
1

Paper 3440-2019

Adding Data to Real-Time Decision-Making with SAS® Decision Manager on
SAS® Viya®

Dean Taplin and Ernest Jessee, SAS Institute Inc., Cary, NC

ABSTRACT
SAS® Decision Manager enables users to operationalize analytics in real-time settings. In
these deployments, analytics can create efficiencies and optimize your business process.
However, to properly leverage the full value of analytical decision-making processes, users
need access to their data. SAS Decision Manager offers that ability, enabling database
queries within their real-time flows. This paper tours this ability, showing how to configure a
database connection within SAS® Environment Manager and write custom DS2 code that
queries a database within SAS Decision Manager. The results of the query are added to the
data stream of the decision flow for further processing.

INTRODUCTION
To demonstrate the use of data retrieved from an external database within a SAS Decision
Manager decision flow, this paper explores a scenario where a car dealer wishes to calculate
a selling price for a car on his lot. The dealer knows the year, make, model, and type of the
car, and he knows the premium options that the car is equipped with. A third-party
database can provide the base value of the car along with additional value for each
premium feature. These amounts can be added together to reveal an appropriate selling
price. The dealer would like a REST API that can be accessed from his internal website to
calculate an appropriate price for a car given the known information.

This car pricing REST API is achieved using a decision flow created in SAS Decision Manager,
which contains a custom code node and a rule set. This flow is deployed to the SAS® Micro
Analytics Server, which creates the REST API.

ARCHITECTURE
The car pricing decision flow executes an SQL query against a Postgres database as shown
in Figure 1. The SQL query is executed in a code node. A code node allows custom DS2
code to be inserted into a decision flow. This DS2 code queries the database and assigns
the returned information to decision variables, which can be used downstream in other parts
of the flow. SAS Environment Manager provides a means of defining the database
connection that is referenced in the code node. The database used in this example is
Postgres, but other database technologies are applicable.

2

Figure 1. The Architecture of a Decision with SQL Calls

THE CAR PRICING DECISION
The car pricing decision contains 2 nodes: a code node and a rule set node. The code node
queries a database using specifics of a particular car and inserts the result returned from
that query into the decision flow’s data stream. The rule set node combines the data
gathered by the code node to result in a selling price. The car pricing decision is shown in
Figure 2.

Figure 2. The Car Pricing Decision Flow

3

QUERYCARS CODE FILE
The code contained in the “QueryCars” code node is shown in its entirety in Appendix A and
is explained in the following sections.

Input and Output Data
The code node uses the input data entered by the car dealer for year, type, make, and
model of a particular car to construct an SQL query. Executing this SQL query against the
database returns a base value for the car along with information about premium features.
The query result becomes the output of the code file node. The input and output tables for
the code file node are shown in Figure 3.

Figure 3. Input and Output for the QueryCars Code Node

Query Code
The code node, “QueryCars”, uses the DS2 SQLSTMT package, which allows queries to a
pre-defined data source. An SQL Select is executed against the database table,
“carslookup”. Here is the DS2 code that queries the database:

dcl package sqlstmt lookupDataSource;
 dcl varchar(100) sql;
 dcl int rc;
 dcl int initComplete;

 method loadLookup();

myCustomLookupHash.clear();

4

sql = 'SELECT make,model,type,year,baseValue,ACValue,PSValue from "carslookup"';
lookupDataSource = _new_ sqlstmt(sql);
rc = lookupDataSource.execute();
if rc ne 2 then

do while (lookupDataSource.fetch([_make _model _type _year baseValue ACValue PSValue])
eq 0);

/* use strip() upcase() to make hash key matching more forgiving */
_make = upcase(strip(_make));
_model = upcase(strip(_model));
_type = upcase(strip(_type));
myCustomLookupHash.ref([_make _model _type _year],[baseValue ACValue PSValue]);

end;

lookupDataSource.closeResults();
initComplete=1;

end;

Marshaling Code
Data marshaling takes place in the Execute method of the code node. “in_out” variables
included in the Execute method signature are used to pass the data pulled from the
database by the query. When SAS Decision Manager parses the signature of the execute
method, all “in_out” variables are added to the node’s output list while others are added to
the input list. Here is the marshaling code:

method execute(varchar(52) make,
varchar(160) model,
varchar(32) type,
double year,
in_out double factor_BaseValue,
in_out double factor_AirConditioning,
in_out double factor_PowerSteering);

if missing(initComplete) then loadLookup();

/* assign keys - variable lists must reference global variables */
/* use strip() upcase() to make hash key matching more forgiving */
_make = upcase(strip(make));
_model = upcase(strip(model));
_type = upcase(strip(type));
_year = year;
if myCustomLookupHash.find([_make _model _type _year],

[baseValue ACValue PSValue]) = 0 then do;
factor_BaseValue = baseValue;
factor_AirConditioning = ACValue;
factor_PowerSteering = PSValue;

end;
else do;

/* In this example use static values */
factor_BaseValue = 200; /* scrap metal value */
factor_AirConditioning = .;
factor_PowerSteering = .;

end;
end;

end;

5

PRICE ADJUSTMENT RULE SET
The data retrieved with the SQL query is combined for a total price using the rule set,
“TargetVinCarPrice”.

Input and Output Data
The input and output tables for the rule set node are shown in Figure 4.

Figure 4. Input and Output Tables for TargetVinCarPrice Rule Set

Price Adjustment Rules
TargetVinCarPrice consists of a single assignment and two rules. The selling price,
“totalValue”, is initially assigned to be equal to “BasePrice” as returned from “QueryCars.”
For each premium feature that the car has, “totalValue” is increased by the value of that
premium feature. The specifics of the price adjustment rule set are shown in Figure 5.

6

Figure 5. TargetVinCarPrice Rule Set

CONFIGURATION
In order to access a third-party party database from SAS® Micro Analytic Score Service, the
SAS Micro Analytic Score Service must be configured to access that database. This
configuration entails installing appropriate drivers on the host server, insuring that these
drivers are loaded when the service is started and defining a connection string in SAS
Environment Manager.

After following the steps in this section if there are problems accessing the database from a
code node, follow the steps in Appendix B to use system logging for diagnosis of the
problem.

Database Drivers
Database drivers relevant to the database to be accessed must be installed on the server
that hosts the SAS Micro Analytic Score Service. See the documentation from the database
vendor for instructions.

Database Connection String
At start up, the SAS Micro Analytic Score Service connects to all data sources represented in
its FEDSQL connection string. For a Postgres database, the FEDSQL connection string entry
follows this pattern:

DRIVER=SQL;CONOPTS=((DRIVER=<engine>;CATALOG=<dbms-
catalog>;UID=<userid>;PWD=<password>;SERVER=<server>;PORT=<port>;DB=<da
tabase>))

To modify the FEDSQL connection string for the SAS Micro Analytics Service, open SAS
Environment Manager as a system administrator. Navigate to the following category within
the hierarchy: Configuration > All services > Micro Analytic Score service. Next,
enter “FEDSQL” in the search to reveal a section labeled “core”. The “core” section contains
the “connectionString” property. Modify this property to contain the connection string entry
for your database. See Figure 6 for an example of a FEDSQL connection string in SAS

7

Environment Manager.

Figure 6. SAS Environment Manager Showing the MAS FEDSQL Connection String

SAS Micro Analytic Score Service Configuration File
In order for the SAS Micro Analytic Score Service to load needed drivers for accessing the
database pointed to by the defined connection string, the execution environment of the
service must be modified. Environment changes that must be picked up upon the start up
of the SAS Micro Analytic Score Service are defined in a special configuration file. On the
host server, create a text file called microanalyticservice.conf in the following directory:

/opt/sas/viya/config/etc/sysconfig/

For the Postgres database used in this example, the contents of this file are
as follows:

PGLIENTENCODING=UTF-8
export PGCLIENTENCODING
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/sas/viya/home/lib64/

The contents of this file will vary depending on the database vendor.

After the configuration file is in place, the SAS Micro Analytic Score Service should be
restarted. The micro analytic score service is typically named sas-viya-
microanalyticservice-default.

8

DEMONSTRATION
This section will demonstrate the results of the process described above which has enabled
a car dealer to create decision flow that retrieves data from a third-party database and
combines that data to calculate an appropriate selling price for a particular car. In our
demonstration, the decision is deployed to the SAS Micro Analytic Score Service resulting in
a REST API that reveals the analytical power of the decision flow. The dealer then accesses
this API from his own website. Known information is entered by his employees and is then
sent to the REST API, which returns a price. As a result, his employees can quickly and
accurately price cars.

THE DATABASE
The third-party database the dealer wishes to use is a “blue-book” database, which contains
a base price for cars and adder values based on options the car might have. Typical data
from the database used in this sample is shown in Figure 7.

Figure 7. Third-Party Blue-Book Database

9

MICRO ANALYTIC SERVICE MODULE
After the decision has been created, the power of SAS Decision Manager is made available
as a REST service by publishing the decision to SAS Micro Analytic Score Service. This is
accomplished by clicking the Publish button from within the decision editor and selecting
maslocal as the target destination. The Publish Decisions window is shown in Figure 8.

Figure 8. Publish Decisions Window

Figure 9 shows the URL of the published decision’s Micro Analytic Service module in the
Module URI column of the history table. This URL is used in your web application to access
the logic of the decision.

Figure 9. History Tab of the Decision Editor Showing the Published Decision’s URL

Starting with the URL shown in the history table and using any REST client, one can
discover the exact format of the input data that is expected by the Execute step of the
published decision as shown in Figure 10.

10

Figure 10. Discovery of the Expected Execute Inputs Using a REST Client

THE DECISION IN USE
Executing the REST API created from the car pricing decision is as simple as posting the
expected input data and processing the returned payload. An example of the Car Pricing
decision in action is shown in Figure 11.

11

Figure 11. Exercising the Car Pricing Decision Using a REST Client

CONCLUSION
In order for a decision process to be effective, it is often necessary to reference data that
does not reside within the SAS® Viya® environment. SAS Decision Manager offers a
fantastic method for accessing external data within a decision. The SAS Micro Analytic
Score Service can quickly transform that decision into a REST API enabling users to harness
the power of SAS from their own applications.

12

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Ernest Jessee
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
919-677-8000
Ernest.jessee@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

13

APPENDIXES
Appendix A. The DS2 Code for QueryCars

package "${PACKAGE_NAME}" / inline ;

 /* lookup keys are managed internal to the package */
 dcl int _year;
 dcl varchar(52) _make;
 dcl varchar(160) _model;
 dcl varchar(32) _type;
 dcl double baseValue;
 dcl double ACValue;
 dcl double PSValue;

 dcl package hash myCustomLookupHash ([_make _model _type _year],

[baseValue ACValue PSValue]);
 dcl package sqlstmt lookupDataSource;
 dcl varchar(100) sql;
 dcl int rc;
 dcl int initComplete;

 method loadLookup();
 myCustomLookupHash.clear();
 sql = 'SELECT make,model,type,year,baseValue,ACValue,PSValue from "carslookup"';
 lookupDataSource = _new_ sqlstmt(sql);
 rc = lookupDataSource.execute();

 if rc ne 2 then

do while (lookupDataSource.fetch([_make _model _type _year baseValue ACValue
PSValue]) eq 0);

 /* use strip() upcase() to make hash key matching more forgiving */
 _make = upcase(strip(_make));
 _model = upcase(strip(_model));
 _type = upcase(strip(_type));
 myCustomLookupHash.ref([_make _model _type _year],

[baseValue ACValue PSValue]);
 end;

 lookupDataSource.closeResults();
 initComplete=1;
 end;

 method execute(varchar(52) make,

varchar(160) model,
varchar(32) type,
double year,
in_out double factor_BaseValue,
in_out double factor_AirConditioning,

 in_out double factor_PowerSteering);

 if missing(initComplete) then loadLookup();

 /* assign keys - variable lists must reference global variables */
 /* use strip() upcase() to make hash key matching more forgiving */
 _make = upcase(strip(make));
 _model = upcase(strip(model));
 _type = upcase(strip(type));
 _year = year;

 if myCustomLookupHash.find([_make _model _type _year],

[baseValue ACValue PSValue]) = 0 then do;
 factor_BaseValue = baseValue;
 factor_AirConditioning = ACValue;
 factor_PowerSteering = PSValue;
 end;
 else do;
 /* In this example use static values */
 factor_BaseValue = 200; /* scrap metal value */
 factor_AirConditioning = .;
 factor_PowerSteering = .;
 end;
 end;
endpackage;

14

Appendix B. Troubleshooting Database Connection Issues
If there are issues connecting to your database, you can enable logging to help diagnose the
problem. In SAS Environment Manager, navigate to the following category: Configuration
> All services > Micro Analytic Score Service. Here, set the logger,
“Audit.Table.Connection”, to “DEBUG” as shown in Figure 12.

Figure 12. Micro Analytic Service Table Connection Logging

After setting this log level, observe the micro analytics service log at

/opt/sas/viya/config/var/log/microanalyticservice/default

