

1

SAS3480-2019

What’s New in FCMP for SAS 9.4 and SAS Viya
Michael Whitcher, Aaron Mays, Bill McNeill, Andrew Henrick, and Stacey Christian,

SAS Institute Inc.

ABSTRACT
Join us as we explore new features and functionality in the SAS® function compiler (FCMP).

Integration with Python, support for running analytic scoring containers (ASTORE), and a

new FCMP action set are the main topics we will cover. Learn how to leverage your existing

investment in Python by calling Python functions from an FCMP function. Get the most from

your ASTORE by porting it from SAS® Viya® to SAS® 9.4 (TS1M6), and then run it from an

FCMP function called from the SAS DATA Step. Learn how to port your favorite user-written

functions and subroutines to SAS® Cloud Analytic Services, and then use them within a

computed column or another action. This paper will show you the tips and tricks you need

to integrate your existing FCMP code with these new SAS technologies. Included are

several examples to quickly get you started.

INTRODUCTION
One of the biggest challenges for those who implement computer languages is keeping the

language rich with features and relevant to today’s programming community. There are

many aspects to keeping any computer language relevant: an easy to use syntax, a rich run

time environment, integration with external systems, and performance. The pages to follow

will describe in detail three new features of FCMP that provide seamless integration between

different systems and languages using an easy and natural syntax. But before getting into

the details, let’s clarify how each new feature makes SAS relevant in today’s ever changing

computer world.

With the growing acceptance of open-source software, many companies are investing

resources in new languages. What happens when you suddenly have a major investment in

functions or model libraries in another language, like Python; but you already have a major

investment in SAS? We believe that you should be able to use these systems together in an

intuitive and seamless fashion. This paper highlights a new FCMP Python object that

integrates Python functions with PROC FCMP and DATA Step code; allowing you to run your

Python code seamlessly in SAS.

Second, as many users start to take advantage of new techniques in SAS Viya (such as

artificial intelligence and machine learning models for scoring), they find themselves

wanting to bring those models back into their ‘tried and true’ V9.4 production processes.

SAS Viya introduced the concept of an analytical store (ASTORE), which containerizes the

state from a predictive model so that it can be easily transported to any host platform. Why

should this be limited to the SAS Viya system? Why not use the ASTORE you created in SAS

Viya within your V9.4 programs as well? In this paper we show how to move an ASTORE

created in SAS Viya to SAS V9.4 (TS1M6) and use it from within PROC FCMP and the DATA

Step.

Similarly, wouldn’t it be nice if there were a simple way to load the FCMP function libraries

you developed in V9.4 into Cloud Analytic Services (CAS) and run them there? In the final

section, this paper introduces the new FCMP action set that allows you to load your SAS

2

V9.4 FCMP functions and subroutines into SAS Viya thus enabling you to use the same set

of programs in both run-time environments.

PROC FCMP INTEGRATION WITH PYTHON
The Python language was first conceived in the late 1980s, about the time when SAS was

shipping its version 6 series of releases. Both language systems have gone through much

evolution and expansion, and now it is possible for code written in PROC FCMP to call

functions written in Python. And since FCMP functions and subroutines can be called from

the DATA step, the DATA Step can indirectly call Python functions using FCMP starting in

SAS v9.4 (TS1M6).

The FCMP procedure supports Python version 2.7 and above, so users can integrate with the

version of their choice. Python version 3.6 and above is recommended. The examples in

this paper were written using Anaconda for Python version 3.7.1 for 64-bit Windows.

SETUP
SAS® Micro Analytic Services (MAS) provides the Python support that PROC FCMP leverages

to integrate Python. See the documentation, entitled SAS® Micro Analytic Service 2.5M1:

Programming and Administration Guide, for installation and configuration information.

Currently, the integration is supported on both 64-bit UNIX and 64-bit Windows by setting

two environment variables prior to launching the SAS system and running PROC FCMP.

The first environment variable, called MAS_M2PATH, tells MAS where to find the mas2py.py

communication program. This program comes with your installation of MAS and is the

program that is started when MAS launches the Python interpreter to service function calls.

The second environment variable, called MAS_PYPATH, tells MAS which Python interpreter

on your computer you would like to use. Since a SAS user might have multiple Python

interpreters installed on their computer, use MAS_PYPATH to tell MAS and PROC FCMP

which Python interpreter should be invoked. Putting these two variables together, here is

the setup.

For UNIX:

export MAS_M2PATH=/your/sas/installation/path/mas2py.py

export MAS_PYPATH=/your/python-dir/python

For Windows:

set MAS_M2PATH=c:\your\sas\installation\path\mas2py.py

set MAS_PYPATH=c:\your\python-dir\python.exe

The Python interpreter is launched using the same credentials as the authenticated SAS

user. Users can import and call any of the Python modules or libraries, which come with

their Python system. SAS numeric and character data types can be passed as input

arguments. And certain Python data types can be returned through the functions. Let’s

now look at an example in greater detail.

DECLARING A PYTHON OBJECT

3

A PROC FCMP based Python object is an in-memory container, which allows you to write and

store Python function source code, publish the function source code to a Python interpreter,

and then call the Python functions defined within the published Python module. The syntax

of the declare statement for a Python object follows the generalized form for all FCMP

objects.

General Declaration 1:

declare object object-name(python<("module-name")>);

Where the object-name is the FCMP symbol name, and "module-name" is an optional name

for the Python module once it is published. Every Python module must have a name, so if

the "module-name" is omitted, the FCMP symbol name is used as the default Python module

name. The Python module name must be enclosed in quotation marks and enclosed in

parentheses.

Example 1: FCMP Python Object with Module Name

declare object optionPricing(python("BlackScholes");

In Example 1 an FCMP Python object named optionPricing is created. The object’s Python

module name is "BlackScholes". Yet when a function in this module is called, the module

name is not listed in the call. It is derived from the object declaration. As you’ll see, the

Python module name will be prepended to the function name when the function call is made

to the Python interpreter. The notion of modules comes from the Python language itself.

Functions are contained within a module, and in general Python functions are called as

module.function(args). So, the FCMP declaration for Python objects takes this into

consideration by allowing you to specify the module name.

Example 2: FCMP Python Object Using a Default Module Name

declare object py(python);

In this declaration an FCMP Python object named, py, is created. No module name is

specified, so the symbol name, py, is also used as the module name.

Multiple Python objects can be declared within a single PROC FCMP step, and once

published, Python functions within one module can call Python functions in a second

module.

WRITING PYTHON FUNCTIONS
Once the FCMP Python object has been declared, the next step is to write the Python source

code that goes into it. The Python source code can be placed into the FCMP Python object

by either reading the code from a file, using the new FCMP submit into statement, or using

the APPEND method. Let’s look at all three techniques.

4

Load Python Source Code from a File
The FCMP Python object has two methods available for reading Python source code from a

file and storing it into the object. Once stored in the object, the source code can then be

published.

The first is the INFILE method. This method takes a single argument string literal

containing the file path location to your Python source code. The method returns a numeric

return code. A return value of zero means the method call was successful. Otherwise, an

error occurred. Error messages are written to the SAS log, and all return values for the

FCMP Python object currently operate this same way. Note: Future releases might assign

specific errors to nonzero return codes, so at this time be aware not to assume the value for

any error. Instead, check the SAS log for the error messages.

Example 3: Parse Time - Read in a Python Program

rc = py.infile("c:\PythonSource\BlackScholes.py");

The INFILE method reads in the source during the FCMP parse phase. This allows you to

populate the object with source code before the first observation of data is read. Therefore,

a string literal argument is required. By comparison the RTINFILE method defers the

reading of the Python source code until run time. This allows you to use observation data to

determine how to finish writing the source code for your Python object. The argument

might be a character string variable or a character string literal.

Example 4: Run time – Read in a Python Program

blackscholes = "c:\PythonSource\BlackScholes.py";

rc = py.rtinfile(blackscholes);

Typically, larger Python modules can be written using your favorite Python editor, saved to

disk and included using the INFILE or RTINFILE methods. In this way care is taken to

ensure that the proper white spacing Python requires is maintained.

Using SUBMIT INTO
The SAS language parser is white space agnostic. This means the general structure of SAS

language statements might have one or more spaces in between tokens, and SAS is still

able to interpret and execute the program. The Python language is different. Spaces are

significant, and they are used to delineate the begin and end of functions, loops, and

conditionals. To allow the SAS system to capture Python source code and not modify the

whitespace, the FCMP SUBMIT INTO statement was created.

General Declaration 2:

submit into object-name;

<Python source code>

endsubmit;

5

The object-name is the FCMP symbol name for a previously declared Python object. This is

the object that will hold the submitted Python source code. Every SUBMIT INTO must be

paired with an ENDSUBMIT. The ENDSUBMIT statement terminates the code submission

block of embedded Python source code and stores the code into the Python object. The

ENDSUBMIT statement must be on a line by itself, and it must have no other leading tokens

preceding it on the line, but leading white space is ok. Tokens that come after the

ENDSUBMIT statement terminator, that is, the semi-colon, and the newline character are

ignored. Everything between the SUBMIT INTO and the ENDSUBMIT lines are stored

verbatim, white spaces and newlines included, into the Python object without any

modification. Therefore, Python programmers can supply the necessary Python spacing

necessary to successfully publish the Python source code to the Python interpreter. Putting

these two statements together, we can write our first embedded Python function.

Example 5: Submit Into Statement

submit into py;

def pricing(reason, price, discount):

 "Output: newprice, mark"

 if reason.upper() == "MARKDOWN":

 newprice = price *(1-(discount+0.05))

 mark="MARKDOWN"

 else:

 newprice = price *(1-0.05)

 mark="STANDARD"

 return newprice, mark

endsubmit;

Referring to Example 5, this simple Python function

will take an additional 5% off whatever discount rate

is passed into the function when the "MARKDOWN"

string is passed in as the reason. Otherwise, a

"STANDARD" 5% discount is used. Notice the

spacing of the Python source code, as required by

the language. Also notice the line after the function

declaration, which begins with "Output: ". Why is that line present?

The "Output: " line is required by FCMP because Python performs a very late binding of its

variables to their data type. So late is this binding that it is done as the Python interpreter

is executing the lines of code. By comparison, the SAS FCMP language performs data type

checking and symbol binding at compile time, before program execution and before the first

observation is read. To support the integration between the two different systems, the

Python programmer must provide a hint that allows MAS to know at a minimum the variable

names for the data being returned from the function. This is only needed for the Python

functions that are called from FCMP. other functions within the Python module, for

example, helper functions not directly called from FCMP, can have any function signature

supported by the Python language.

All data is returned from Python to MAS and FCMP as a Python tuple. This is true whether

one or more values are being returned. In Example 5, two data values are returned; the

first is numeric, the second is a character string. In general, the FCMP language does not

support multiple return values, so how is this accomplished? In the section on calling your

Python function we will show you how.

Python source code longer than

256 characters must be split into

two lines using the Python line

continuation character, which is a

backslash '\'.

6

SUBMIT INTO Using a Path
The SUBMIT INTO statement provides a convenient way in which to embed Python source

code into your SAS FCMP code. The source for the two different languages is then

maintained together. When using the PROC FCMP OUTLIB= option, the SUBMIT INTO

statement and the Python source are written into SAS function data set. You can see this

by viewing the contents of the SAS function data set using the SAS® Explorer window. The

Python pricing function used in Example 5 is small. What if you have a lot more lines of

code, and you still want the Python source code to be placed into the SAS function data set

alongside the FCMP language source? Use the SUBMIT INTO statement and supply a file

path.

Example 6: Submit Into Using a File Path

submit into py("c:\PythonSource\BlackScholes.py ");

This variation of the SUBMIT INTO statement is still performed at compile time, but instead

of reading lines from the SAS program, the file path is opened and read into the Python

object just as if they had been specified in Example 5. An ENDSUBMIT should not be used,

as this form of SUBMIT INTO is a complete statement by itself. Furthermore, the lines read

from the file will be stored in the SAS function data set. Why is this distinction between

SUBMIT INTO using a path important? Why not just use the INFILE method instead? To

facilitate the movement of source code between SAS platforms.

More than ever, PROC FCMP source code is run on a grid environment. Examples include

the HPRISK grid as well as the SAS® Cloud Analytic Server platform. Later in this paper we

will show you how to use FCMPACT action set to create SAS function libraries in the SAS

Cloud Analytic Server and run them. To summarize, both forms of SUBMIT INTO allow you

to not only write code into your Python object, but they facilitate the transfer of your FCMP

embedded Python code to other SAS platforms.

APPEND One Line at a Time
While the SUBMIT INTO statement allows you to write a block of Python code at a time, the

APPEND method allows you to write a single line of Python source code into the Python

object. APPEND is a run time method, and when used in conjunction with the CLEAR

method, you can write, publish, call, clear, and rewrite a Python object repeatedly.

Suppose you wanted your Python function to perform certain calculations based on changes

in the observation data itself? Using the APPEND method, along with the RTINFILE method

is how to accomplish it. Rewriting Example 5 in this way would look like what you see in

Example 7.

Example 7: Append Method

rc = py.append('def pricing(reason, price, discount):');

rc = py.append(' "Output: newprice, mark"');

rc = py.append(' if reason.upper() == "MARKDOWN":');

rc = py.append(' newprice = price *(1-(discount+0.05))');

rc = py.append(' mark="MARKDOWN"');

rc = py.append(' else:');

7

rc = py.append(' newprice = price *(1-0.05)');

rc = py.append(' mark="STANDARD"');

rc = py.append(' return newprice, mark');

Again, the rc value is a return code, which you will want to check, but omitted here for

brevity. The APPEND method follows standard SAS language quoting rules to allow you to

write custom Python code a line at a time. As you become familiar with these new

methods, you will develop a sense of what will work best for your needs. Now that we have

written our Python function, let us move ahead and publish the source code to the Python

interpreter.

PUBLISH Your Python Module
Publishing your Python object is the act of taking the source code, which has been stored in

your Python object and submitting it to the Python interpreter. The Python interpreter will

perform syntax checking, returning any syntax errors to the SAS log. Once published, the

Python functions within your module can be called repeatedly from one observation to the

next. This makes PUBLISH a run time method, like RTINFILE and APPEND. However,

PUBLISH is only performed once for a Python object. Subsequent calls to PUBLISH are

ignored until the Python object is cleared using the CLEAR method.

From the last section we learned how to write Python source code into your Python object.

In addition,, multiple SUBMIT INTO statements and calls to INFILE or RTINFILE might be

used to build your Python module sections at a time. Subsequent sections of code are

appended to previous sections. Once your Python code creation is complete, publishing the

source code pushes it to the Python interpreter. You then can call the Python functions

within the module.

Example 8: Publishing a Python Module

rc = py.publish();

if (rc) then do;

 put "Publish of Python code failed.";

 return -1;

end;

Just as with other FCMP Python object methods, a return value of rc =0 means success.

CALL Your Python Function
This is the exciting part. Now that your Python object has been written and published, you

are able to call it from within PROC FCMP or the SAS DATA Step. Assume for this section

the Python object contains the source code from Example 5. Here is how you would call the

pricing function.

Example 9: Calling a Python Function

length mark $10;

newprice = .;

reason = "MarkDown";

8

price = 9.99;

discount = 0.05;

rc = py.call("pricing", reason, price, discount);

newprice = py.results["newprice"];

mark = py.results["mark"];

put newprice= mark=;

Recall that the pricing function returns two data values, newprice and mark. These values

are returned to FCMP in a Python object member variable, named results. The results

member variable is an FCMP dictionary object that can hold the results for different

name/value pairs being returned from the tuple in the Python function. Now you can see

how the "Output: newprice, mark" line in Example 5 is used. The names of the arguments

returned from the function become member names in the results dictionary. The actual

names of the variables used in the return statement are ignored. Instead, the first name in

the "Output: " list is associated with the value for the first variable in the return statement.

The actual Python variable name in the return statement might be named differently. The

second variable value in the Python return statement maps to the second name in the

"Output: " list, and so on.

Using dictionaries, FCMP can obtain an arbitrary number of Python values from any Python

function. An output value from one Python call will overwrite any previous value of the

same name in the results member dictionary. Comingling of output variables with different

names from two or more Python function calls in the same results dictionary is possible and

can make your programming more efficient. But for times when this is not desired, the

dictionary CLEAR method might be used prior to making your next Python function call.

Example 10: Clearing Your Results

rc = py.results.clear();

Keep in mind that clearing the results dictionary before each Python function call does incur

a performance cost. For times when your program is repeatedly calling the same Python

function, clearing the results dictionary is not necessary. New values coming from the

Python function will overwrite any previous value with the same "Output: " list name. For

more information about using FCMP dictionaries, see the SAS Global Forum paper (SAS418-

2017), entitled Dictionaries: Referencing a New PROC FCMP Data Type.

Mapping Data Types
Type conversion between the two languages is also augmented. Python supports all the

SAS data types, for example, numeric and fixed character, but Python has certain additional

data types SAS does not support, for example, Python object. Furthermore, certain

returned Python types are coerced into a SAS data type. Table 1 shows how the mapping

between types is made.

Table 1: Data type mapping between Python and FCMP

Python Data Type (returned) SAS Data Type (converted to)
NoneType Double

9

Python Data Type (returned) SAS Data Type (converted to)
String Fixed Characters

String Array Fixed Character Array

Integer Double

Integer Array Double Array

Long Double

Long Array Double Array

Float Double

Float Array Double Array

Boolean Double

Boolean Array Double Array

Date Date (Double)

Date Array Date (Double) Array

Time Time (Double)

Time Array Time (Double) Array

DateTime DateTime (Double)

DateTime Array DateTime (Double) Array

Any other data type (for example,
objects)

Unsupported

Treatment of missing values between FCMP and Python is something that deserves special

attention. Python is a dynamically typed language. This means a Python variable of any

type (for example, string, integer, or float) can be changed to have the NoneType type,

which has a value of None, to indicate when a variable has no value.

This is like the SAS missing value, but there are differences. The Python NoneType is not

data type specific; the SAS missing is data type specific. That is, a SAS numeric missing is

commonly a period, '.', and a SAS character missing is a space, ' '. In Python there is only

the one value, None. For this reason, all None values being returned from Python are

mapped to the SAS numeric missing '.'. Therefore, when examining the results dictionary

for a Python function that can return a missing value, use the dictionary DESCRIBE method

to check the type. If you expect a character type and you find that it has been switched to

a numeric missing, this is why.

CLEAR Method
Many users of the new Python object will follow a workflow where the programmer will write

and publish the Python source code once, and then use it through each observation of the

input and output data sets being processed. However, what if the problem you are trying to

solve needs a more dynamic approach? That is, what if based on the value(s) of your data

you needed to rewrite your Python object to consider a new calculation or analytic

technique? The Python object CLEAR method allows you to accomplish this work flow.

Example 11: Clear Python Source Code from the Object

call py.clear();

10

By calling the CLEAR method, the Python object is

cleaned of all knowledge of any previous Python

source code, any Python dictionary results, and made

ready to rewrite and publish the object anew. Only

the name of the Python module, as defined in the

DECLARE statement, remains. A Python object might be cleared and reused as often as

needed.

A Complete Example
The Black-Scholes options pricing model is standard study for anyone in the financial sector.

It is easily implemented in PROC FCMP, yet with the popularity of today’s open-source

community, many finance graduates use Python for their modeling needs. Because review

and compliance within the banks and brokerage houses are strict, once a model has been

validated in one language it can be burdensome to move the code to another language.

This is where integration between languages truly shines. For comparison, here is the call

option function when written in PROC FCMP.

Example 12: Black-Scholes Call Options Pricing Written in FCMP

proc fcmp outlib=work.bseopm.bs;

/* Black Scholes European Options Pricing Method for Call */

/* Dividend=0 */

/* S = Current Stock Price */

/* X = Option's Strike Price */

/* r = Risk Free Interest Rate */

/* T = Time to expiration (in days) */

/* v = Current price volatility */

function bseopmCall(s, x, r, T, v);

 if (x ne 0 and x ne . and v ne 0 and v ne .) then do;

 d1 = (log(s/x) + ((r + (v**2)/2) * T)) / (v * sqrt(T));

 d2 = d1 - (v * sqrt(T));

 C = (s * probnorm(d1)) - (x * exp((-r) * T) * probnorm(d2));

 end;

 else

 C = .;

return(C);

endfunc;

quit;

By comparison, here is what the same function would look like when written in Anaconda

Python 3.7.

Example 13: Black-Scholes Call Options Pricing Written in Python and Integrated in FCMP

proc fcmp outlib=work.bseopm.pybs;

/* Black Scholes European Options Pricing Method */

function pyBlackScholesCallOption(curPrice, strikePrice, expireTime,

 priceVolatility, rfRate);

declare object py(python("BSEOPMCallOption"));

optionPrice = .; rc = 0;

The CLEAR method does not have a
return code. Therefore, the syntax is
as a CALL subroutine.

11

/*--

 Black-Scholes Calculation

 --*/

submit into py;

from scipy import stats

import math

def internal_black_scholes_call(stockPrice, strikePrice, timeRemaining,\

 volatility, rate):

 if ((strikePrice != 0) and (volatility != 0)):

 d1 = (math.log(stockPrice/strikePrice) + (rate + (volatility**2)\

 / 2) * timeRemaining) / (volatility*math.sqrt(timeRemaining))

 d2 = d1 - (volatility * math.sqrt(timeRemaining))

 callPrice = (stockPrice * stats.norm.cdf(d1)) - \

 (strikePrice * math.exp((-rate) * timeRemaining) \

 * stats.norm.cdf(d2))

 else:

 callPrice=0

 return (callPrice)

def black_scholes_call(stockPrice, strikePrice, timeRemaining, volatility,\

 rate):

 "Output: optprice"

 optPrice = internal_black_scholes_call(stockPrice, strikePrice,\

 timeRemaining, volatility, rate)

 callPrice = float(optPrice)

 return (callPrice,)

endsubmit;

/* Publish the function to the Python interpreter */

rc = py.publish();

if (rc) then do;

 put "Publish of Python code failed.";

 return(0);

 end;

/* Call Python function black_scholes */

rc = py.call("black_scholes_call", curPrice, strikePrice,

 expireTime, priceVolatility, rfRate);

if (rc) then do;

 put "Calling of Python code failed.";

 return(0);

 end;

optionPrice = py.results["optprice"];

return(optionPrice);

endfunc;

quit;

Which version is easier? That depends on the skill set of the modeler who is writing the

code, the scope of the overall project, and the corporate culture of the organization. Either

way, PROC FCMP is there to support you. For more information about the Python object

and other built-in language objects, see the SAS documentation, entitled PROC FCMP and

DATA Step Component Objects.

12

PROC FCMP INTEGRATION WITH ASTORE
Analytic containers are a recent technology that continue to grow in popularity. The

premise behind them is that the logic created from training a model can be stored into a

specialized file or table, called an ASTORE. This ASTORE is then decoupled from the code,

which created it yet can be recalled and referenced by any future code that wishes to use it.

This programming technique is available in SAS Viya and in SAS V9.4M5.

The way the technology works is that an action set in SAS Viya, like Forrest, FactMac, SVM,

Text Mining, or Machine Learning, and so on is run to create the ASTORE container using a

training data set. Once created the ASTORE can be referenced from other actions, for

example, Fetch, FCMPACT, or as a CAS table computed column. The ASTORE can also be

downloaded to the SAS V9 platform and used in PROC FCMP. Since PROC FCMP functions

and subroutines can be called from the DATA Step, ASTORE integration is also extended to

the DATA Step. Let us walk through the steps that allow you to take advantage of the

technology.

DECLARING AN ASTORE OBJECT
The PROC FCMP ASTORE object is another built-in object supported on 64-bit UNIX and 64-

bit Windows machines. Like other FCMP objects, it uses the DECLARE statement to create

the object.

Example 14:

declare object myscore(astore);

Referring to Example 14, an FCMP object variable, named myscore, of type ASTORE is

created. Once created, there are methods that can be called that allow you to perform

operations using the analytic container. The first method you will want to call after

declaring the object is the SCORE method.

SCORE METHOD
The SCORE method associates the location of the ASTORE container with the myscore

variable. When using SAS Viya, the location is a CASLIB and TABLENAME, such as in

Example 15.

Example 15: Specifying Your Scoring Model in CAS

call myscore.score("CASUSER", "_va_model208");

When using SAS V9, the location is a file path to the local disk or network, as in Example

16.

Example 16: Specifying Your Scoring Model in SAS V9.4M6

call myscore.score("C:\path\models_va_model208");

13

In both cases, the contents of the trained analytical container are read into memory and

placed into the FCMP object. Every ASTORE object has one or more input variables and one

or more output variables. These input and output variables are automatically mapped to

FCMP variables, making them accessible within the FCMP program. This is similar to the

way input variables coming from a SAS data set are mapped to FCMP variables. The

variables from a SAS data set can be referenced and modified in memory during program

execution for each observation. In the same way, the SCORE method maps variables, often

coming from the input SAS data set, to the inputs of the analytic container and calls the

analytic container to perform the scoring algorithm for the observation. The result variables

from the analytic container are returned to FCMP and placed into FCMP program variables.

The FCMP programmer is then able to reference or change the FCMP variable the same as

any other variable. Scoring is performed once for each observation per ASTORE object.

Multiple ASTORE objects can be created and used in a single FCMP program, giving the user

the power to evaluate complex modeling scenarios with one pass of the input data set.

This is great, but how do I discover the input and output variables for an analytic container

if it was created by someone else? Use the DESCRIBE method.

DESCRIBE METHOD
In the database world a describe method is used to obtain meta information for a table or a

view. In the same way, the ASTORE DESCRIBE method is used to obtain meta information

for the input and output variables in the analytic container. The syntax is straightforward.

Example 17: Describe Input and Output Columns in the Scoring Model

PROC FCMP data=mydata.hmeq out=astore_fcmp_out;

 declare object myscore(astore);

 call myscore.score("C:\path\models_va_model208");

 /* Use the DESCRIBE method to discover input and output variables */

 call myscore.describe();

quit;

DESCRIBE is a compile time method. Therefore, it prints the information to the SAS log

before the first input observation is read or before program execution begins.

TIP: Use the (obs=1) data set option to limit the initial number of input data set

observations when describing the input and output variables in the ASTORE.

Here is sample output for the model described in Example 17.

Output 1:

NOTE: Score Input Variables

NOTE:

NOTE: CLAGE Numeric

NOTE: CLNO Numeric

NOTE: DEBTINC Numeric

NOTE: DELINQ Numeric

NOTE: NINQ Numeric

NOTE: VALUE Numeric

NOTE:

14

NOTE: Score Output Variables

NOTE:

NOTE: _P_ Numeric

NOTE: P__EVENT_0 Numeric

NOTE: P__EVENT_1 Numeric

NOTE: I__EVENT_ Character

NOTE: _WARN_ Character

Using the DESCRIBE statement in PROC ASTORE is a second way to discover the input and

output variables in an analytic container.

SETOPTION METHOD
Some ASTORES can accept an option that will augment some portion of their algorithm.

This can be to include additional output variables, or a change to how values are computed.

It is beyond the scope of this document to describe all such options. Consult the SAS

documentation for the actions sets you are using, but here is now you can set an option

through the FCMP ASTORE interface.

Example 18: Setting Options in the Scoring Model

call myscore.setoption('RPCA_PROJECTION_TYPE', 1);

USING ASTORES WITH THE DATA STEP
Using an analytic container from the DATA Step is easy once you create an FCMP function.

Rewriting Example 17 to wrap the scoring into an FCMP function we are now able to call the

function to perform the scoring. From Output 1 we know ASTORE, _va_model208, returns

a certain probability value, _P_. Here is how to obtain _P_ using the DATA Step.

Example 19: Calling ASTORE from the DATA Step

/* Using ASTORE scoring from an FCMP function */

proc fcmp outlib=work.score.funcs;

 function astore(clage, clno, debtinc, delinq, ninq, value);

 declare object myscore(astore);

 call myscore.score("C:\path\models_va_model208");

 return(_P_);

 endfunc;

quit;

options cmplib=work.score;

data astore_ds_out;

 set mydata.hmeq;

 ds_p = astore(clage, clno, debtinc, delinq, ninq, value);

run;

Note that you have complete flexibility when writing the FCMP function. It can return to the

DATA Step as many or few variables from the analytic container as you like. The function

can also preprocess or post process the results based on certain rules you define each time

an observation is scored.

15

CREATING AND USING AN ASTORE ON SAS VIYA
The best way to describe how to use the FCMP ASTORE object with SAS Viya is with an

example. Let us assume you would like to analyze some data for classification and further

regression analysis. The 'tkaasvm' action set in SAS Viya can be used for this purpose, and

the following example will create the ASTORE analytic container, _va_model208, used in the

examples above.

Example 20: Create an ASTORE from SVM

/* Run Support Vector Machine (SVM) action from VDMML */

proc cas;

 action builtins.loadactionset / actionSet='tkaasvm';

 action tkaasvm.svmtrain result=r /

 c=1.0,

 code={comment=false,fmtWdth=15,lineSize=200},

 includeMissing=false,

 maxiter=25,

 noscale=false,

 savestate={caslib="CASUSER",name="_va_model208"},

 table={

 caslib="CASUSER",compOnDemand="false",

 compPgm="

_va_calculated_208_1=round('BAD'n,1.0);

if (('_va_calculated_208_1'n = 0.0))then do;

 _va_calculated_208_11= 0.0;

end;

else do;

 _va_calculated_208_11= 1.0;

end;

EVENT=_va_calculated_208_11;

_va_FILTER_=(NOT(MISSING('_va_calculated_208_1'n))

 AND NOT(MISSING('CLAGE'n))

 AND NOT(MISSING('CLNO'n))

 AND NOT(MISSING('DEBTINC'n))

 AND NOT(MISSING('DELINQ'n))

 AND NOT(MISSING('NINQ'n))

 AND NOT(MISSING('VALUE'n)));

_va_calculated_208_14=NOT(('_va_FILTER_'n = 0.0));",

 compVars={"_va_calculated_208_1","_va_calculated_208_11",

 "_EVENT_","_va_FILTER_","_va_calculated_208_14"},

 name="HMEQ",onDemand="false",where="NOT('_va_calculated_208_14'n =

0)"},

 emtarget={name="_EVENT_",options={levelType="BINARY"}},

 tolerance=1.0E-6,

 var={"CLAGE","CLNO","DEBTINC","DELINQ","NINQ","VALUE"}

 outputTables={names={nobs="NObs",modelinfo="ModelInfo"}, replace="TRUE"};

quit;

The SAVESTATE statement in Example 20 directs SVM to create the ASTORE and save it to

CASLIB="CASUSER" and table name="_va_model_208". We then can reference the

ASTORE in other actions, such as this TABLE.fetch action.

16

Example 21: Scoring Data While Displaying a Table

proc cas;

 loadactionset "table";

 table.fetch

 format=false

 maxRows=1

 sasTypes=TRUE

 table = {

 compOnDemand=TRUE

 caslib="CASUSER"

 name="hmeq"

 compPgm="

declare object myscore(astore);

call myscore.score('CASUSER','_va_model208');"

 singlePass=TRUE

 compVars={"_P_", "P__EVENT_0" , "P__EVENT_1" , "I__EVENT_" ,"_WARN_"}

 };

quit;

Notice the DECLARE and CALL statements in the middle of Example 21. This is FCMP code.

All actions in SAS Viya that support the TABLE statement also support a way to create

computed columns using the compPgm= option, and the FCMP language is what is used to

create the columns. This is a powerful way to perform custom programming to any action.

In this example, we are scoring our data as we display it in the results table output.

To download the ASTORE from SAS Viya into SAS V9 we again use PROC ASTORE. With

Example 22 you have everything you need to get started creating ASTOREs and using them

in SAS Viya and SAS V9. The RSTORE= option refers to the ASTORE located in a CAS

server. The STORE= option refers to the destination on the local file system or network

where ASTORE is copied.

Example 22: Moving an ASTORE from CAS to SAS V9.4

proc astore;

download rstore=sascas1._va_model208

 store="C:\path\models_va_model208";

run;

Not only are ASTOREs a powerful technology component, but their integration into FCMP

opens new opportunities for use in SAS Viya via computed columns and FCMPACT, and in

SAS V9 for the DATA Step.

THE FCMPACT ACTION SET
SAS® Viya® is a new and exciting technology evolution that allows you to scale your

analytic system as you scale your business. Data volumes no longer conveniently fit entirely

on a single SMP machine. Furthermore, in today’s global markets you want to analyze all

your data, not just a subset, and custom programming that captures the “secret sauce” of

your organization remains at the heart of what you do. In this section, we introduce the

FCMPACT action set. FCMPACT allows you to create custom functions and subroutines

within SAS Viya the way PROC FCMP does this for SAS V9. Moreover, function and

17

subroutine libraries defined as SAS V9 data sets can be copied and used in SAS Viya. See

the SAS documentation for PROC COPY for more details.

There are four main actions in the FCMPACT action set. They are:

• addRoutines – add FCMP functions or subroutines to a CAS table

• runProgram – execute FCMP code

• loadFcmpTable – load a single FCMP function table into memory

• loadFcmpLibs – load all FCMP tables in the session CMP library memory

Let us look at examples for each one.

ADDROUTINES ACTION
Again, using an example let us walk through how to store and call functions and subroutines

from FCMPACT within the CAS server. Using PROC CAS, Example 23 uses the addRoutine

action to place two subroutines, named math1 and hometown, into the CASUSER.SUBTRN

CAS table.

Example 23: Store FCMP Subroutines into CAS

proc cas;

session mysession;

/* Load the FCMP action set in the usual way */

loadactionset "fcmpact";

/* Add two FCMP subroutines to CASUSER.SUBRTN */

action addRoutines /

routineCode = "

 subroutine math1 (a, b, c);

 outargs b,c;

 b = a;

 c = a + b*b;

 endsub;

 subroutine hometown(city $, state $, returnstr $);

 outargs returnstr;

 returnstr = 'My hometown is: ' || ktrim(city) || ', ' || ktrim(state);

 endsub;"

package = "pkg"

saveTable=1

funcTable = {caslib="CASUSER" name="SUBRTN" replace=1};

quit;

After the FCMPACT action set is loaded, the addRoutines action is called with the

routineCode= option to pass a quoted string containing the FCMP language source code to

the CAS server. The funcTable= option specifies the name of the output table to store the

functions. From using PROC FCMP, you know that functions and subroutines are stored

within packages, so the package= option allows you to specify the package name. Setting

saveTable=1 forces the funcTable to be saved to disk. Otherwise, the table will remain in

memory within the CAS server until you explicitly promote the table to storage.

18

SETTING CMPLIB IN SAS VIYA
With the CASUSER.SUBRTN function table created, Example 24 shows how to set the CAS-

based CMPLIB session option so that future actions can have reference to the functions and

subroutines. The CMPLIB session option is like the SAS V9 CMPLIB system option shown in

Example 19.

Example 24: Setting CMPLIB in CAS

proc cas;

 /* Replace/Update the value of the CAS session option 'cmplib' */

 action sessionProp.setSessOpt / cmplib="CASUSER.SUBRTN";

 /* What is the current value of the session option 'cmplib'? */

 action sessionProp.getSessOpt / name="cmplib";

quit;

Multiple function tables can be specified in CMPLIB=, allowing FCMP language execution to

find your functions and subroutines across multiple packages in multiple tables on the CAS

server.

RUNPROGRAM METHOD
With the function and subroutine tables ready, Example 25 uses the runProgram action to

execute FCMP code in the CAS server.

Example 25: Run an FCMP Program in CAS

proc cas;

 /* Run an FCMP program in CAS, calling our SUBRTN library */

 action runProgram /

 routineCode = "

 length residence $60;

 call math1(x, y, result);

 call hometown(city, state, residence);"

 /* Program is called on each row of input data */

 inputData={caslib="CASUSER" name="cityandnum"}

 /* Program results are written to the output table */

 outputData={caslib="CASUSER" name="outdta" replace=1};

quit;

The routineCode= option is a quoted string that contains the FCMP code to be executed.

The program is executed once for each row of data in the input table specified by the

inputData= option. Output variables are written to the output table specified in the

outputData= option. If the output table already exists, it must first be dropped prior to

running the action.

FCMP programs on SAS Viya can be simple or complex. You can define (and call) multiple

functions and subroutines. You can also call SAS intrinsic and user-defined formats and

functions that are available in the CAS server.

19

LOADFCMPTABLE AND LOADFCMPLIBS METHODS
Tables in SAS Viya must be loaded into memory prior to using them in actions. This

includes tables containing FCMP functions and subroutines. To load a single table containing

FCMP functions and subroutines, use the loadFcmpTable action. To load all tables

referenced in the CMPLIB session option use the loadFcmpLibs action. Example 26 shows

the syntax for each.

Example 26: Load an FCMP Function Library into Memory on CAS

action loadFcmpTable /

 table="mymath"

 caslib="casuser"

 replace = 1;

action loadFcmpLibs / replace = 1;

The replace= option causes the action to first drop any in-memory copies of the table(s)

before loading a new version from disk. The tables are replicated in full on each node of the

grid. This is a difference over a typical table load. For FCMP to find the functions and

subroutines, the tables must not be partitioned. A complete copy of the table must exist on

the controller node as well as each of the CAS worker nodes for the runProgram action to

find the function or subroutine.

CONCLUSION
The use of objects within FCMP is expanding. ASTORE and PYTHON objects are the latest to

be introduced, but as of this writing other objects are also on the R&D roadmap. You can

expect more in the future, and the reason is simple. FCMP objects are a straightforward

way to provide rich integration with foreign languages and other technology using a simple

syntax and general interface. The possibilities are endless.

Another thing that is clear is that data volumes will continue to increase in the future. The

only debate is at what rate? This means SAS® Viya® will continue to play a major role in

shaping the way we use analytics to solve tomorrow’s problems, as well as those of today.

The language found in PROC FCMP is present on all SAS platforms. It is the language of

choice when creating user-defined functions and subroutines, computed columns in SAS

Viya, and custom programming of functions in machine learning. This tight integration of a

single analytics’ centric language across this much technology gives you a powerful tool. It

is our hope that this paper has helped you get to know FCMP better.

20

REFERENCES
Henrick, Andrew, and Mike Whitcher and Karen Croft. 2017. SAS418-2017, Dictionaries:

Referencing a New PROC FCMP Data Type. SAS Global Forum 2017, Orlando, FL. Available

at https://support.sas.com/resources/papers/proceedings17/SAS0418-2017.pdf

McNeill, Bill, and Andrew Henrick and Michael Whitcher and Aaron Mays. SAS2125-2018,

FCMP: A Powerful SAS Procedure You Should Be Using. SAS Global Forum 2018. Denver,

CO. Available at https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-

proceedings/2018/2125-2018.pdf

www.w3schools.com. Python Tutorial. Available at https://www.w3schools.com/python/

Hull, John C. 2018. Options, Futures, and Other Derivatives. 10th ed. New York, NY: Pearson

SAS Institute Inc. SAS® Micro Analytic Service 2.5M1: Programming and Administrative

Guide. 2018. Cary, NC. Available at

https://go.documentation.sas.com/?docsetId=masag&docsetTarget=titlepage.htm&docsetV

ersion=2.5M1&locale=en

SAS Institute Inc. Base SAS® 9.4 Procedures Guide, Seventh Edition: FCMP Procedure.

2018. Cary, NC. Available at

https://go.documentation.sas.com/?docsetId=proc&docsetTarget=p10b4qouzgi6sqn154ipgl

azix2q.htm&docsetVersion=9.4&locale=en

SAS Institute Inc. Base SAS® 9.4 Procedures Guide, Seventh Edition: PROC FCMP and

DATA Step Component Objects. 2018. Cary, NC. Available at

https://go.documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1oh

qsqb6msp9fn1aj7yp5zq5ibl.htm&locale=en

ACKNOWLEDGMENTS
The authors of this paper would like to thank the following people: Chris Widman, Shannon

Clark, David Duling, James Carroll, Stephen Vincent, Ted Dyer, Charles Shorb, Chris Johns,

Shameka Coleman, and Daniel Underwood. All worked many hours with the authors of this

paper under a tight release schedule to bring the SAS user community the new features

presented. And just as importantly are the friendships that developed while accomplishing

something exciting in the area of computer language development.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Michael Whitcher

SAS Institute

(919) 531-7936

mike.whitcher@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://support.sas.com/resources/papers/proceedings17/SAS0418-2017.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2125-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2125-2018.pdf
https://go.documentation.sas.com/?docsetId=masag&docsetTarget=titlepage.htm&docsetVersion=2.5M1&locale=en
https://go.documentation.sas.com/?docsetId=masag&docsetTarget=titlepage.htm&docsetVersion=2.5M1&locale=en
https://go.documentation.sas.com/?docsetId=proc&docsetTarget=p10b4qouzgi6sqn154ipglazix2q.htm&docsetVersion=9.4&locale=en
https://go.documentation.sas.com/?docsetId=proc&docsetTarget=p10b4qouzgi6sqn154ipglazix2q.htm&docsetVersion=9.4&locale=en
https://go.documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1ohqsqb6msp9fn1aj7yp5zq5ibl.htm&locale=en
https://go.documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1ohqsqb6msp9fn1aj7yp5zq5ibl.htm&locale=en

