
1 

Paper SAS3472-2019 

Enabling SAS® Software to Communicate RESTfully with Cloud Services 

Tom Caswell and Fred Burke, SAS Institute Inc.  

 

ABSTRACT  

Representational State Transfer (REST) architecture has become the standard for cloud 

communication; it defines an abstraction among service providers that enables each to 
evolve independently from the others. Because REST architecture hides the underlying 
implementation, SAS® software does not need to know how any required function (such as 
authorization or persistence) is provided and it is not affected by changes in the cloud 
service. For example, authorization can change from LDAP to Kerberos and persistence can 
change from PostgreSQL to Oracle. SAS software can access functions by invoking the HTTP 

procedure to send cloud service requests and by using the LIBNAME statement with the 
JSON (JavaScript Object Notation) engine to parse cloud service responses. REST also 
requires stateless communication, which allows work to be automatically load-balanced to 
meet increasing demands. This paper shows how SAS software can become a RESTful client 
of cloud services. 

INTRODUCTION 

Since SAS was incorporated in 1976, its software has constantly evolved and today is a 
leader in the analytics market.  Representational State Transfer (REST) was published in 
2000 and would later become a cloud architecture standard.  Although the SAS 
programming language is almost 25 years older than REST, it can still take advantage of the 
cloud architectural style to become a cloud service itself. 

REPRESENTATIONAL STATE TRANSFER ARCHITECTURE 

Fielding (2000) recognized the World Wide Web’s explosive growth and what would be 
needed to continue that growth.  One requirement is that network architectures must be 
scalable and independent so that they can evolve over time.  REST is an architectural style 
that provides this ability.  Fielding (2008) says, “REST is software design on the scale of 

decades: every detail is intended to promote software longevity and independent evolution.” 

Chapter 5 of Fielding (2000) covers REST in detail.  It begins by defining a null style and 
building on it until all the following constraints have been constructed: 

Client-server This constraint provides separation of duties for a network 
architecture.  The client is not responsible for data persistence, 

and the server is not responsible for rendering what the user will 
see.  The separation of duties enables the client and the server to 
evolve independently of each other. 

Stateless This constraint requires the client to provide everything the server 
needs to perform the work.  The server cannot maintain any 
context that is specific to a client.  This constraint provides 

reliability and scalability for the network architecture.  If a server 
fails, the request is simply routed to another server that can 
perform the work. 

  



2 

Cache This constraint allows the client to keep responses from the 
server that are suitable for caching.  This can improve 
performance. 

Uniform interface This constraint is especially critical to the REST architectural style.  
It requires the server not to be coupled to the work it provides.  A 
typical example of this constraint pertains to persistence.  A 
server needs to store information in its original state, but the 
persistence mechanism should not be exposed.  A uniform 
interface allows one database vendor to be exchanged with 
another database vendor such that the client cannot see the 
change.  Thus, the system can evolve without disruption.  This 
constraint also identifies hypermedia as the engine of application 
state (HATEOAS). 

Layered system This constraint provides a single view of the system to clients.  
This constraint promotes performance and reliability through 
business logic encapsulation in a single interface and through 
network failover.  Gateway APIs are a typical implementation. 

Code-on-demand This constraint is optional and allows the client to download code 
from the server and run it. 

Hypermedia as the Engine of Application State (HATEOAS) 

Hypermedia allows the server to provide functions for the client without coupling itself to 
the client.  For example, the HTTP protocol uses links as hypermedia.Figure 1 shows a 
typical workflow that provides a data source, performs analytics on the data source, and 
publishes the results from the analytics. 

 

Figure 1 Analytics with Direct Connections 

Each connection is a direct coupling between two components.  A component in the system 
cannot be replaced without affecting the other components.  For example, if a database 
vendor changes, a new Java Database Connectivity (JDBC) driver needs to be recompiled, 
tested, and deployed. 

  



3 

Figure 2 shows how HTTP methods and uniform resource identifiers (URIs) can help 
uncouple the components from each other. 

 

Figure 2 Analytics with HTTP Connections 

The service implementation is hidden by the HTTP URI, such as /data/postgres, which is 

considered an identity.  A service can be replaced, but the replacement must have its own 
URI.  For example, if the results database vendor changes and its identity is now 
/data/mysql, each instance of /data/postgres will need to be changed to /data/mysql.  



4 

Figure 3 shows how HATEOAS allows the components to be replaced without affecting the 
other components. 

 

Figure 3 Analytics with REST Connections 

The link relations identify the task that is to be performed without exposing the 

implementation or the identity.  The URI can change, but the link relation stays the same.  
For example, suppose that the results database vendor changes and its identity is now 
/data/mysql.  Because the client knows only the publishResults link relation, it never 

knows the difference when the service changes the link URI, and the analytics continue 
uninterrupted. 

It is also important to note the stateless constraint for this system.  Each request and 
response must be implemented in a way such that no state is maintained by the server.  
After the request is serviced and the response returned, the server is done with its work and 
is idle.  The stateless constraint allows automatic load management and reliability.  If 
another server needs to perform the work, the request is simply rerouted and the work 
continues.  Typical examples of state would be context that persists in the session or the 
server waiting for another request to continue working. 

Fielding (2008) says, “A REST API should spend almost all of its descriptive effort in defining 
the media type(s) … and/or hypertext-enabled mark-up for existing standard media types.”  
The design effort spent here will allow the system to independently evolve over time without 
interruption. 

SAS AS A RESTFUL ARCHITECTURE 

How can HATEOAS (hypermedia as the engine of application state) be used within your SAS 
code? A good example that shows this approach can be obtained from Model Studio in SAS® 
Visual Mining and Machine Learning version 8.4. You can use Model Studio to create a 
simple pipeline that connects a Decision Tree node to the Data node.  After you successfully 
run the pipeline, you can download the score API code by going to the Pipeline 



5 

Comparison tab, clicking the icon, and selecting the Download score API link. An 
example of the downloaded code is shown in full in Appendix A. This section describes 

aspects of that code in relationship to HATEOAS. 

The SAS code in Appendix A demonstrates how SAS can make use of HATEOAS.  It consists 
of three macros (the main macro, %DMScoreModel, and two supporting macros, 

%determineJobStatus and %echofile) as well as some set-up code and the call to the 

main macro. The purpose of this code is to run the score code that is generated by the 
Decision Tree model against a specified set of data and produce an output data set. The 
downloaded score API code can be run in SAS® Studio. Any modeling node in a Model 
Studio pipeline will generate similar score API code that can be executed this way. 

The HTTP procedure call made in the main macro sends a request to the model’s 
scoreExecutions endpoint to run the score code. The information available in the response 
body is used to determine when the execution of the scoring process is complete. This 
endpoint, along with other SAS RESTful API endpoints, includes a ‘links’ section in the body 
of the response that is returned by a successfully completed HTTP request. It is the 
information in the ‘links’ section that enables the use of HATEOAS. For each link in the ‘links’ 
section, three pieces of information are needed: the relationship name, the HREF, and the 
Accept header type. Use this information to first find the relationship of interest and then to 
collect the URI and the Accept header type to specify in the next HTTP procedure call. 

In the following DATA step, the data _null_; code block generates a map file that tells the 

JSON engine (in the LIBNAME statement) how to parse the ‘links’ section in the JSON file 
that the FILEREF=option specifies. You can use this map code to extract the content of the 
‘links’ section that almost any SAS RESTful API endpoint returns. 

For the %determineJobStatus macro, it is the ‘self’ relationship information that is needed. 

The second data _null_; code block extracts the HREF link and the Accept header type of 

the ‘self’ relationship and assigns them to macro variables so that they can later be used by 
this macro. 

      filename mapfile TEMP; 

      data _null_; 

         file mapfile; 

         put '{'; 

         put '  "DATASETS": ['; 

         put '    {'; 

         put '      "DSNAME": "links",'; 

         put '      "TABLEPATH": "/root/links",'; 

         put '      "VARIABLES": ['; 

         put '        {'; 

         put '          "NAME": "rel",'; 

         put '          "TYPE": "CHARACTER",'; 

         put '          "PATH": "/root/links/rel",'; 

         put '          "CURRENT_LENGTH": 63'; 

         put '        },'; 

         put '        {'; 

         put '          "NAME": "href",'; 

         put '          "TYPE": "CHARACTER",'; 

         put '          "PATH": "/root/links/href",'; 

         put '          "CURRENT_LENGTH": 2047'; 

         put '        },'; 

         put '        {'; 

         put '          "NAME": "type",'; 

         put '          "TYPE": "CHARACTER",'; 



6 

         put '          "PATH": "/root/links/type",'; 

         put '          "CURRENT_LENGTH": 255'; 

         put '        }'; 

         put '      ]'; 

         put '    }'; 

         put '  ]'; 

         put '}'; 

      run; 

 

 

      libname jsonlib JSON fileref=resp map=mapfile; 

 

      %let selfHref =; 

      %let selfType =; 

 

      data _null_; 

         set jsonlib.links; 

          where rel eq 'self'; 

         call symput("selfHref", href); 

         call symput("selfType", type); 

      run; 

      filename mapfile; 

      libname jsonlib; 

 

By obtaining the URI and associated media type in this manner, the SAS code has the 
information it needs to make a RESTful call to any link available in the ‘links’ section. The 
documentation for each of the public SAS RESTful APIs describes the available links (SAS 
Institute Inc. 2019). 

The SAS code in the %determineJobStatus macro shows how to configure the HTTP 

procedure request to use this information so that the RESTful call, as specified by the 
relationship name, can be properly submitted. This is what HATEOAS is all about, making an 
HTTP request and then using the returned information to make additional HTTP requests to 
accomplish the desired task. In this example, that task is to determine when the execution 
of the score code completes and whether it completed successfully. 

It is important to note that when the Accept header is obtained, it will not include the return 
type format specification. The desired format needs to be appended to the Accept type 
header before the HTTP procedure request is submitted. Most SAS RESTful APIs support at 
least the JSON and XML formats.  The following code indicates that the response body is 
expected to be in JSON format: 

                  "Accept"="&_mediaType.+json" 

 

If XML is the desired format, then simply append +xml instead of +json.  

The following lines of code, from the main macro, show that a call to the 
%determineJobStatus macro is made only if the scoreExecutionState is either “running” or 

“pending” when it is first checked. If the %determineJobStatus macro is called, then a 

request is made every second to see whether the state has changed from either of these 

two states (or the timeout limit has been reached), at which point the macro is exited. Once 
back in the main macro, a determination is made as to the current state of the scoring job, 
as follows: 

  



7 

      /* 

      * If the job hasn't completed yet, then start polling the job until it  

      * is done or it times out. 

      */ 

      %if "&scoreExecutionState" in ("running" "pending") %then %do; 

         %determineJobStatus(&selfHref, &selfType, scoreExecutionState); 

         %if %sysevalf(&syscc > 4) %then %do; 

            %put ERROR: An error was encountered while determining the job 

                 status. ErrCode: &syscc; 

            %goto exitM; 

         %end; 

      %end; 

 

      %if "&scoreExecutionState" eq "completed" %then %goto exitM; 

      %else 

      %if "&scoreExecutionState" in ("running" "pending") %then %do; 

         %put WARNING: The job did not complete yet. Its state is: 

              &scoreExecutionState; 

         %goto exitM; 

      %end; 

      %else %if "&scoreExecutionState" in ("canceled" "timedOut") %then %do; 

         %put WARNING: The job%str(%')s state is: &scoreExecutionState; 

         %goto exitM; 

      %end; 

      %else %do; 

         %put ERROR: The job failed. View the job%str(%')s log via the Jobs 

              icon in SAS Environment Manager. The job%str(%')s name start 

              out as 'The Scoring operation for Data Mining model ...'; 

         %goto exitM; 

      %end; 

 

When the scoreExecutionState is set to “completed”, then the data set that was generated 
by the score code and specified by the outputTableName macro variable will exist in the 

caslib that is specified by the outputCasLib macro variable. 

Running in SAS® Studio 

As mentioned previously, the downloaded score code can be run in the web-based SAS 
Studio application. When you are running Model Studio, you can start SAS Studio and run 
the downloaded score code by selecting Develop SAS Code from the list of actions 

available from the  icon and pasting the code into the editor pane of SAS Studio. Before 

you submit the code, modify the following two lines to specify the caslib to write to and the 
data set name to assign to the new file. 

   %let outputCasLib = OUTPUT_CAS_LIB_NAME; 

   %let outputTableName = OUTPUT_CAS_TABLE_NAME; 

 

The SAS Studio environment provides you two important benefits: The first is that since you 

already authenticated yourself to the web application, you do not need to generate a 
separate token to pass to the compute server. Instead the HTTP request just needs to 
specify the following line for the compute service to be able to execute the code on your 
behalf: 

         OAUTH_BEARER=SAS_SERVICES 

 



8 

The second benefit is that you do not need specify the host and port information. Instead, 
the following code extracts that information from the run-time environment and assigns it to 
a macro variable, which is then used in the generation the URI: 

   %let servicesBaseUrl =; 

   data _null_; 

      length string $ 1024; 

      string= getoption('SERVICESBASEURL'); 

      call symput('servicesBaseUrl', trim(string)); 

   run; 

 

These two benefits enable you to submit the modified score API code on the server where 
the Model Studio project was originally created either immediately or at any later time. 
When submitted, the code will correctly execute provided that the referenced model and 
scoring data set both still exist on that server. 

ANALYTICS USE CASE AND TOPOLOGY 

Model scoring is an example of analytics you might want to perform.  Figure 4 shows how a 
model is defined, trained, and published.  Then you can use the published code to make 
business decisions. 

 

Figure 4 Model Scoring 



9 

Each of the services in Figure 4 performs a function and is completely isolated from the 
other services.  If you replace SAS® Model Manager with another service that implements 
the publishModel and scoreModel link contracts, the Compute and Client services won’t 

see any changes. 

CONCLUSION 

SAS software can behave as a cloud service and communicate with other cloud services 
RESTfully by taking advantage of the REST architectural style through the use of PROC HTTP 
and the use of JSON in the LIBNAME statement.  SAS software can run as a cloud service to 
operate without database awareness, enforce security without credentials management, and 
recognize a multi-tenancy environment without any additional configuration.  SAS code can 
move to the cloud and work undisturbed, even as the system around it evolves. 

APPENDIX A 

The following score API code has been downloaded from a Decision Tree node. The 
formatting has been slightly altered for presentation in this paper. 

/**************************************************************************** 

** Macro: Score Data Mining Model 

** 

** Description: Score the specified model by using the score execution 

**              service. 

****************************************************************************/ 

   

/**************************************************************************** 

* Edit the following options to customize the scoring operation: 

* outputCasLib: (REQ)The name of the caslib where the score output table 

*               is to be written. 

* outputTableName: (REQ) The name of the output scoring table to create.  

****************************************************************************/ 

 

   %let outputCasLib = OUTPUT_CAS_LIB_NAME; 

   %let outputTableName = OUTPUT_CAS_TABLE_NAME; 

 

 

   /************************************* 

   * The main macro DMScoreModel 

   *************************************/ 

   %macro DMScoreModel(projectId, modelId, datasourceUri, outputCasLib, 

                       outputTableName)/minoperator; 

      filename resp TEMP; 

      filename headers TEMP; 

      filename data TEMP; 

 

      %let u=dataMining/projects/&projectId/models/&modelId/scoreExecutions; 

 

      %let scoreModelUrl =&servicesBaseUrl.&u; 

 

      %let syscc =0; 

      proc json out=data pretty; 

         write open object; 

         write values "dataTableUri" "&datasourceUri"; 

         write values "outputCasLibName" "&outputCasLib"; 

         write values "outputTableName" "&outputTableName"; 

         write close; 



10 

      run; 

      %if %sysevalf(&syscc > 4) %then %do; 

         %put ERROR: PROC JSON set an error status code of: &syscc; 

         %goto exitM; 

      %end; 

 

      %global SYS_PROCHTTP_STATUS_CODE SYS_PROCHTTP_STATUS_PHRASE; 

      %let SYS_PROCHTTP_STATUS_CODE=; 

      %let SYS_PROCHTTP_STATUS_PHRASE=; 

 

      %let syscc =0; 

      proc http 

         method="POST" 

         OAUTH_BEARER=SAS_SERVICES 

         url="&scoreModelUrl" 

         in=data 

         headerout=headers 

         out=resp; 

         headers 

         "Accept"="application/vnd.sas.score.execution+json" 

         "Content-Type"= 

"application/vnd.sas.analytics.data.mining.model.score.request+json"; 

      run; 

      %if %sysevalf(&syscc > 4) %then %do; 

         %put ERROR: PROC HTTP set an error status code of: &syscc; 

         %goto exitM; 

      %end; 

 

      %if ^(&SYS_PROCHTTP_STATUS_CODE in (200 201 202)) %then %do; 

         %put ERROR: PROC HTTP returned an HTTP status code of: 

              &SYS_PROCHTTP_STATUS_CODE - &SYS_PROCHTTP_STATUS_PHRASE; 

         %echoFile(resp); 

         %goto exitM; 

      %end; 

 

      filename mapfile TEMP; 

      data _null_; 

         file mapfile; 

         put '{'; 

         put '  "DATASETS": ['; 

         put '    {'; 

         put '      "DSNAME": "links",'; 

         put '      "TABLEPATH": "/root/links",'; 

         put '      "VARIABLES": ['; 

         put '        {'; 

         put '          "NAME": "rel",'; 

         put '          "TYPE": "CHARACTER",'; 

         put '          "PATH": "/root/links/rel",'; 

         put '          "CURRENT_LENGTH": 63'; 

         put '        },'; 

         put '        {'; 

         put '          "NAME": "href",'; 

         put '          "TYPE": "CHARACTER",'; 

         put '          "PATH": "/root/links/href",'; 

         put '          "CURRENT_LENGTH": 2047'; 

         put '        },'; 

         put '        {'; 



11 

         put '          "NAME": "type",'; 

         put '          "TYPE": "CHARACTER",'; 

         put '          "PATH": "/root/links/type",'; 

         put '          "CURRENT_LENGTH": 255'; 

         put '        }'; 

         put '      ]'; 

         put '    }'; 

         put '  ]'; 

         put '}'; 

      run; 

 

 

      libname jsonlib JSON fileref=resp map=mapfile; 

 

      %let selfHref =; 

      %let selfType =; 

 

      data _null_; 

         set jsonlib.links; 

          where rel eq 'self'; 

         call symput("selfHref", href); 

         call symput("selfType", type); 

      run; 

      filename mapfile; 

      libname jsonlib; 

 

 

      libname jsonlib JSON fileref=resp; 

 

      %let scoreExecutionState=; 

 

      data _null_; 

         set jsonlib.root; 

         call symput("scoreExecutionState", state); 

      run; 

      filename resp; 

      libname jsonlib; 

 

      /* 

      * If the job hasn't completed yet, then start polling the job until it 

      * is done or it times out. 

      */ 

      %if "&scoreExecutionState" in ("running" "pending") %then %do; 

         %determineJobStatus(&selfHref, &selfType, scoreExecutionState); 

         %if %sysevalf(&syscc > 4) %then %do; 

            %put ERROR: An error was encountered while determining the job 

                 status. ErrCode: &syscc; 

            %goto exitM; 

         %end; 

      %end; 

 

      %if "&scoreExecutionState" eq "completed" %then %goto exitM; 

      %else 

      %if "&scoreExecutionState" in ("running" "pending") %then %do; 

         %put WARNING: The job did not complete yet. Its state is: 

              &scoreExecutionState; 

         %goto exitM; 



12 

      %end; 

      %else %if "&scoreExecutionState" in ("canceled" "timedOut") %then %do; 

         %put WARNING: The job%str(%')s state is: &scoreExecutionState; 

         %goto exitM; 

      %end; 

      %else %do; 

         %put ERROR: The job failed. View the job%str(%')s log via the Jobs 

              icon in SAS Environment Manager. The job%str(%')s name starts 

              with 'The Scoring operation for Data Mining model ...'; 

         %goto exitM; 

      %end; 

 

      %exitM: 

   %mend; 

 

 

   /************************************* 

   * Output the file to the log. 

   *************************************/ 

   %macro echoFile(_fileRef); 

      data _null_; 

         infile &_fileRef; 

         input; 

         put _infile_; 

      run; 

   %mend; 

 

 

   /************************************* 

   * Determine when the job is finished running. 

   *************************************/ 

   %macro determineJobStatus(_jobUri, _mediaType, _rtnVal)/minoperator; 

      %let &_rtnVal=running; 

 

      /* Poll for a maximum of ~100 seconds */ 

      %let maxPollingAttempts =100; 

      %let seconds            =1; 

      %let loopLimit          =20; 

      %let i                  =0; 

 

      %let operation =JobStatus; 

 

      %let url =&servicesBaseUrl&_jobUri; 

 

 

      filename resp TEMP; 

      %do %while (&i < &maxPollingAttempts); 

         %do j=1 %to &loopLimit; 

            %let i = %eval(&i + &seconds); 

            %if &i >= &maxPollingAttempts %then %goto exitM; 

            data _null_; 

               call sleep(&seconds, 1); 

            run; 

 

            proc http 

               out=resp 

               method="GET" 



13 

               OAUTH_BEARER=SAS_SERVICES 

               url="&url" 

               ; 

               headers 

                  "Accept"="&_mediaType.+json" 

               ; 

            run; 

            %if %sysevalf(&syscc > 4) %then %do; 

               %put ERROR: PROC HTTP set an error status code of: &syscc; 

               %goto exitM; 

            %end; 

 

            %if &SYS_PROCHTTP_STATUS_CODE eq 200 %then %do; 

               libname job JSON fileref=resp; 

               data _null_; 

                  set job.root; 

                  call symput("&_rtnVal", trim(state)); 

               run; 

               libname job; 

               %if ^("&&&_rtnVal" in ("running" "pending")) %then 

                  %goto exitM; 

            %end; 

            %else %do; 

               %let syscc=&SYS_PROCHTTP_STATUS_CODE; 

               %put ERROR: An unexpected HTTP STATUS code of 

                    &SYS_PROCHTTP_STATUS_CODE was returned. Exiting.; 

               %goto exitM; 

            %end; 

         %end; 

         %let seconds = %eval (&seconds + 1); 

      %end; 

 

      %exitM: 

      filename resp; 

   %mend; 

 

 

   /************************************* 

   * Obtain the servicesBaseUrl 

   *************************************/ 

   %let servicesBaseUrl =; 

   data _null_; 

      length string $ 1024; 

      string= getoption('SERVICESBASEURL'); 

      call symput('servicesBaseUrl', trim(string)); 

   run; 

 

   %let projectId     = a3b2ff6f-0e10-40c6-b19a-5a8a0f505139 

   %let modelId       = 9e4a3d21-2841-4bee-95a3-2895022b793e; 

   %let datasourceUri = /dataTables/dataSources/cas~fs~cas-shared-

default~fs~Public/tables/HMEQ; 

 

   %DMScoreModel(&projectId, &modelId, &datasourceUri, &outputCasLib, 

                 &outputTableName); 

  



14 

REFERENCES 

Fielding, R. T. 2000. “Architectural Styles and the Design of Network-Based Software 

Architectures.” PhD diss., University of California, Irvine.  Available: 
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm 

Fielding, R. T. “REST APIs Must Be Hypertext-Driven.” Available: 
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven Last modified 
October 20, 2008.  Accessed on February 20, 2019. 

SAS Institute Inc. 2019. REST APIs for SAS Viya and CAS. Accessed March 15, 2019. 

Available https://developer.sas.com/guides/rest.html. 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the authors at: 

Tom Caswell 

SAS 
tom.caswell@sas.com 
 
Fred Burke 
SAS 
fred.burke@sas.com 

 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or 
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA 
registration.  

Other brand and product names are trademarks of their respective companies. 

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://developer.sas.com/guides/rest.html



