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ABSTRACT

Data scientists use a variety of tools, both commercial and open-source, to achieve key
goals for their organization. For enterprise applications of analytics and artificial intelligence,
it is crucial that teams can collaborate no matter which tools they are using. SAS® software
provides a platform on which all users in the enterprise can create intelligence from data
and operationalize the results easily. Data scientists and developers whose core
programming competence is in languages such as Python and R can efficiently use SAS
through a variety of APIs to increase productivity and improve time-to-value. This paper
describes and demonstrates a variety of best-practice use cases to show how SAS software
provides integration with open-source tools to support end-to-end analytical workflows.

INTRODUCTION

SAS has a long history of providing high-quality statistical, data mining, and machine
learning software for various industries. SAS offers solutions to build credit scorecards,
detect fraud, assess risk, or provide recommendations that automate and streamline
decision-making processes. In recent years, many data scientists have used SAS software,
Python, R, and other open-source or vendor-specific tools to mix and match various tasks of
the analytical life cycle. To enable these combinations, SAS provides Python and R
integration with multiple releases of SAS 9, and continues to extend these capabilities with
SAS® Viya®, the cloud-enabled, in-memory, distributed analytics engine that makes the SAS
Platform more scalable, fault-tolerant, and open. The word “open” signifies the fact that the
power of SAS to build and deploy analytics can be accessed via many programming
languages—not just SAS, but also Python, R, Lua, Java, or RESTful APIs. This integration
enables analytical teams with varied backgrounds and experiences to come together and
solve complex problems in new ways.

Integrating SAS and open-source technologies is often advantageous in two main scenarios:
e Programmatically accessing the SAS Platform using open-source software
e Bringing open-source models into the SAS Platform for side-by-side comparison

Each of these topics is discussed in detail with examples in the following sections.

SAS TO OPEN-SOURCE LANGUAGES AND INTERFACES

This section starts with an example of being able to access and execute SAS analytics
programmatically from open-source languages. For consistency, the primary focus is on
calling SAS from Python, a popular general-purpose scripting language, via APIs. SAS
provides three foundational open-source packages for doing this, all available on GitHub:
SASPy, SWAT,! and ESPPy. The SASPy package interfaces with SAS 9.4, SWAT with SAS
Viya, and ESPPy with SAS® Event Stream Processing. Three higher-level open-source
packages are also available: Pipefitter, SASOptPy, and DLPy. All these packages are open-
source, and contributions from the community are welcome. Figure 1 shows a visual
representation of the packages with their dependencies.

1 There is also a SWAT package for R.
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Figure 1. SAS and Python Packages

SASPY

SASPy is a Python module that interfaces between Python 3.x or later and SAS 9.4 or later
and between Python 3.x or later and all releases of SAS Viya. At a minimum, you can use
SASPy to run existing SAS code, procedures, DATA steps, and so on from a Python method
called submit. Figure 2 shows an example of using SASPy to run the PRINT procedure in
SAS from Python.



Run SAS code directly in Python! Get the output (LST) and log

In [11]: |11 = sas.submit('proc print data = sashelp.cars (obs = 5); run;"')

In [12]:  HTML(11['LST'])

Out[12]:
Obs Make Maodel Type Origin | DriveTrain MSRP Inveice | EngineSizeCylinders HorsepowsMPG_City MPG_Highwigight | Wheelbase Length
1 Acura MDX suv Asia All | 536945 | 333337 35 L] 285 17 23 4451 106 189
2 Acura R3X Sedan Asia Front | 323520 | 321.761 20 4 200 24 kAl 2778 101 172
Type S
2dr
3 Acura TSX Sedan Asia Front | 525990 | 324647 24 4 200 22 29 3230 105 183
Adr
4 Acura TL 4dr Sedan Asia Front | 533,195 | $30.299 32 ] 270 20 28 3575 108 186
5 Acura 35RL Sedan Asia Front | 543755 | $39.014 35 -] 225 13 24 3330 115 197
Adr

In [13]:  print(11['L0G'])

13 The SAS System 14:32 Wednesday, February 28,
2e18

153 ods listing close;ods html5 (id=saspy_internal) file=_ tomodsl options(bitmap_mode="inline') device=svg; ods graphics
on f

153 ! outputfmt=png;

MOTE: Writing HTMLS(SASPY_INTERMAL) Body file: _TOMODS1

154

155 proc print data = sashelp.cars {(obs = 5); run;

NOTE: There were 5 observations read from the data set SASHELP.CARS.
NOTE: PROCEDURE PRINT used (Total process time):

real time 2.82 seconds

cpu time 9.82 seconds
156
157 ods html5 (id=saspy_internal) closejods listing;
158

Figure 2. PROC PRINT Example That Uses SASPy

Another benefit is the easy transfer of data from Python to SAS and vice versa. This can be
very beneficial when you want to use elements of multiple languages to mix and match
workflows.



You can transfer data between SAS data sets and pandas data frames.
In [18]: | import pandas
In [19]: | car_df = cars.to_df()

In [28]: | type(car_df)

Out[28]: pandas.core.frame.DataFrame

In [21]:  car_df.head()

Out[21]: Make Model Type Origin DriveTrain MSRP Invoice EngineSize Cylinders Horsepower MPG_City MPG_Highway Weight Wheelbase Length
0 Acura MDX suv Asia All 36945 33337 3.5 6.0 265 17 23 4451 106 139
1 Ao REXTPES seqan  asia Front 23820 21781 20 40 200 24 31 2778 01 172
2 Acura TSX 4dr Sedan Asia Front 26990 24647 2.4 4.0 200 22 29 3230 105 133
3 Acura TL 4dr Sedan Asia Front 33195 30299 3.2 6.0 270 20 28 3575 108 138
4 Acura 35RL 4dr Sedan Asia Front 43755 39014 3.5 6.0 225 13 24 3380 15 197

Now round-trip the data frame back to a SAS data set.

In [23]:  cars_full circle = sas.df2sd(car_df, "cfc')

Figure 3. Transferring Data from Python to SAS Using SASPy

Further, Python methods are available that act as wrappers for SAS code, making the SAS
code approachable for someone with a Python programming background while maintaining
the power and governance of SAS. A teach me sas method shows how the Python method
creates the SAS code for those who are curious to learn.

Now, let's learn a little SAS. With teach_me_SAS, any of the Python methods that run code will
show you the code instead of running it. This way you can copy and paste the SAS output
code into a sas.submit() method, change it around, play with syntax, and try your own version
of code.

In [48]: | sas.teach_me_SAS(True)

In [41]: cars.tail(24)

proc print data=sashelp.cars(obs=428 firstobs=485 };run;

In [42]: | cars.describe()

proc means data=sashelp.cars stackodsoutput n nmiss median mean std min p25 pSe p75 max;run;

Figure 4. Example of teach_me_sas Method in SASPy

A Jupyter notebook with many SASPy examples is available at GitHub:
https://github.com/sassoftware/saspy-
examples/blob/master/SAS contrib/saspy example github.ipynb.

SWAT

SWAT is a Python module that interfaces directly into SAS® Cloud Analytic Services (CAS, a
part of SAS Viya) for Python 2.7.x or 3.4 and later. SWAT is specifically designed to help
Python programmers handle large volumes of data through the scalable architecture of SAS
Viya. From SWAT, all CAS actions that you have licensed are available to you via Python
methods. You can transfer data to and from CAS directly, so it is possible to mix and match
analytic workloads. One of SWAT’s major points of emphasis is to mimic the data
manipulation syntax of the popular pandas module, which is enabled through CAS table
objects that run CAS actions behind the scenes. For portability to other programming
clients, you can retrieve the underlying actions that have been run. Figure 5 provides a
simple example.



https://github.com/sassoftware/saspy-examples/blob/master/SAS_contrib/saspy_example_github.ipynb
https://github.com/sassoftware/saspy-examples/blob/master/SAS_contrib/saspy_example_github.ipynb

Create a CAStable object and perform pandas-style CAS actions.
In [6]: | df = s.CASTable('hmzq")

In [7]: | type(df)

Out[7]: swat.cas.table.CASTable

In [8]: | df.head()
Out[8]:

ows from Table HMEQ

el

Selected

BAD CLAGE CLNO DEBTINC DELINQ DEROG JOB LOAN MORTDUE NING REASON VALUE YOJ

0 00 102422338 330 31.990311 0.0 0.0 ProfExe 20800.0 150507.0 20 1267630 40
1 0.0 310231820 200 43217417 0.0 0.0 Magr 20800.0 97360.0 10 Homelmp 1238540 0.0
2 0.0 407585624 240 22162873 0.0 0.0 Sales 20800.0 HNaM 0.0 DebiCon 744860 6.0
3 0.0 63.248877 230 34599669 0.0 0.0 Office  20800.0 B3764.0 00 DebtCon 970800 10
4 00 412014873 230 21.945849 0.0 0.0 Sales 20800.0 HNaM 0.0 DebiCon 784830 20

You can retrieve the underlying CAS actions that were performed.

In [2]:|s.history(first = -1)

MNOTE: 11: action table.fetch / table={name='hmeq'}, from=1, to=5, sasTypes=false, index=true, _apptag='UI', _messagelevel='erro
r'; /* (SUCCESS) */

Figure 5. Example of Printing Table Contents Using SWAT

You can find many GitHub examples to help you get started using SWAT at
https://github.com/sassoftware/sas-viya-programming.

ESPPY

ESPPy enables you to programmatically create, modify, and visualize SAS Event Stream
Processing components for data transformation, model building, and model scoring via
Python objects for Python 2.7.x or 3.4 and later. These objects include components for
projects, continuous queries, windows, events, loggers, SAS® Micro Analytic Service
modules, routers, and analytical algorithms. Figure 6 shows how a project can be loaded
and visualized using the graphviz open-source package.

In [8]: walk = esp.load_project( 'model_walking.xml")
walk
Out[8]:
project
w_data data

§\\"‘ data

request w_calculate ———» w_copy

W_request

Figure 6. Loading and Visualizing a Project Using ESPPy

Further, models can be trained outside of SAS Event Stream Processing and be used for
real-time scoring as in the example at https://github.com/sassoftware/python-
esppy/blob/master/examples/Iris FitStat.ipynb.

In addition to the previously mentioned foundational packages (SASPy, SWAT, ESPPy), SAS
provides three higher-level packages (Pipefitter, SASOptPy, and DLPy) that use the
foundational packages to help with specific, commonly performed tasks.



https://github.com/sassoftware/sas-viya-programming
https://github.com/sassoftware/python-esppy/blob/master/examples/Iris_FitStat.ipynb
https://github.com/sassoftware/python-esppy/blob/master/examples/Iris_FitStat.ipynb

PIPEFITTER

Pipefitter is a high-level API that enables you to efficiently build SAS data transformations
and machine learning pipelines with a minimal amount of coding for Python 2.7.x or 3.4 and
later. It uses either SASPy for SAS 9.4 or SWAT for SAS Viya. Features include imputation,
multiple machine learning techniques (including gradient boosting and neural networks),
and hyperparameter optimization. Figure 7 shows an excerpt of how simple it is to create
and score a decision tree model from the example at
https://github.com/sassoftware/python-
pipefitter/blob/master/examples/regressionExample.ipynb.

In [7]: | params = dict(target='label’,
inputs=['a'+str(i) for i in range(5@)])

In [8]: dtree = DecisionTree(max_depth=6, **params)
dtree

Out[Z]: DecisionTree(alpha=@.8, cf_level=8.25, criterion=Mone, inputs=[‘'s@', ‘"al', "a2', 'a3', '"a4', "as', 'aé’, 'a7', "&8', 'a%’, 'al
@', 'ali1", 'sl2', 'al3", 'sl4', 'als', 'sls', 's17", 'als', 'sls", 'a2e', 's21°, 'a22', 'a23", 'a24', 'a25", 'a2&', 'a27", 'az
&', "az9", 'a3e@', 'a3l", 's32', 'a33’, 'a34', 'a35", 'a36’, "a37", 'a3s’', 's39°, 'ade’, 'a4l’, 'a42', '&43", 'ad4’', '=45°, 'a4d
6', 'a47", 'a4B', 'a49'], leaf_size=5, max_branches=2, max_depth=6, n_bins=28, nominals=[], prune=False, target="label', wvar_imp
ortance=False)

Decision Tree Fit and Score of CAS Table

Using the DecisionTree instance,the fit method is first run on the data set. This will return a model object.

In [2]: model = dtree.fit(casdata)
model

Out[9]: DecisionTreeModel{alpha=8.8, cf_level=8.25, criterion=None, inputs=['a®', 'sl', 'a2', 'a3', 'a4', 'as', 'as', 'a7', 'aB', 'a%’,
'ale', 'sl1', 'al2', 'al3', 'ald4", 'als', 'alse', 'sl7?', 'alg', 'sl9', 'a2@", 'a2l', 'a22", 'a23', 'az24", 'a25', 'az&', 's27', 'a
28", 'az2%', 's3e', 'a3zl', "s32', 'a33', 'a34', "a35", 'a3s', "a37', 's38', 'a3z9', 'ade', 'adl’, 'a42', "ad43', 'ad4', "ads', 'ad
6', 'a47", 'a48', 'a49'], leaf_size=5, max_branches=2, max_depth=6, n_bins=2&, nominzls=[], prune=False, target="label', var_imp
ortance=False)

The score method can then be called on the resulting model object.

In [1@]: score = model.score{casdata)
score

Out[1a]: Target label
Level INTERVAL
Var _DT_PredMean_
NBins 188
HNobsUsed leee
TargetCount laee
TargetMiss a
PredCount leee
Prediiss a
AverageAbsoluteError 5.76552
AverageSquaredError 52.6174
AveragesquaredLogarithmicError @.718342
RootAverageAbsoluteError 2.48115
RootAverageSquaredError 7.25378
RootAverageSquaredLogarithmicError @.847555

dtype: object

Figure 7. Modeling and Scoring a Decision Tree Using Pipefitter

SASOPTPY

SASOptPy provides a Python-friendly way of interacting with SAS/OR® and SAS®
Optimization on SAS Viya for Python 3.5 and later; it is specifically designed for linear,
mixed integer linear, and nonlinear optimization problems. Like Pipefitter, SASOptPy is built
on top of SASPy to run on SAS 9.4 or on top of SWAT to run on SAS Viya. Figure 8 shows
an example of a simple linear programming problem that uses SASOptPy.


https://github.com/sassoftware/python-pipefitter/blob/master/examples/regressionExample.ipynb
https://github.com/sassoftware/python-pipefitter/blob/master/examples/regressionExample.ipynb

from swat import CAS
import sasoptpy as so

Create a CAS Session

= CAS(hostname="host', port=12345)
Create an empty optimization model
= so.Model( 'demo’, session=s)

Add variables

X H I K wnw K

= m.add_variable(vartype=so.CONT, name="'x")
= m.add_variable(vartype=so.INT, name='y")

<

Set objective function

.set_objective(2*x+y, sense=so.MAX, name='obj')
Add constraints

.add_constraint(x+2*y <= 4.5, name="'cl")
.add_constraint(3*x+y <= 5.5, name="'c2')

# 3 3 # 3 H#

Solve the optimization problem

result = m.solve()

# Print and list variable values
print(so.get_solution_table(x, y))

print('Optimal objective value:', m.get_objective_value())

Figure 8. Linear Programming Using SASOptPy

You can find many SASOptPy examples in the GitHub repository at
https://github.com/sassoftware/sasoptpy/tree/master/examples.

DLPY

DLPy enables programmers of Python 3.4 and later to easily apply SAS Viya deep learning
algorithms to image, text, audio, and time series data by using SAS® Visual Data Mining
and Machine Learning. DLPy provides high-level APIs for calling deep, convolutional, and
recurrent neural networks, with predefined neural network architectures such as VGG-16,
ResNet, DenseNet, Darknet, Inception, and YOLO. Figure 9 shows an example of scoring
and visualizing a YOLO model that is built using DLPy.



https://github.com/sassoftware/sasoptpy/tree/master/examples

Score the test data, and display object predictions
Now use predict() to score the images in the test data predict_tbl, and enable use of GPUO during processing.

In [19]: yolo_model.predict(data=predict_tbl, gpu = Gpu(devices=[2]))

NOTE: Due to data distribution, miniBatchSize has been limited to 1.
NOTE: Only 1 out of 2 available GPU devices are used.

Out[19]: § Scorelnfo
Descr Value

0 Number of Observations Read 6
1 Number of Observations Used 0
2 Average 10U in Detection
§ OutputCasTables
casLib Name Rows Columns casTable
0 CASUSER(ethem-kinginthenorth) Valid_Res_B3esj1 6 5075 CASTable('Valid_Res_B3esj1’, caslib='"CASUSER(e..

elapsed 2.56s - user 1.55s - sys 0.893s - mem 2.06e+03MB

This output shows an output CAS table valid Res_B3esjl, which contains the scored image data that was created.

Now, use display_object_detections() with valid_res_tbl to create a three-column matrix of scored images, which shows object-detection bounding
boxes with label and probability score.

In [2@]: display_object_detections(conn=s,
coord_type="yolo',
max_objects=5,
table=yolo_model.valid_res_tbl,
num_plot=1@,
n_col=3)

Figure 9. Example of Scoring and Visualizing a YOLO Model by Using DLPy

Another feature in DLPy enables you to import and export deep learning models in ONNX
format for portability, as shown in Figure 10.



Load ONNX YOLO Model

In [3]: | onnx_model = onnx.load('/disk/linux/dlpy/tiny_yolov2/model.onnx')

Specify YOLO Anchors and DLPy Detection Layer

In [4]: yolc_anchors = (1.88,1.13, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,18.52)

output_layer = Detection{name='Detectionl’',
detection_model_type="yolov2',
anchors=yoclo_anchors,
predictions_per_grid=5,
class_number=2@,
softmax_for_class_prob=True,
object_scale=5.4,
prediction_not_a_object_scale=1.8,
class_scale=1.8,
coord_scale=1.8,
act="L0GISTIC',
grid_number=13,
coord_type="YOLO',
detection_threshold=8.3,
iou_threshold=0.3)

Convert ONNX Model to DLPy Model, and Generate H5 Weights File

In [5]: | modell = Model.from_onnx_model(conn=s,
onnx_model=onnx_model,
output_model_table="tiny yolov2",
scale=1/255.,
output_layer=output_layer)
MOTE: Successfully written weights file as /roct/working/tiny_volov2_weights.onnxmodel.hs
MOTE: Model table is attached successfully!
MOTE: Model is named to "tiny_yolov2" according to the model name in the table.
MOTE: Successfully imported OMNX model.

Figure 10. Loading a YOLO Model in ONNX format by Using DLPy

You can find examples for these features in the GitHub repository at
https://qgithub.com/sassoftware/python-dlpy/tree/master/examples.

SAS KERNEL FOR JUPYTER NOTEBOOK

To enable you to access SAS analytics from open-source interfaces, SAS also supports a
popular notebook environment for programming: the SAS kernel for Jupyter Notebook. It
requires Python 3.x, Jupyter 4 or later, and SAS 9.4 or SAS Viya. Behind Jupyter Notebook
is a Python session that submits code to SAS and receives responses through a socket
interface. A notebook-style approach to SAS programming enables you to interactively
submit code and visualize responses as seen in Figure 11.



https://github.com/sassoftware/python-dlpy/tree/master/examples

Run SAS Code in Jupyter Notebook!

Print the first few rows

In [1]: | proc print data = sashelp.cars (obs=18);
run;
_ Y
Out[1]: The SAS System
Obs Make Model Type Origin | DriveTrain MSRP | Invoice EngineSizelylinders HorsepowdPG_City MPG_HighWdgight | Wheelbaselength
1 Acura MO suv Asiz All | 538,945 | s33.337 35 8 265 17 22 4451 108 189
2 Acurs REX Sedan Asiz Front | 523,820 | 521.761 20 4 200 24 el 2778 101 172
Type S
2dr
3 ACurs TEX Sedan Asiz Front | 526,880 524647 24 4 200 22 28 3230 105 183
4dr
4 Acurs TL 4dr Sedan Asiz Front | 533,185 530,280 3.2 8 270 20 28 3575 108 188
5 Acura 35RL Sedan Aziz Front | 543,755 530,014 35 6 225 13 24 3880 115 197
4dr =
Run PROC MEANS
In [2]: | proc means data = sashelp.cars;
run;
Out[2]: The SAS System
The MEANS Procedure
Variable Label N Mean St Dew Minimum Maximum
MSRP 423 22774.86 19431.72 1028000 192485.00
Invoice 428 30014.70 17642.12 2375.00 1735560.00
Engine Size Engine Size (L) 428 2.19587280 1.10850847 1.3000000 3.3000000
Cylinders 428 5.8075117 1.5584428 2.0000000 12.0000000
Horsepower 428 215.3855140 71.8260218 72.0000000 500.0000000
MPG_City MPG (City) 428 20.0607477 5.2382176 10.0000000 50.0000000
MPG_Highway MPG (Highway) 428 26.8434570 57412007 12.0000000 66.0000000
Weight Weight (LB 5) 428 3577.85 7528832145 1850.00 T180.00
Wheelbase Wheelbase (IN} 428 108.1542055 8.3118130 £2.0000000 1440000000
Length Length {IN} 428 186.3621485 14.3578813 142.0000000 238.0000000

Figure 11. Executing SAS Code in Jupyter Notebook Using the SAS Kernel

To improve usability, SAS extensions and Jupyter magic commands are also available in the
GitHub repository at https://github.com/sassoftware/sas kernel.

OPEN SOURCE TO SAS LANGUAGE AND INTERFACES

Next, let’'s see how SAS enables bringing models from open-source software into SAS 9 or
SAS Viya.

In this case, models are trained and scored in the open-source software. A scored data set
or the PMML (Predictive Model Markup Language) score code produced by the open-source
software is passed to the SAS platform to compute model assessment and perform model
comparison. The scored data set contains model predictions for an interval target or the
posterior probabilities for a nominal target. When PMML score code instead of a scored data
set is passed, SAS converts this score code into DATA step scoring logic and supports model
deployment. This deployment allows supported models to be published to databases such as
Hadoop, Teradata and so on or to be registered to a repository for future model
management by products such as SAS® Model Manager.
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https://github.com/sassoftware/sas_kernel

The interfaces in this category can be classified as based either on programming or on a
GUI (graphical user interface):

e Programming interfaces on SAS 9:

o SAS/IML®
o Base SAS® Java Object
e GUI-based:

o SAS® Enterprise Miner™ (Open Source Integration node for R, SAS Code node
for Python) on SAS 9

o Model Studio in SAS Visual Data Mining and Machine Learning (Open Source
Code node) on SAS Viya

PROGRAMMING: SAS/IML

SAS/IML software provides a flexible matrix programming language that enables statistical
programmers to perform data analysis, simulation, and matrix computations. It also
includes the ability to call functions in the R language from within the IML procedure in
SAS/IML 9.22 and later. To use this ability, R software must be installed on the SAS
Workspace Server and the SAS system must have been configured with the RLANG option.

The SAS/IML functions ImportDataSetFromR, ExportDataSetToR, ImportMatrixFromR,
ExportMatrixToR make it easy to transfer data between SAS and R data structures. You
specify the R code that needs to be executed between the SUBMIT / R and ENDSUBMIT
statements within PROC IML. To get started on this methodology, see the section “Calling
Functions in the R Language” in SAS/IML 15.1: User’s Guide. The following statements
provide an example that uses PROC IML to perform linear regression in R software:

/* Use PROC IML to build a regression model in R software */
proc iml;

call ExportDataSetToR("sashelp.class", "class");
submit / R;
Model <- 1lm(Weight ~ Height, data=class, na.action="na.exclude")
ParamEst <- coef (Model)
endsubmit;
call ImportDataSetFromR ("work.ParamEst", "ParamEst");
quit;

/* Print intercept and height parameter estimates */
proc print data=work.ParamEst;
run;

PROGRAMMING: BASE SAS JAVA OBJECT

The Java Object functionality in Base SAS (9.2 and later) provides a mechanism that is like
the Java Native Interface (JNI) for instantiating Java classes and accessing fields and
methods on the resultant objects. Using the Java Object, you can create hybrid applications
that bring together the capabilities of both SAS and Java.

With the Base SAS Java Object, the communication between SAS and the open-source
software is through a pair of Java classes available in the GitHub repository at
https://github.com/sassoftware/enlighten-

integration/tree/master/SAS Base OpenSrclntegration in the src/dev folder. After you
compile the provided Java classes and set the Java CLASSPATH accordingly in your Base
SAS installation, you can use the SAS DATA step code to instantiate the Java class to
execute the Python or R program.
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The following SAS DATA step instantiates the Java Object and executes a method:

*** PYTHON and WORK DIR LOCATIONS (-- USER UPDATE NEEDED --);
$let PYTHON EXEC COMMAND=C:\Anaconda\python.exe;
%$let WORK DIR=C:\SAS Base OpenSrcIntegration;

/* Executing Python code */

data null ;
*** Python program takes working directory as first argument;
python call = "&WORK DIR.\digitsdata svm.py &WORK DIR";
declare javaobj j("dev.SASJavaExec", "&PYTHON EXEC COMMAND", python call);
j.callStaticVoidMethod ("main") ;
j.delete();
run;

This technique can be used to invoke any external program, whether Python, R, MATLAB, or
others. However, that type of flexibility can also bring security concerns depending on which
users and how many of them can access the SAS server machine.

The step-by-step details about implementing this methodology can be found in Hall, Myneni, and
Zhang (2015), which includes Python and R code samples.

GUI: SAS ENTERPRISE MINER

The Open Source Integration node was introduced in SAS Enterprise Miner 13.1 to enable
you to write code to train models in the R language and when possible support scoring of
these supervised or unsupervised models alongside SAS models. The node’s Training
Mode and the Output Mode properties control how modeling results and generated
columns from R software are returned to and consumed by SAS Enterprise Miner. With
regard to configuration and setup, R software must be installed on the same machine where
SAS Enterprise Miner is installed, and all necessary packages must be pre-installed before
they are used in the node.

In the Open Source Integration node, the Training Mode property specifies whether a
supervised or unsupervised model is being built, and the Output Mode property specifies
whether the R code returns output according to the PMML option (which returns PMML
score code), Merge option (which returns model predictions), or the None option (which
returns no output). The PMML output mode enables certain standard R packages (such as
Im, multinom(nnet), glm(stats), rpart, kmeans(stats), and nnet) to generate PMML score
code that can be turned into SAS score code. When this is possible, these R models can also
be deployed to databases (in order to score new data) or registered to SAS Model Manager
(for further monitoring and management).

The Open Source Integration node relies on the SAS/IML integration with R under the
covers; that is, it requires that the SAS system was configured with the RLANG option
although SAS/IML does not have to be licensed separately. Figure 12 shows an example
process flow diagram from SAS Enterprise Miner 15.1: Reference Help that illustrates how
to use R software to model and score a logistic regression for a binary target.

12



| L:_'H Open Source Be

s Lo il L B
27l Home Equity 5 . I-;-.V[') Impute é > L’J Yaleoration 6 b

Home Equity l B
@

Figure 12. SAS Enterprise Miner Process Flow Diagram That Uses the Open Source Integration
Node

The following logistic regression R code (which you specify in the Open Source Integration
node) is relatively straightforward when you use data and variable handles that are
provided by the node.

&EMR_MODEL <- glm(&EMR CLASS TARGET ~ &EMR CLASS INPUT + &EMR NUM INPUT,
family= binomial (), data= &EMR IMPORT_ DATA)

For detailed steps on re-creating this example, see SAS Enterprise Miner 15.1: Reference
Help.

Although Python is not supported in the Open Source Integration node, it can be executed
using the SAS Code node and the Java Object functionality in Base SAS. The following SAS
Communities tip shows how to execute a Python script in SAS Enterprise Miner:
https://communities.sas.com/t5/SAS-Communities-Library/Tip-How-to-execute-a-Python-
script-in-SAS-Enterprise-Miner/ta-p/223761

GUI: MODEL STUDIO IN SAS VISUAL DATA MINING AND MACHINE
LEARNING

Just as SAS Enterprise Miner provides the Open Source Integration node, the Model Studio
application in SAS Visual Data Mining and Machine Learning 8.3 and later provides the Open
Source Code node, which can execute Python or R code.

The Open Source Code node (located in the Miscellaneous group) can train a Python or R
model that can subsequently be assessed and compared with other SAS, Python, or R
models in the Model Studio pipeline. A Model Studio pipeline enables you to perform a series
of tasks (such as data preprocessing, feature engineering, predictive modeling, data
postprocessing, and model ensembles) followed by comparison of these models in a directed
process flow. These tasks, called “nodes” in Model Studio, provide a large choice of
statistical, data mining, machine learning, model interpretation, and deployment techniques
for analyzing your data. Because SAS Visual Data Mining and Machine Learning runs in SAS
Viya, it can handle large amounts of data using in-memory, distributed computing
techniques.

To use the Open Source Code node, Python or R must be installed on the same machine as
the compute server microservice. On Linux, the executable python or Rscript must be
available in the system path. If you have multiple versions of Python or R on your compute
server, you can set a preferred version by modifying the PATH environment variable. You
also need to install any necessary Python or R packages with administrator or sudo
privileges so that they are accessible to all users.

Figure 13 shows an example Model Studio pipeline that trains and compares various forest
models from SAS, Python, and R software. For more information about this pipeline, see the
SAS Communities Library: https://communities.sas.com/t5/SAS-Communities-Library/How-
to-execute-Python-or-R-models-using-the-Open-Source-Code/ta-p/499463. The nodes in
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Figure 13 depict the following, from left to right (the last three of these nodes are Open
Source Code nodes):

e Forest node in Model Studio
e randomForest package in R
e scikit-learn RandomForestClassifier in Python

e scikit-learn RandomForestClassifier in Python, where categorical inputs are one-hot
encoded

W Model Campatisen®@

Figure 13. Model Studio Pipeline That Compares Multiple Models by Using the Forest Node and
Open Source Code Nodes

Although not shown in this example, you can add other preprocessing nodes such as
Feature Extraction, Filtering, Imputation, Transformations, Variable Selection, and so on as
needed after the Data node and before any Open Source Code nodes in this pipeline. Note
that any output file from Python or R code that is prefixed with rpt_ and saved as a comma-
separated value file (with a .csv file extension), as a plain text file (with a .txt file
extension), or as an image file (with .png, .jpeg, or .gif file extensions) can be viewed in the
Results view of the Open Source Code node after execution.

For more information about the inner workings of the Open Source Code node, see the node
documentation at
https://go.documentation.sas.com/?cdcld=vdmmlcdc&cdcVersion=8.3&docsetld=vdmmlref
&docsetTarget=n0gn2041lgv4exn17Ingd558jcso.htm&locale=en and examples in the GitHub
repository at https://github.com/sassoftware/sas-viya-dmml-

pipelines/tree/master/open source code node. In addition, you can view a brief video on
this topic at http://video.na.sas.com/assets/47183.

14


https://go.documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.3&docsetId=vdmmlref&docsetTarget=n0gn2o41lgv4exn17lngd558jcso.htm&locale=en
https://go.documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.3&docsetId=vdmmlref&docsetTarget=n0gn2o41lgv4exn17lngd558jcso.htm&locale=en
https://github.com/sassoftware/sas-viya-dmml-pipelines/tree/master/open_source_code_node
https://github.com/sassoftware/sas-viya-dmml-pipelines/tree/master/open_source_code_node
http://video.na.sas.com/assets/47183

CONCLUSION

Providing integration with open-source tools such as Python and R is a major focus area for
SAS. Whether it is bringing SAS analytics to open source or open-source capabilities into
SAS software, SAS recognizes that enabling and enhancing integration points between
various software systems improves approachability, collaboration, and time-to-value.
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