a new replacement model.

e The model must be deployed accurately. If the original trained model and the
subsequent scoring model have even minor differences in floating-point values, missing
value handling, or sequence of operations, errors can accumulate and create
inaccuracies that will negatively impact model performance.

e The model deployment must be scalable. There are typically many models running in a
production system. There can be multiple versions of the same model. Batch processes
are scheduled to run in specific time periods or with constrained service level
agreements. The load on real-time systems will vary by time of day, season, or external
events, such as product discount sales.

e The model deployment must use standard information technology tools. The business’s
model production systems are often managed by staff that does not have experience
with analytical tools. They are reluctant to add new processes every time the data
scientists produce a new model. IT departments are also looking to reduce costs
associated with maintaining too much hardware or acquiring upgraded hardware.

One remedy to these problems can be the use of modern light-weight containers. These
devices are rapidly growing in popularity for systems and process management. The most
popular container technology is Docker. A container is a compressed file that contains all the
resources needed to execute a computational process. In this case we are creating
containers to execute model scoring steps for both batch and real-time applications. The
containers include the model score code and all the software that is needed to execute the
model. This provides several benefits:

e The model does not need to be re-coded for different systems, eliminating several
potential delays and errors.

¢ Model deployment can be much faster by standardizing the deployment process for any
form of the model function.

o IT staff can use the same tools to manage model execution as any other IT-managed
process, reducing staff training and expertise requirements.

e Multiple container instances provide a shared-nothing high availability. Failures in one
instance will not affect other instances.

¢ New software releases can be added to new containers without affecting currently
running systems.

¢ New models can be added to new containers without affecting currently running
systems.

e Systems can be managed using standard container tools, such as Kubernetes. As
demand increases, new container instances can be quickly created. As demand
decreases, instances can be destroyed, freeing up resources for other tasks.

The traditional method of model deployment onto dedicated systems requires a large
amount of resources and labor. The systems and processes must be carefully and
expensively maintained. This is likened to owning a herd of cows. Each cow is precious and
expensive. In contrast, containers are small replaceable units of labor. They can be quickly
created and terminated. This is likened to a flock of chickens. Each chicken is disposable
and cheap. Thus, the comparison can be represented as “cows versus chickens.”
(https://thenewstack.io/pets-and-cattle-symbolize-servers-so-what-does-that-make-
containers-chickens/)

The remainder of this paper describes the details needed to turn both SAS models and
open-source models into containers that can be treated as chickens. The paper uses the
SAS® Viya® API to access model details and the Docker API to define and instantiate
container instances. The result is a more scalable, more maintainable, and more efficient
future.

DOCKER IMAGE OVERVIEW

A Docker image consists of multiple layers. Each of the layers is a read-only filesystem. The
recipe for how to install the layers is defined in a Dockerfile. The last installed layer sits on
top of the previous layers and hides the folders/files of previous layer if the folders/files
have the exact same path. If a layer needs to modify the file in the lower layer, it first
copies the file up to the target layer and then modifies it.

A container is an instance of the Docker image (from the docker run, docker create or
Kubernetes commands). The Docker engine takes an image snapshot and adds a read/write
filesystem on the top. It initializes the instance settings, such as IP address, system disk
and memory resources, and so on.

To make bootup easier, the ENTRYPOINT statement in the Dockerfile could define an
executable command after the instance has completed the initialization.

A Docker repository is a collection of different Docker images with same name but different
tags. A tag is identified by an alphanumeric string. For example, semantic version number
or build number is a common tag representation. The Docker registry is a service that hosts
and distributes Docker images, such as Docker Hub and AWS/Google Container Registry.
After the model image has been generated on the local host, we tag it and then push the
tagged repository to a registry. Thus, the image could be referenced as format of an HTTP
URL, for example, registryhost:5000/namespace/repo-name:tag.

MODEL IMAGE PUBLISHING

Transforming analytical models into containers is a very detailed and lengthy process. The
remainder of this paper demonstrates how to publish a model image and test the model
image with the Python utility library that SAS is developing.

Figure 2 shows the Python utility and its run-time environments

. . i
| _ | [w _% aiiia),
. aunch N H -
‘ Publish Launct 1 JOCK@r kubernetes Docker Repo
pull madel | l .
- . N Container Platforms
Model . # u ﬂ: . ! e
Repository | | List Models Execute/Score ﬁ | : - PostgreSaL
H Other
. . H [Database]
| file system | : Amazon Postgre
+ Amazon Redshift SQL
s3 instance
| Download | .)
[TTTTTTTIT™ input Data Query . e Exmma‘ DAt eSOy -
o — | |
1 1 !
[S
N — o |
SAS Data H . Upload Lo T
Table L proa
,,,],,, FETY [zl Terminate | | :
— H >
. Logs . . \ r\ | \]
I I . == \—/
. Lambda
N Docker CLI Utility : . CA.S C_Iuster function
I) o I : in Viya TensorFlow
Cluster
5sas

', External Execution Environment
l Host machine } N

Figure 2. Python Utility

The model is stored in the SAS model repository. We can use the Python utility to pull the
model ZIP file from the repository to the host machine. Then, we pack the model with the
associated model base image and generate the model Docker image. After the model image
is tagged with a version, the utility can push the image to the Docker repository and
register it in the Docker registry.

We currently support three types of model base images (this might increase in the future):
e SAS® Micro Analytic Service (MAS) base image - to score SAS DS2 models

e PYML base image - to score Python models

¢ R base image - to score R models

Figure 3 shows the structure of the MAS base image.

REST Layer by Python Flask/gunicorn /pybox/app

MAS
/pybox/model
Y SEWiBs | | LSomescoresrit
: Jat
Pandas Mode
SciKit Learn

CentOS

Figure 3. MAS Base Image Structure

The REST layer services web service calls from outside the container instance. In this base
image we have included popular Python libraries and the MAS Python library under
MiniConda as well as SAS threaded kernel (TK) libraries for MAS.

Figure 4 and Figure 5 show an example of querying model information, generating the
model image, and pushing the image to the Docker repository.

In [1]: from mm_docker_lib import *
initConfig()

In [2]: listmodel("svm")

Model name svm (pipeline 1)

Model UUID deebb4e3-0672-4e9a-a877-39249d2a98ab

Model version 63.8

Project name MySVM

Score Code Type ds2MultiType

Image URL (not verified): docker.sas.com/honxin/svm-pipeline-1_d@ebb4e3-0672-4e9a-a877-39249d2a98ab:1a
test

Figure 4. Jupyter Notebook - Execute the initConfig and listmodel Commands

In [3]: | publish("de@bb4e3-0672-4e9a-a2877-39249d2298ab")

Downloading model de@bb4de3-8672-4e9a-a877-39249d2a%8ab from model repository...

Copying astore from shared directory...

Building image...

Pushing to repo...

Pushed. Please verify it at docker.sas.com/repository/honxin/svm-pipeline-1_de@bb4e3-0672-4e9a3-a877-39
249d2a93ab

Model image URL: docker.sas.com/honxin/svm-pipeline-1_dee@bb4e3-0672-4e8a-a877-39249d2a98ab:latest

Out[2]: ‘'docker.sas.com/honxin/svm-pipeline-1_d@ebbde3-8672-4e%a-2877-39249d2a%8ab:63.0"

Figure 5. Jupyter Notebook — Execute the publish Command

MODEL VALIDATION

After the model image is generated and pushed to the Docker repository, users can launch
the container instance at any time to score the model in the container instance. The launch
command is shown in Figure 6.

In [4]: | launch("docker.sas.com/honxin/svm-pipeline-1_deebb4de3-8672-4e%a-a877-39248d2a%8ab:latest")

Launching container instance...

Deployment created.

Deployment name: svm-pipeline-1-bgxzoo
Service created.

Getting service url...

Service URL: http://106.23.13.194:30847
Checking whether the instance is up or not...
Instance is up!

Out[4]: ('svm-pipeline-1-bgxzoo', 'http://10.23.13.194:36847")

Figure 6. Jupyter Notebook - Execute the launch Command

The launch command calls the Kubernetes API to create the deployment service object that
exposes the deployment. Once the container instance is deployed, the service URL is
available for scoring and querying.

MODEL SCORING

The initial version of the container REST API interface accepts only CSV as the input/output
data format. Figure 7 shows the scoring and query test results.

In [5]: execute("http://10.23.13.194:30847", "hmeq.csv")

Performing scoring in the container instance...
The test_id from score execution: 1549592622.0851061

Out[5]: '1549592622.0851061'

In [6]: query(service url="http://10.23.13.194:30847",test_id="1549502622.08851061")

The test result has been retrieved and written into file 1549592622.0851061.csv
Head is the first 5 lines
EM_CLASSIFICATION,EM EVENTPROBABILITY,EM_PROBABILITY,I_BAD,P_BAD®,P_BAD1, P_, WARN_

] »3.5255933e-05,0.9999648,0 ,0.9999648,3.
5255933e-05,1.0000224,

] ,4.455051e-85,@.9999554,0 ,8.9999554,4.4
55951e-05,1.0000038,

e »3.431873e-05,0.99996567,0 ,0.99996567,
3.431873e-05,1.06000242,

1 ,1.0,1.0,1 ,0.0,1.0,-1.1583366,

Out[6]: '1549592622.0851061.csv’

Figure 7. Jupyter Notebook - Scoring and Query Test Results

Figure 8 illustrates stopping a container instance and the related cleanup activities.

In [7]:

stop(deployment_name="svm-pipeline-1-bgxzoo")

Deleting service svm-pipeline-1-bgxzoo

deleted svc/svm-pipeline-1-bgxzoo from ns/default
Deleting app deployment... svm-pipeline-1-bgxzoo
Deletion succeeded

Figure 8. Jupyter notebook - Execute the stop Command

As a best practice, stop a container when you are finished with your work. This minimizes
infrastructure, compute usage, and related costs. The score command is a convenience
command. It combines several commands that are commonly used together. Figure 9
shows the score command.

In [13]:

score("docker.sas.com/honxin/svm-pipeline-1_deebb4e3-8672-4e%a-a877-39249d2a98ab: latest”, "hmeq.csv"

Launching container instance...

Deployment created.

Deployment name: svm-pipeline-1-5i99nr
Service created.

Getting service url...

Service URL: http://10.23.13.194:31725
Checking whether the instance is up or not...
Instance is up!

Performing scoring in the container instance...
The test_id from score execution: 1549572368.693796

The test result has been retrieved and written into file 1548572368.693796.csv
Head is the first 5 lines
EM_CLASSIFICATION,EM EVENTPROBABILITY,EM PROBABILITY,I BAD,P_BADO,P_BAD1, P_, WARN_

e »3.5255933e-05,0.9929648,0 ,0.9999648,3.
52550933e-05,1.0000224,

e ,4.455851e-85,0.9999554,0 ,8.9990554,4.4
55951e-05,1.0000038,

e ,3.431873e-85,0.99996567,0 ,0.99996567,
3.431873e-65,1.0000242,

1 >1.0;1.0;1 ,0.0,1.0,-1.1583366,

Deleting service svm-pipeline-1-5i99nr

deleted svc/svm-pipeline-1-5i99nr from ns/default
Deleting app deployment... svm-pipeline-1-5i99nr
Deletion succeeded

Figure 9. Jupyter Notebook — Execute the score Command

MODEL ASSESSMENT

The utility log and input/output data are organized in an SQLite file. Because the container
life cycle could be very short, it is better to retrieve the score results from the container and
store it in the host filesystem or an external database.

The SAS SWAT package is a Python interface to SAS® Cloud Analytic Services (CAS). With
this package, you can load and analyze data sets of any size from your desktop or in the
cloud. In addition, you can analyze extremely large data sets using as much processing
power as you need, while still retaining the ease-of-use of Python on the client side.

Next, we can load the scoring output data into CAS for further analysis, for example, to
assess the model’s performance.

Figure 10 shows the loading of CSV data and using the SAS SWAT package to upload the
test results into CAS.

In [4]: import swat

import os
In [5]: |os.environ["CAS_CLIENT_SSL_CA_LIST"] = "/opt/
cashost = 'summer.edmt.sashq-d.openstack.sas.

casport = 5578
casuser = 'edmdev’
mycas =

In [57]: |outl = mycas.upload(' hmeq_out.csv',
casout=dict(caslib="public’,name="hmeq_out',replace=True))

wat.CAS(cashost,casport,casuser, 'Godthsas')

NOTE: Cloud Analytic Services made the uploaded file available as table HMEQ_OUT in caslib public.
NOTE: The table HMEQ OUT has been created in caslib public from binary data uploaded to Cloud Analytic Services.

In [58]: | outTable = outl.casTable

In [59]: | outTable.head()

rom Table HMEQ_OUT

a/config/etc/SASSecurityCertificateFramework/cacerts/vault-ca.crt”

BAD | LOAN|MORTDUE| VALUE|REASON| JOB|YOJ|DEROG |DELINQ CLAGE |NINQ | CLNO | DEBTINC | P_BADO | P_BAD1
0(1.0 (1100.0|25860.0 39025.0 |Homelmp | Other | 10.5 | 0.0 0.0 94.366667 |10 |90 NaN 0.000000 | 1.000000
1]1.0 |1300.0|70053.0 68400.0 |Homelmp | Other | 7.0 | 0.0 20 121.833333 |00 [140 |NaN 0.545455|0.454545
2|1.0 [1500.0(13500.0 16700.0 |Homelmp | Cther |4.0 0.0 0.0 149.466667 | 1.0 |[10.0 |MaN 0.000000 | 1.000000
3|1.0 [1500.0|NaN NaN NaM | MaN NaN NaN NaN |MaN | MaN 0636364 | 0.363636
4100 [1700.0(97800.0 112000.0 | Homelmp | Office | 3.0 | 0.0 0.0 93.333333 0.0 140 [NaN 0133333 | 0.866667

Figure 10. Using the SAS Swat Package to Upload Test Results into CAS

Figure 11 shows the assessment of the model.

In [68]: mycas.loadActionSet("percentile™)

MOTE: Added action set 'percentile’.

out[68]: §actionset
percentile

elapsed 0.000479s - sys 0.000167s - mem 0.194MB

In [61]: | r = outTable.percentile.
casOut=dict(name="
rocOut=dict({name="

cutStep=6.61,
nBins=2@,
maxIters=5@,
inputs="p_badl’,
response='BAD",

avent="1",
pVar="p bade’,

pEvent="8"
r

Out[61]: § OutputCasTables

assess(
assess',caslib="public’,replace=True),
assess_roc’,caslib="publi
fitStatOut=dict(name="assess_fitstat',caslib=

" ,replace=True),
‘public’,replace=True),

casLib Name | Rows | Columns casTable
0| Public |assess 20 21 CASTable('assess', caslib="Public')
1| Public |assess_roc |100 |21 CASTable('assess_roc', caslio='"Public’)
2| Public |assess_fitstat | 1 6 CASTable('assess_fitstat', caslib="Public')

elapsed 0.0257s - user 0.0244s - sys 0.00179s - mem 4.26MB

Figure 11. Assessing the Model

The next several figures are related to drawing plots.

Figure 12 shows the CAS table with lift.

ted Rows from Table ASSESS

able = r['OutputCasTables']["casTable'][@]
able.head(1@)

Column|_Event_| _Depth_| _Value_|_NObs_| NEvents_|_NEventsBest | _Resp_|_RespBest_ _Lift_|...|_CumResp_|_CumRespBe:
o|P_BADY |1 5.0 1.000000 |298.0 | 291.175573|298.0 24.489115 (25.063078 | 4.897823|...|24.489115 | 25.0683078
1|P_BAD1 |1 10.0 0.800000 | 298.0 | 261.801700|298.0 22.018646 (25.063078 | 4.403729|...| 46.507761 |50.126156
2(P_BADT |1 15.0 0615385 |298.0 | 204.578283|298.0 17.205911 [25.063078 |3.441182 | . [63.713672 |75.189235
3|P_BADT |1 20.0 0.428571|298.0 | 150.371274|295.0 12.646869 [24.810765 | 2.529374|...|76.360541 | 100.000000
4(P_BADT |1 25.0 0.312500|298.0 | 110.170732| 0.0 9.265831 | 0.000000 1.853166(...[85.626372 | 100.000000
5|P_BADT |1 30.0 0.200000 | 298.0 |67.695542 | 0.0 5693485 |0.000000 1.138697 [...[91.319857 | 100.000000
&|P_BADT |1 35.0 0.100000 | 298.0 | 40.684508 |0.0 3.421742 | 0.000000 0684348 ...|194.741599 | 100.000000
7|P_BADT |1 40.0 0.000000 | 298.0 | 24.438281 |0.0 2.055364 | 0.000000 0411073 | ...| 96.796963 | 100.000000
8|(P_BADT |1 45.0 0.000000|298.0 |3.173676 |0.0 0.266920 |0.000000 0.053384|...|97.063883 | 100.000000
g8|(P_BADT |1 50.0 0.000000|298.0 |3.173676 |0.0 0.266920 |0.000000 0.053384|...|97.330803 | 100.000000
10 rows % 21 columns

Figure 12. Generate CAS Table - Lift

Figure 13 shows a lift chart.

In [79]: from bokeh.io import output_notebock, show
from bokeh.layouts import gridplot
from bokeh.plotting import figure

wheel_zoom,box_zoom,reset,save, box_select”

TOOLS = “pan,

pl = fipure(title="Lift Chart"”, x_axis_label = "Depth",y_axis_label = "Cumulative Lift",tools=TOOLS)

pl.line(liftTable['_Depth_"],liftTable[' _cumLift_'],legend="my model”, line_color="green",line_width = 2)

output_notebook()
show(gridplot([p1]., ncols=1, plot width=4@@, plot_height=4@8@))

(3} Loading BokehJS

Lift Chart

Cumulative Lift
w
il

(&)
|

= my model

Figure 13. Generate Lift Chart

20

40

Depth

80

&0

Figure 14 shows a CAS ROC table.

100

In [72]: rocTable = r["OutputCasTables']['casTable'][1]

rocTable.head(12)

cted Rows from Table ASSESS_ROC

Column|_Event_|_Cutoff_| _TP_| _FP_|_FN_| _TN_|_Sensitivity_|_Specificity | _KS_|..|_FHALF_| _FPR_| _ACC_| _FDR_ _
0|P_BADT |1 0.00 1189.0(4771.0|0.0 |00 1.000000 0.000000 0.0 -|0.237524 |1.000000 | 0.199497 | 0.800503 | 0.33Z
1|P_BAD1 |1 0.01 1150.0(1148.0 | 39.0 |3623.0|0.9567199 0.759380 0.0 | 0.553897 |0.240620 | 0.800839 | 0.499565 | 0.65¢
2| P_BADM 1 0.02 1150.0| 1148.0 (35.0 [3623.0|0.967199 0.759380 0.0 0.553897 |0.240620 | 0.800839 | 0.499565 | 0.65¢
3|P_BADT |1 0.03 1150.0(1148.0 | 39.0 |3623.0|0.957199 0.759380 0.0 - 0.553897 |0.240620 | 0.800839 | 0.499565 | 0.65¢
4| P_BADT |1 0.04 1150.0(1148.0|39.0 |3623.0|0.9567199 0.759380 0.0 | 0.553897 |0.240620 | 0.800839 | 0.499565 | 0.65¢
5|P_BADT |1 0.05 1150.0(1148.0 | 39.0 |3623.0|0.967199 0.759380 00 0.553897 | 0.240620 | 0.800839 | 0.499565 | 0.65¢
6| P_BADT |1 0.08 1149.0(1126.0 | 40.0 |3645.0|0.965358 0.763991 0.0 | 0.558363 |0.236009 | 0.804362 | 0.494945 | 0.66:
T|P_BADT |1 0.07 1146.0(1089.0| 43.0 |3682.0|0.963835 0771745 0.0 -1 0.565702 |0.228254 | 0.810067 | 0.487248 | 0.66¢
8|P_BADT |1 0.08 1143.0(1053.0|46.0 |3718.0|0.951312 0.779292 0.0 .| 0.573047 |0.220708 | 0.815604 | 0.479508 | 0.67%
9|P_BADT |1 0.09 1133.0(1000.0| 56.0 |3771.0|0.952902 0.790400 0.0 -|0.582759 |0.209600 | 0.822819 | 0.468823 | 0.682
10 rows x 21 columns

»
Figure 14. Generate CAS Table — ROC
Figure 15 shows a ROC chart.
In [74]: | p2 = figure(title="ROC Chart”, x_axis_label = "1 - Specificity",y_axis_label = "Sensit y",tools=TOOLS)

p2.line(rocTable["' FPR_"],rocTable[' Sensitiw

output notebook()

show{gridplot([p2]. ncols=1, plot width=5@@,

':} BokehJS 0.12.16 successfully loaded

ROC Chart

Sensibivity

plot_height=508))

— my model

0 02 04 0.6
1 - Specificity

Figure 15. Generate ROC chart

ity_'],legend="my model", line color="green",line width = 2)

We can also call the compare function to assess the model with multiple scoring results.

Figure 16 shows the comparison between two scoring results.

10

In [11]: # service url ="http://10.104.86.87:32367"
testIDs = {'ql': '1551321847.2215843°, 'q2': '1551321852.1563883'}
testIDs = {'ql':test_id1,'q2':test_id2}
print(testIDs)
compare(service_url,testIDs)

{'ql': '1551323661.6782281', 'q2"': '1551323666.4520206"}
ql = logs/1551323661.6782281.csv
NOTE: Cloud Analytic Services made the uploaded file available as table _OUT_Q1 in caslib public.
NOTE: The table _OUT_Q1 has been created in caslib public from binary data uploaded to Cloud Analytic Services.
q2 = logs/1551323666.4520206.csv
NOTE: Cloud Analytic Services made the uploaded file available as table _OUT_Q2 in caslib public.
: The table _OUT_Q2 has been created in caslib public from binary data uploaded to Cloud Analytic Services.
: Added action set 'percentile’.

==Lift table== =
CASTable('ql_assess', caslib='Public'),
: CASTable('q2_assess', caslib="Public')}

ROC tabl

{'ql': CASTable('ql_assess_ROC', caslib='Public'),

‘q2': CASTable('q2_assess_ROC', caslib='Public')}

3 BokehJS 0.12.16 successfully loaded.

Lift Chart ROC Chart

09

=
o
b

Cumulative Lift
Sensitivity
o
N
1

o
o
L

05

L e e e e e e B LA s e o s s s L e e e B e e B L e T
20 40 60 80 100 0 0.2 0.4 06 038 1

Depth 1 - Specificity

Figure 16. Side by Side Compare the Scoring Results

BEYOND THE MODEL
CLOUD

In addition to a private docker registry, we can upload a model image to a public docker
registry, such as Docker Hub, Amazon Elastic Container Registry (ECR) or Google Container
Registry (GCR), and then deploy the container instance in multiple cloud platforms.

Amazon Web Service (AWS)

Here is an example that illustrates how to register and store a model image in AWS and
launch an AWS Elastic Container instance with Amazon Kubernetes.

First, we create and configure at least one Amazon Elastic Container Service for Kubernetes
(EKS) cluster and its work nodes. This is shown in Figure 17.

Stack Name Created Time Status Drift Status Description
mm-docker-models-eks-worker-nodes 2019-02-14 10:08:09 UTC-0500 CREATE_COMPLETE NOT_CHECKED Amazon EKS - Node Group
mm-docker-models-eks-vpc 2019-02-13 14:50:31 UTC-0500 CREATE_COMPLETE NOT_CHECKED Amazon EKS Sample VPC

Figure 17. AWS - CloudFormation for Kubernetes Cluster

Next, we set AWS properties in the cli.properties file. This is shown in Figure 18.

11

run-time provider type. Available choices are: Dev, AWS, GCP
provider.type=Al

[SAS]
http to model repository
model.repo.host=http://honxin.modelmanager.sashqg-d.openstack.sas.com

[Dev]
set docker image url prefix, no http protocol
base.repo=docker.sas.com/honxin/

set docker image repository web url prefix, no http protocol
base.repo.web.url=docker.sas.com/repository/honxin/

kubernetes
kubernetes.context=minikube

[AWS]
AWS config profile, copy one profile name from %USERPROFILE%\.aws\config
aws.profile=617292774228-sandbox

this value will be automatically obtained from AWS ecr registry login
base.repo=

set docker image repository web url prefix, no http protocol
base.repo.web.url=console.aws.amazon.com/ecr/repositories/

kubernetes
kubernetes.context=arn:aws:eks:us-east

Figure 18. Configure cli.properties File to Switch to AWS Cloud

By setting the provider type to AWS, the CLI utility publishes the model image to AWS ECR,
and then deploys the model to an Amazon Elastic Container instance.

Figure 19 show the execution of initConfig and listmodel.

In [1]: from mm_docker 1lib import *
initConfig|

Loading configuration properties...
Login into AWS ECR...
verbose: False
model.repo.host: http://honxin.modelmanager.s
provider.type: AWS
base.repo: 6172082774228.dkr.ecr.us-east-1.amazonaws.com/
base.repo.web.url: console.aws.amazon.com/ecr/repositories/
kubernetes.context: arn:aws:eks:us-east-1:617292774228:cluster/mm-docker-models-eks

In [2]: listmodel("ds2"

Model name ds2pkg_regl_hmeq

Model UUID c5@e3b4f-e8ef-43d3-%e8d-7004f61228b3

Model version 1.8

Project name hmeq

Score Code Type ds2Package

Image URL (not verified): 617292774228.dkr.ecr.us-east-1.amazonaws.com/ds2pkg-regl-hmeq_c50e3b4df-e8ef-
43d3-9e8d-7004f61e28b3: latest

Figure 19. AWS - Execute initConfig and listmodel Commands

12

Figure 20 shows the publishing of the model.

In [3]: publish("c5@e3b4df-e8ef-43d3-9e8d-7004161e28b3"

Downloading model c5@e3b4f-eBef-43d3-9e8d-7004f61e28b3 from model repository...

Building image...

Creating remote repo ds2pkg-regl-hmeq_c50e3b4f-e8ef-43d3-9e8d-7604f61e28b3 in AWS ECR...

Pushing to repo...

Pushed. Please verify it at console.aws.amazon.com/ecr/repositories/ds2pkg-regl-hmeq_c50e3b4f-e8ef-43d
3-%9e8d-7004161e28b3/

Model image URL: 617292774228.dkr.ecr.us-east-1.amazonaws.com/ds2pkg-regl-hmeq_c508e3b4f-e8ef-43d3-9e8d
-7004f61e28b3:1latest

Out[2]: '617292774228.dkr.ecr.us-east-1.amazonaws.com/ds2pkg-regl-hmeq_c58e3b4f-e8ef-43d3-9e3d-7004F61e28b3:1a
test’

Figure 20. AWS - Execute publish Command

When the publish command is compete, the results can be verified in the AWS ECR Console.
This is shown in Figure 21.

ECR Repositories ds2pkg-reg1-hmeq_c50
ds2pkg-reg1-hmeq_c50e3b4f-e8ef-43d3-9e8d-7004f61e28b3 [view push commands |
Images @
Q 1
Image tag Image URI ::'Shm v Digest (S;:;)

617292774228.dkr.ecr.u

1.0, latest sha256:c1

Figure 21. AWS - Use Elastic Container Registry (ECR) to Verify Results

Figure 22 shows the launching of the container instance in EKS.

In [4]: launch("617292774228.dkr.ecr.us-east-1.amazonaws.com/ds2pkg-regl-hmeq_c50e3baf-e8ef-43d3-9e8d-7604f61e2
»

Launching container instance...

Deployment created.

Deployment name: ds2pkg-regl-hmeg-s3fégm
Service created.

Getting service url...

Service URL: http://54.87.222.138:30778
Checking whether the instance is up or not...
Instance is up!

Out[4]: ('ds2pkg-regl-hmeq-s3f6gm’, 'http://54.87.222.138:368778")
Figure 22. AWS - Launch Container Instance in EKS

Using the kubectl command line, we can verify information about the exposed service and
the external IP address of the node. This is shown in Figure 23.

E¥ Command Prompt

SGF2019>kubectl get pod --output=wide
READY S RESTARTS AGE Ip NODE
egl-hmeq-s3f6gm 6 2 0 17m 192.168.166.197 ip-192-168-179-29.ec2.internal

2.internal --output=wide
ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP 0S-IMAGE KERNEL-VE

168-179-2 c2.internal Ready <none> 1d v1.11.5 192.168.179.29 54.87.222.138 Amazon Linux 2 4.14.94-89

docker://17.6.2

Figure 23. AWS - Verify Information with kubectl

13

Figure 24 shows scoring in an AWS container instance.

In [5]: execute("http://54.87.222.138:308778", "hmeg.csv")

Performing scoring in the container instance...
The test_id from score execution: 155@257389.6991549

Out[5]: '1550257389.6991549"

Figure 24. AWS - Perform Scoring in an AWS Container Instance

Figure 25 shows the execution of the query and stop commands.

In [6]: | query(service url="http://54.87.222.138:30778",test_id="1550257389.6891549")

The test result has been retrieved and written into file 1558257389.6991549.csv
Head is the first 5 lines
EM_CLASSIFICATION,EM_EVENTPROBABILITY,EM_PROBABILITY,I_BAD,P_BAD®@,P_BAD1,U BAD, WARN_

0 ,8.075799346,0.92420065,8 ,0.92420065,0.075799346,0.8, None
0 ,0.201893,0.798167,8 ,08.798107,0.201893,0.8, None

0 ,8.05708384,0.94201615,0 ,8.94201615,0.05703384,0.0, None
0 ,0.0074877,0.9025123,0 ,8.9025123,0.0974877,0.0,None

Out[6]: '1550257389.6991549.csv’

In [7]: stop(deployment_name="ds2pkg-regl-hmeq-s3fégm")

Deleting service ds2pkg-regl-hmeg-s3f6gm

deleted svc/ds2pkg-regl-hmeq-s3fégm from ns/default
Deleting app deployment... ds2pkg-regl-hmeg-s3fégm
Deletion succeeded

Figure 25. AWS - Query Test Results and Delete the Deployment

Google Cloud Platform (GCP)

This section shows an example of deploying to Google Cloud Platform. The following images
demonstrate how to push a model to Google Container Registration, how to launch a
container instance in a Google Kubernetes cluster, and how to perform scoring and query
results.

Figure 26 and Figure 27 show an example of executing the initConfig and listmodel
commands, and then executing the publish command.

14

In [1]: from mm_docker_lib import *
initConfig("GCP")

Loading configuration properties...

Login into GCP GCR...

Login GCP GCR succeeded!
verbose: False
model.repo.host: http://honxin.modelmanager.sashq-d.openstack.sas.com
provider.type: GCP
base.repo: gcr.io/modelmanager/
base.repo.web.url: console.cloud.google.com/gcr/images/modelmanager/GLOBAL/
kubernetes.context: gke_modelmanager_us-east4-a_mm-docker-models-gke

Out[1]: True

In [2]: listmodel("svm")

Model name svm (pipeline 1)

Model UUID de®bbde3-@672-4e%a-a877-39249d2a%8ab

Model version 63.€

Project name MySVM

Score Code Type ds2MultiType

Image URL (not verified): gcr.io/modelmanager/svm-pipeline-1_d@ebb4e3-@672-4e9a-a877-39249d2298ab:late
st

Figure 26. GCP - Execute initConfig and listmodel Commands

In [3]: publish("deebb4e3-0672-42%a-a877-39249d2a98ab")

Downloading model d@ebb4e3-0672-4e9a-a877-32249d2a98ab from model repository...

Copying astore from shared directory...

Building image...

Pushing to repo...

Pushed. Please verify it at console.cloud.google.com/gcr/images/modelmanager/GLOBAL/svm-pipeline-1_dee

bb4e3-0672-4e%a-2877-38248d2a%8ab/
Model image URL: gcr.io/modelmanager/svm-pipeline-1_d@@bb4e3-0672-4e0%a-a877-39249d2a98ab: latest

Out[2]: ‘ger.io/modelmanager/svm-pipeline-1_de@bbde3-8672-4e9a-a877-39249d2a%8ab: latest’

Figure 27. GCP = Execute the publish Command

Figure 28 shows an example of using the Google Cloud Platform console to verify the
results.

Google Cloud Platform e modelmanager v

[.‘.] Container Registry Repositories C REFRESH
B Images modelmanager
& Seitings = Filter All hostnames ~
Name ~ Hostname Visibility
@ ds2pkg-regl-hmeq_c50e3b4f-e8ef-43d3-9e8d-7004161e2803 gerio Private
@ svm-pipeline-1_d00bb4e3-0672-469a-a877-39249d2a98ab gerio Private

Figure 28. GCP = Use Google Cloud Platform Console to Verify Results

15

Figure 29 shows an example of executing the launch command.

In [4]: launch("gcr.io/modelmanager/svm-pipeline-1_d@ebb4e3-08672-4e%a-a877-39249d2ac8ab: latest”)

Launching container instance...

Deployment created.

Deployment name: svm-pipeline-1-joe27k
Service created.

Getting service url...

Service URL: http://35.194.76.110:31480
Checking whether the instance is up or not...
1 ==Sleep 1@ seconds...

Checking whether the instance is up or not...
Instance is up!

Out[4]: ('svm-pipeline-1-joe27k', 'http://35.194.76.1108:31480")

Figure 29. GCP - Launch Container Instance in a Google Kubernetes Cluster

Figure 30 shows an example of verifying the deployment.

= Google Cloud Platform & modelmanager v Q
@ Kubernetes Engine Workloads C REFRESH DEPLOY
it Clusters Workioads are deployable units of computing that can be created and managed in
acluster.

8% Workloads

= Services = Is system object : False € Filter workicads b Columns ~
i Applicatlons Name A Status Type Pods Namespace Cluster
svm-pipeline-1-joe27k @ ok Deployment 1/1 defauit mm-docker-models-gke

[,] ST SRR R

Figure 30. GCP - Verify Deployment in Google Kubernetes Engine Workloads

Figure 31 shows an example of verifying the service pod.

= Google Cloud Platform & modelmanager v Q
@ Kubernetes Engine & Service details C REFRESH /' EDIT W@ DELETE & KU
i+ Clusters Deployments
Name Status Pods
= Workloads
svm-pipeline-1joe27k @ 0K 1/1
& Services
Serving pods
i Applications
Name Status Restarts Created on A
B Configuration svm-pipeline-1-joe27k-69c978654c-g6gn9 @ Rumning 0 Feb 28,2019, 1:00:35 PM
B storage
Ports
Port Node Port Target Port Protocol
P,
¥ Marketplace 8080 31480 8080 TCP A Port forwarding

Figure 31. GCP - Verify Service Pod in Google Kubernetes Engine

Figure 32 shows scoring in an GKE container instance.

16

In [5]: | execute("http://35.194.76.110:31488", "hmeq.csv")

Performing scoring in the container instance...
The test_id from score execution: 1551376925.196247

Out[5]: '1551376925.196247"
Figure 32. GCP - Perform Scoring in an GKE Container Instance
Figure 33 shows an example of querying the test results and deleting the deployment.
In [6]: query(service_url="http://35.194.76.110:31480",test_id="1551376925.196247")
The test result has been retrieved and written into file 1551376925.1296247.csv

Head is the first 5 lines
EM_CLASSIFICATION,EM EVENTPROBABILITY,EM PROBABILITY,I_BAD,P_BAD@,P_BAD1, P_, WARN_

0 ,3.5255033e-085,0.9999648,0 ,0.9999648,3.
5255933e-05,1.0080224,

8 ,4.455951e-05,0.9999554,0 ,8.9999554,4.4
55951e-85,1.0000038,

) ,3.431873e-05,0.99996567,0 ,0.99996567,
3.431873e-05,1.0000242,

1 ,1.0,1.0,1 ,0.0,1.08,-1.1583366,

Out[6]: '1551376925.196247.csv’

In [7]: stop(deployment_name="svm-pipeline-1-joe27k")
Deleting service svm-pipeline-1-joe27k
deleted svc/svm-pipeline-1-joe27k from ns/default
Deleting app deployment... svm-pipeline-1-joe27k
Deletion succeeded

Figure 33. GCP - Query Test Results and Delete the Deployment

DEPENDENCY SUPPORT

Our predefined base images could include the most popular libraries or packages. In the
real world, a user’s model might have extra dependencies on other software libraries or
packages. Our solution to provide a mechanism to adapt to dynamic user requirements is as
follows. The user:

1. Creates a file named requirements.json
2. Describes the steps about how to install extra dependencies in the file
3. Inserts this specification file in the model content list

When packing the model into the model image, the utility scans the specification file from
model content list and includes those step commands as part of Dockerfile. The Dockerfile
will be rendered by Docker Engine. For example, one data model is based on a Python H20
library that the base image has not packaged yet. This is illustrated in Figure 34.

17

- Model
-Score script = b---. | pmmmpmmw
. P . » Model
- requirements.json | 220U | “NEEENENENE
: MiniCond
Model Content
— I R
[_» H20
{ P L7
"step":"install h20 in anaconda", N
"command":"conda install -y -c h2oai h20=3.22.0.2"
¥
|

Docker Image

Figure 34. Support Extra Model Dependency

Figure 35 shows the specification file in the model content.

¥ XGBoost (1.0)

Files Variables Properties Vers

+ & B

XGBoost_model_python_1547223300262_1

=
] @
readme.txt

requirements.json

score.py

train.py

Figure 35. Specification File

requirements.json (Read-Only)

o &

Close

Publish

i 2

1

2 {

3 "step":"install openjdk1.8 devel",

4 "command":"yum -y install java-1.8.0-openjdk-devel™
5 ¥

6 {

7 "step":"install h2o in anaconda",

8 "command”:"conda install -y -c h2oai h20=3.22.0.2"
9 ¥

10 1

in the Model Content

18

Figure 36 shows the installation of the dependent packages in the image generation.

In [8]: setVerbose(True)
publish("2fd@ld3e-ac53-4086d-86cd-ac3cc9557¢57")

Verbose: True
Downloading model 2fd@ld3e-ac53-406d-86cd-ac3cc8557¢57 from model repository...

Installing dependencies defined from requirements.json...
Inserting dependency lines in Dockerfile

#install openjdkl.8 devel

RUN yum -y install java-1.8.8-openjdk-devel

#install h2o in anaconda

RUN conda install -y -c h2oai h20=3.22.0.2

Docker repository URL: docker.sas.com/honxin/
Building image...

Model image URL: docker.sas.com/honxin/xgboost_2fd@id3e-ac53-406d-86cd-ac3cc9557¢57: latest

Guides: > python mm_docker_cli.py launch docker.sas.com/honxin/xgboost_2fd@ld3e-ac53-4086d-86cd-ac3cc95

57c¢57:1atest
Guides: > python mm_docker_cli.py score docker.sas.com/honxin/xgboost_2fdeid3e-ac53-4@6d-86cd-ac3cc955

7c57:1atest <input file>

Out[8]: ‘'docker.sas.com/honxin/xgboost_2fdeld3e-ac53-406d-86cd-ac3cc9557¢57:1.8"

Figure 36. Installing the Dependent Packages in Image Generation

When Verbose is set to True, the utility displays more useful output for each command. This
is shown in Figure 37.

In [18]: setVerbose(True)
launch("docker.sas.com/honxin/xgboost_2fd@ld3e-ac53-486d-86cd-ac3cc8557¢57: latest™)

Verbose: True

Launching container instance...
docker.sas.com/honxin/xgboost_2fd@ld3e-ac53-4@6d-86cd-ac3cc9557¢57: latest
xgboost

Deployment created.

Deployment name: xgboost-goprz%

Service created.

Getting service url...

Service URL: http://10.23.13.194:32634

Checking whether the instance is up or not...

Instance is up!

Guides: > python mm_docker_cli.py execute http://10.23.13.194:32634 <input file>
Guides: > python mm_docker_cli.py stop xgboost-goprz9

Out[18]: ('xgboost-goprz9', 'http://10.23.13.194:32634")

Figure 37. Displaying More Information with Verbose Enabled

19

CONCLUSION

The goal of this paper is to show how to use our CLI utility library to pack a SAS or open-
source model in a Docker image and perform scoring in a Docker container. It introduced
the features of the current development stage of the CLI utility library. This paper might be
updated in the future if we support more model types and additional cloud environments.

REFERENCES

Mouat, A. 2016. Using Docker: Developing and Deploying Software with Containers. 1st
ed.:O'Reilly Media.

Docker Inc.. “"Docker SDK for Python.” Available at https://docker-
py.readthedocs.io/en/stable/.

GitHub Inc.. “"Python Kubernetes Client.” Available at https://github.com/kubernetes-
client/python/blob/master/kubernetes/README.md.

Amazon Web Services, Inc.. "Kubernetes AWS.” Available at
https://aws.amazon.com/kubernetes/.

Google Cloud. "Google Kubernetes Engine Documentation.” Available at
https://cloud.google.com/kubernetes-engine/docs/.

Bernard Golden, Mar 16 2015. “Pets and Cattle Symbolize Servers, so What Does That Make
Containers? Chickens?” Available at https://thenewstack.io/pets-and-cattle-symbolize-
servers-so-what-does-that-make-containers-chickens/.

RECOMMENDED READING
e SAS® Model Manager 15.2: User’s Guide

e SAS® Micro Analytic Service 5.2: Programming and Administration Guide

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

David Duling

SAS Institute Inc.
919-677-8000
David.Duling@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

20

https://docker-py.readthedocs.io/en/stable/
https://docker-py.readthedocs.io/en/stable/
https://github.com/kubernetes-client/python/blob/master/kubernetes/README.md
https://github.com/kubernetes-client/python/blob/master/kubernetes/README.md
https://aws.amazon.com/kubernetes/
https://cloud.google.com/kubernetes-engine/docs/
https://thenewstack.io/pets-and-cattle-symbolize-servers-so-what-does-that-make-containers-chickens/
https://thenewstack.io/pets-and-cattle-symbolize-servers-so-what-does-that-make-containers-chickens/

