
1

Paper 3415-2019

SAS® and Open Source: Two Integrated Worlds

Jesse Luebbert and Radhikha Myneni, SAS Institute Inc.

ABSTRACT

Data scientists use a variety of tools, both commercial and open-source, to achieve key

goals for their organization. For enterprise applications of analytics and artificial intelligence,

it is crucial that teams can collaborate no matter which tools they are using. SAS® software
provides a platform on which all users in the enterprise can create intelligence from data

and operationalize the results easily. Data scientists and developers whose core

programming competence is in languages such as Python and R can efficiently use SAS

through a variety of APIs to increase productivity and improve time-to-value. This paper

describes and demonstrates a variety of best-practice use cases to show how SAS software

provides integration with open-source tools to support end-to-end analytical workflows.

INTRODUCTION

SAS has a long history of providing high-quality statistical, data mining, and machine

learning software for various industries. SAS offers solutions to build credit scorecards,

detect fraud, assess risk, or provide recommendations that automate and streamline

decision-making processes. In recent years, many data scientists have used SAS software,

Python, R, and other open-source or vendor-specific tools to mix and match various tasks of

the analytical life cycle. To enable these combinations, SAS provides Python and R

integration with multiple releases of SAS 9, and continues to extend these capabilities with

SAS® Viya®, the cloud-enabled, in-memory, distributed analytics engine that makes the SAS

Platform more scalable, fault-tolerant, and open. The word “open” signifies the fact that the

power of SAS to build and deploy analytics can be accessed via many programming

languages—not just SAS, but also Python, R, Lua, Java, or RESTful APIs. This integration

enables analytical teams with varied backgrounds and experiences to come together and

solve complex problems in new ways.

Integrating SAS and open-source technologies is often advantageous in two main scenarios:

• Programmatically accessing the SAS Platform using open-source software

• Bringing open-source models into the SAS Platform for side-by-side comparison

Each of these topics is discussed in detail with examples in the following sections.

SAS TO OPEN-SOURCE LANGUAGES AND INTERFACES

This section starts with an example of being able to access and execute SAS analytics
programmatically from open-source languages. For consistency, the primary focus is on

calling SAS from Python, a popular general-purpose scripting language, via APIs. SAS

provides three foundational open-source packages for doing this, all available on GitHub:
SASPy, SWAT,1 and ESPPy. The SASPy package interfaces with SAS 9.4, SWAT with SAS

Viya, and ESPPy with SAS® Event Stream Processing. Three higher-level open-source

packages are also available: Pipefitter, SASOptPy, and DLPy. All these packages are open-
source, and contributions from the community are welcome. Figure 1 shows a visual

representation of the packages with their dependencies.

1 There is also a SWAT package for R.

2

Figure 1. SAS and Python Packages

SASPY

SASPy is a Python module that interfaces between Python 3.x or later and SAS 9.4 or later

and between Python 3.x or later and all releases of SAS Viya. At a minimum, you can use

SASPy to run existing SAS code, procedures, DATA steps, and so on from a Python method
called submit. Figure 2 shows an example of using SASPy to run the PRINT procedure in

SAS from Python.

3

Figure 2. PROC PRINT Example That Uses SASPy

Another benefit is the easy transfer of data from Python to SAS and vice versa. This can be

very beneficial when you want to use elements of multiple languages to mix and match

workflows.

4

Figure 3. Transferring Data from Python to SAS Using SASPy

Further, Python methods are available that act as wrappers for SAS code, making the SAS
code approachable for someone with a Python programming background while maintaining
the power and governance of SAS. A teach_me_sas method shows how the Python method

creates the SAS code for those who are curious to learn.

Figure 4: Example of teach_me_sas Method in SASPy

A Jupyter notebook with many SASPy examples is available at GitHub:
https://github.com/sassoftware/saspy-

examples/blob/master/SAS_contrib/saspy_example_github.ipynb.

SWAT

SWAT is a Python module that interfaces directly into SAS® Cloud Analytic Services (CAS, a

part of SAS Viya) for Python 2.7.x or 3.4 and later. SWAT is specifically designed to help
Python programmers handle large volumes of data through the scalable architecture of SAS

Viya. From SWAT, all CAS actions that you have licensed are available to you via Python
methods. You can transfer data to and from CAS directly, so it is possible to mix and match

analytic workloads. One of SWAT’s major points of emphasis is to mimic the data

manipulation syntax of the popular pandas module, which is enabled through CAS table
objects that run CAS actions behind the scenes. For portability to other programming

clients, you can retrieve the underlying actions that have been run. Figure 5 provides a

simple example.

https://github.com/sassoftware/saspy-examples/blob/master/SAS_contrib/saspy_example_github.ipynb
https://github.com/sassoftware/saspy-examples/blob/master/SAS_contrib/saspy_example_github.ipynb

5

Figure 5. Example of Printing Table Contents Using SWAT

You can find many GitHub examples to help you get started using SWAT at

https://github.com/sassoftware/sas-viya-programming.

ESPPY

ESPPy enables you to programmatically create, modify, and visualize SAS Event Stream
Processing components for data transformation, model building, and model scoring via

Python objects for Python 2.7.x or 3.4 and later. These objects include components for

projects, continuous queries, windows, events, loggers, SAS® Micro Analytic Service
modules, routers, and analytical algorithms. Figure 6 shows how a project can be loaded

and visualized using the graphviz open-source package.

Figure 6. Loading and Visualizing a Project Using ESPPy

Further, models can be trained outside of SAS Event Stream Processing and be used for

real-time scoring as in the example at https://github.com/sassoftware/python-

esppy/blob/master/examples/Iris_FitStat.ipynb.

In addition to the previously mentioned foundational packages (SASPy, SWAT, ESPPy), SAS

provides three higher-level packages (Pipefitter, SASOptPy, and DLPy) that use the

foundational packages to help with specific, commonly performed tasks.

https://github.com/sassoftware/sas-viya-programming
https://github.com/sassoftware/python-esppy/blob/master/examples/Iris_FitStat.ipynb
https://github.com/sassoftware/python-esppy/blob/master/examples/Iris_FitStat.ipynb

6

PIPEFITTER

Pipefitter is a high-level API that enables you to efficiently build SAS data transformations

and machine learning pipelines with a minimal amount of coding for Python 2.7.x or 3.4 and
later. It uses either SASPy for SAS 9.4 or SWAT for SAS Viya. Features include imputation,

multiple machine learning techniques (including gradient boosting and neural networks),

and hyperparameter optimization. Figure 7 shows an excerpt of how simple it is to create
and score a decision tree model from the example at

https://github.com/sassoftware/python-

pipefitter/blob/master/examples/regressionExample.ipynb.

Figure 7. Modeling and Scoring a Decision Tree Using Pipefitter

SASOPTPY

SASOptPy provides a Python-friendly way of interacting with SAS/OR® and SAS®

Optimization on SAS Viya for Python 3.5 and later; it is specifically designed for linear,

mixed integer linear, and nonlinear optimization problems. Like Pipefitter, SASOptPy is built
on top of SASPy to run on SAS 9.4 or on top of SWAT to run on SAS Viya. Figure 8 shows

an example of a simple linear programming problem that uses SASOptPy.

https://github.com/sassoftware/python-pipefitter/blob/master/examples/regressionExample.ipynb
https://github.com/sassoftware/python-pipefitter/blob/master/examples/regressionExample.ipynb

7

Figure 8. Linear Programming Using SASOptPy

You can find many SASOptPy examples in the GitHub repository at

https://github.com/sassoftware/sasoptpy/tree/master/examples.

DLPY

DLPy enables programmers of Python 3.4 and later to easily apply SAS Viya deep learning

algorithms to image, text, audio, and time series data by using SAS® Visual Data Mining

and Machine Learning. DLPy provides high-level APIs for calling deep, convolutional, and
recurrent neural networks, with predefined neural network architectures such as VGG-16,

ResNet, DenseNet, Darknet, Inception, and YOLO. Figure 9 shows an example of scoring

and visualizing a YOLO model that is built using DLPy.

https://github.com/sassoftware/sasoptpy/tree/master/examples

8

Figure 9. Example of Scoring and Visualizing a YOLO Model by Using DLPy

Another feature in DLPy enables you to import and export deep learning models in ONNX

format for portability, as shown in Figure 10.

9

Figure 10. Loading a YOLO Model in ONNX format by Using DLPy

You can find examples for these features in the GitHub repository at

https://github.com/sassoftware/python-dlpy/tree/master/examples.

SAS KERNEL FOR JUPYTER NOTEBOOK

To enable you to access SAS analytics from open-source interfaces, SAS also supports a

popular notebook environment for programming: the SAS kernel for Jupyter Notebook. It

requires Python 3.x, Jupyter 4 or later, and SAS 9.4 or SAS Viya. Behind Jupyter Notebook
is a Python session that submits code to SAS and receives responses through a socket

interface. A notebook-style approach to SAS programming enables you to interactively

submit code and visualize responses as seen in Figure 11.

https://github.com/sassoftware/python-dlpy/tree/master/examples

10

Figure 11. Executing SAS Code in Jupyter Notebook Using the SAS Kernel

To improve usability, SAS extensions and Jupyter magic commands are also available in the

GitHub repository at https://github.com/sassoftware/sas_kernel.

OPEN SOURCE TO SAS LANGUAGE AND INTERFACES

Next, let’s see how SAS enables bringing models from open-source software into SAS 9 or

SAS Viya.

In this case, models are trained and scored in the open-source software. A scored data set

or the PMML (Predictive Model Markup Language) score code produced by the open-source

software is passed to the SAS platform to compute model assessment and perform model
comparison. The scored data set contains model predictions for an interval target or the

posterior probabilities for a nominal target. When PMML score code instead of a scored data
set is passed, SAS converts this score code into DATA step scoring logic and supports model

deployment. This deployment allows supported models to be published to databases such as

Hadoop, Teradata and so on or to be registered to a repository for future model

management by products such as SAS® Model Manager.

https://github.com/sassoftware/sas_kernel

11

The interfaces in this category can be classified as based either on programming or on a

GUI (graphical user interface):

• Programming interfaces on SAS 9:

o SAS/IML®

o Base SAS® Java Object

• GUI-based:

o SAS® Enterprise MinerTM (Open Source Integration node for R, SAS Code node

for Python) on SAS 9

o Model Studio in SAS Visual Data Mining and Machine Learning (Open Source

Code node) on SAS Viya

PROGRAMMING: SAS/IML

SAS/IML software provides a flexible matrix programming language that enables statistical

programmers to perform data analysis, simulation, and matrix computations. It also
includes the ability to call functions in the R language from within the IML procedure in

SAS/IML 9.22 and later. To use this ability, R software must be installed on the SAS

Workspace Server and the SAS system must have been configured with the RLANG option.

The SAS/IML functions ImportDataSetFromR, ExportDataSetToR, ImportMatrixFromR,

ExportMatrixToR make it easy to transfer data between SAS and R data structures. You

specify the R code that needs to be executed between the SUBMIT / R and ENDSUBMIT
statements within PROC IML. To get started on this methodology, see the section “Calling

Functions in the R Language” in SAS/IML 15.1: User’s Guide. The following statements

provide an example that uses PROC IML to perform linear regression in R software:

/* Use PROC IML to build a regression model in R software */

proc iml;

 call ExportDataSetToR("sashelp.class", "class");

 submit / R;

 Model <- lm(Weight ~ Height, data=class, na.action="na.exclude")

 ParamEst <- coef(Model)

 endsubmit;

 call ImportDataSetFromR("work.ParamEst", "ParamEst");

quit;

/* Print intercept and height parameter estimates */

proc print data=work.ParamEst;

run;

PROGRAMMING: BASE SAS JAVA OBJECT

The Java Object functionality in Base SAS (9.2 and later) provides a mechanism that is like
the Java Native Interface (JNI) for instantiating Java classes and accessing fields and

methods on the resultant objects. Using the Java Object, you can create hybrid applications

that bring together the capabilities of both SAS and Java.

With the Base SAS Java Object, the communication between SAS and the open-source

software is through a pair of Java classes available in the GitHub repository at
https://github.com/sassoftware/enlighten-

integration/tree/master/SAS_Base_OpenSrcIntegration in the src/dev folder. After you
compile the provided Java classes and set the Java CLASSPATH accordingly in your Base

SAS installation, you can use the SAS DATA step code to instantiate the Java class to

execute the Python or R program.

https://go.documentation.sas.com/?docsetId=imlug&docsetTarget=imlug_r_toc.htm&docsetVersion=15.1&locale=en
https://go.documentation.sas.com/?docsetId=imlug&docsetTarget=imlug_r_toc.htm&docsetVersion=15.1&locale=en
https://github.com/sassoftware/enlighten-integration/tree/master/SAS_Base_OpenSrcIntegration
https://github.com/sassoftware/enlighten-integration/tree/master/SAS_Base_OpenSrcIntegration

12

The following SAS DATA step instantiates the Java Object and executes a method:

*** PYTHON and WORK_DIR LOCATIONS (-- USER UPDATE NEEDED --);

%let PYTHON_EXEC_COMMAND=C:\Anaconda\python.exe;

%let WORK_DIR=C:\SAS_Base_OpenSrcIntegration;

/* Executing Python code */

data _null_;

 *** Python program takes working directory as first argument;

 python_call = "&WORK_DIR.\digitsdata_svm.py &WORK_DIR";

 declare javaobj j("dev.SASJavaExec", "&PYTHON_EXEC_COMMAND", python_call);

 j.callStaticVoidMethod("main");

 j.delete();

run;

This technique can be used to invoke any external program, whether Python, R, MATLAB, or

others. However, that type of flexibility can also bring security concerns depending on which

users and how many of them can access the SAS server machine.

The step-by-step details about implementing this methodology can be found in Hall, Myneni, and
Zhang (2015), which includes Python and R code samples.

GUI: SAS ENTERPRISE MINER

The Open Source Integration node was introduced in SAS Enterprise Miner 13.1 to enable
you to write code to train models in the R language and when possible support scoring of

these supervised or unsupervised models alongside SAS models. The node’s Training
Mode and the Output Mode properties control how modeling results and generated

columns from R software are returned to and consumed by SAS Enterprise Miner. With

regard to configuration and setup, R software must be installed on the same machine where
SAS Enterprise Miner is installed, and all necessary packages must be pre-installed before

they are used in the node.

In the Open Source Integration node, the Training Mode property specifies whether a
supervised or unsupervised model is being built, and the Output Mode property specifies

whether the R code returns output according to the PMML option (which returns PMML
score code), Merge option (which returns model predictions), or the None option (which

returns no output). The PMML output mode enables certain standard R packages (such as

lm, multinom(nnet), glm(stats), rpart, kmeans(stats), and nnet) to generate PMML score
code that can be turned into SAS score code. When this is possible, these R models can also

be deployed to databases (in order to score new data) or registered to SAS Model Manager

(for further monitoring and management).

The Open Source Integration node relies on the SAS/IML integration with R under the

covers; that is, it requires that the SAS system was configured with the RLANG option
although SAS/IML does not have to be licensed separately. Figure 12 shows an example

process flow diagram from SAS Enterprise Miner 15.1: Reference Help that illustrates how

to use R software to model and score a logistic regression for a binary target.

13

Figure 12. SAS Enterprise Miner Process Flow Diagram That Uses the Open Source Integration
Node

The following logistic regression R code (which you specify in the Open Source Integration
node) is relatively straightforward when you use data and variable handles that are

provided by the node.

&EMR_MODEL <- glm(&EMR_CLASS_TARGET ~ &EMR_CLASS_INPUT + &EMR_NUM_INPUT,

family= binomial(), data= &EMR_IMPORT_DATA)

For detailed steps on re-creating this example, see SAS Enterprise Miner 15.1: Reference

Help.

Although Python is not supported in the Open Source Integration node, it can be executed

using the SAS Code node and the Java Object functionality in Base SAS. The following SAS

Communities tip shows how to execute a Python script in SAS Enterprise Miner:
https://communities.sas.com/t5/SAS-Communities-Library/Tip-How-to-execute-a-Python-

script-in-SAS-Enterprise-Miner/ta-p/223761

GUI: MODEL STUDIO IN SAS VISUAL DATA MINING AND MACHINE
LEARNING

Just as SAS Enterprise Miner provides the Open Source Integration node, the Model Studio

application in SAS Visual Data Mining and Machine Learning 8.3 and later provides the Open

Source Code node, which can execute Python or R code.

The Open Source Code node (located in the Miscellaneous group) can train a Python or R

model that can subsequently be assessed and compared with other SAS, Python, or R
models in the Model Studio pipeline. A Model Studio pipeline enables you to perform a series

of tasks (such as data preprocessing, feature engineering, predictive modeling, data

postprocessing, and model ensembles) followed by comparison of these models in a directed
process flow. These tasks, called “nodes” in Model Studio, provide a large choice of

statistical, data mining, machine learning, model interpretation, and deployment techniques
for analyzing your data. Because SAS Visual Data Mining and Machine Learning runs in SAS

Viya, it can handle large amounts of data using in-memory, distributed computing

techniques.

To use the Open Source Code node, Python or R must be installed on the same machine as
the compute server microservice. On Linux, the executable python or Rscript must be

available in the system path. If you have multiple versions of Python or R on your compute

server, you can set a preferred version by modifying the PATH environment variable. You
also need to install any necessary Python or R packages with administrator or sudo

privileges so that they are accessible to all users.

Figure 13 shows an example Model Studio pipeline that trains and compares various forest
models from SAS, Python, and R software. For more information about this pipeline, see the

SAS Communities Library: https://communities.sas.com/t5/SAS-Communities-Library/How-
to-execute-Python-or-R-models-using-the-Open-Source-Code/ta-p/499463. The nodes in

https://communities.sas.com/t5/SAS-Communities-Library/Tip-How-to-execute-a-Python-script-in-SAS-Enterprise-Miner/ta-p/223761
https://communities.sas.com/t5/SAS-Communities-Library/Tip-How-to-execute-a-Python-script-in-SAS-Enterprise-Miner/ta-p/223761
https://communities.sas.com/t5/SAS-Communities-Library/How-to-execute-Python-or-R-models-using-the-Open-Source-Code/ta-p/499463
https://communities.sas.com/t5/SAS-Communities-Library/How-to-execute-Python-or-R-models-using-the-Open-Source-Code/ta-p/499463

14

Figure 13 depict the following, from left to right (the last three of these nodes are Open

Source Code nodes):

• Forest node in Model Studio

• randomForest package in R

• scikit-learn RandomForestClassifier in Python

• scikit-learn RandomForestClassifier in Python, where categorical inputs are one-hot

encoded

Figure 13. Model Studio Pipeline That Compares Multiple Models by Using the Forest Node and
Open Source Code Nodes

Although not shown in this example, you can add other preprocessing nodes such as

Feature Extraction, Filtering, Imputation, Transformations, Variable Selection, and so on as
needed after the Data node and before any Open Source Code nodes in this pipeline. Note

that any output file from Python or R code that is prefixed with rpt_ and saved as a comma-
separated value file (with a .csv file extension), as a plain text file (with a .txt file

extension), or as an image file (with .png, .jpeg, or .gif file extensions) can be viewed in the

Results view of the Open Source Code node after execution.

For more information about the inner workings of the Open Source Code node, see the node

documentation at
https://go.documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.3&docsetId=vdmmlref

&docsetTarget=n0gn2o41lgv4exn17lngd558jcso.htm&locale=en and examples in the GitHub

repository at https://github.com/sassoftware/sas-viya-dmml-
pipelines/tree/master/open_source_code_node. In addition, you can view a brief video on

this topic at http://video.na.sas.com/assets/47183.

https://go.documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.3&docsetId=vdmmlref&docsetTarget=n0gn2o41lgv4exn17lngd558jcso.htm&locale=en
https://go.documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.3&docsetId=vdmmlref&docsetTarget=n0gn2o41lgv4exn17lngd558jcso.htm&locale=en
https://github.com/sassoftware/sas-viya-dmml-pipelines/tree/master/open_source_code_node
https://github.com/sassoftware/sas-viya-dmml-pipelines/tree/master/open_source_code_node
http://video.na.sas.com/assets/47183

15

CONCLUSION

Providing integration with open-source tools such as Python and R is a major focus area for

SAS. Whether it is bringing SAS analytics to open source or open-source capabilities into
SAS software, SAS recognizes that enabling and enhancing integration points between

various software systems improves approachability, collaboration, and time-to-value.

REFERENCES

SAS Institute Inc. 2018. SAS/IML 15.1: User’s Guide. Cary, NC: SAS Institute Inc.

Available:
https://go.documentation.sas.com/?docsetId=imlug&docsetTarget=imlug_r_toc.htm&docset

Version=15.1&locale=en

Hall, P., Myneni, R., and Zhang, R. 2015. “Open Source Integration Using the Base SAS
Java Object”. SAS Institute Inc. Available: https://github.com/sassoftware/enlighten-

integration/blob/master/SAS_Base_OpenSrcIntegration/SAS_Base_OpenSrcIntegration.pdf

SAS Institute Inc. 2018. SAS Enterprise Miner 15.1: Reference Help. Cary, NC: SAS

Institute Inc. Available:

https://documentation.sas.com/?docsetId=emref&docsetTarget=bookinfo.htm&docsetVersio

n=15.1

SAS Institute Inc. 2018. SAS Visual Data Mining and Machine Learning 8.3: User’s Guide.
Cary, NC: SAS Institute Inc. Available:

https://go.documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.3&docsetId=vdmmlug

&docsetTarget=titlepage.htm&locale=en

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors:

Jesse Luebbert

jesse.luebbert@sas.com

Radhikha Myneni

radhikha.myneni@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://go.documentation.sas.com/?docsetId=imlug&docsetTarget=imlug_r_toc.htm&docsetVersion=15.1&locale=en
https://go.documentation.sas.com/?docsetId=imlug&docsetTarget=imlug_r_toc.htm&docsetVersion=15.1&locale=en
https://github.com/sassoftware/enlighten-integration/blob/master/SAS_Base_OpenSrcIntegration/SAS_Base_OpenSrcIntegration.pdf
https://github.com/sassoftware/enlighten-integration/blob/master/SAS_Base_OpenSrcIntegration/SAS_Base_OpenSrcIntegration.pdf
https://documentation.sas.com/?docsetId=emref&docsetTarget=bookinfo.htm&docsetVersion=15.1
https://documentation.sas.com/?docsetId=emref&docsetTarget=bookinfo.htm&docsetVersion=15.1
https://go.documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.3&docsetId=vdmmlug&docsetTarget=titlepage.htm&locale=en
https://go.documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.3&docsetId=vdmmlug&docsetTarget=titlepage.htm&locale=en
mailto:jesse.luebbert@sas.com
mailto:radhikha.myneni@sas.com

	Abstract
	Introduction
	SAS to OPEN-SOURCE LANGUAGES AND INTERFACES
	SASPy
	SWAT
	ESPPY
	Pipefitter
	SASOptpy
	DLpy
	SAS KERNEL for Jupyter notebook

	Open source to SAS language and interfaces
	programming: SAS/IML
	programming: base sas java object
	GUI: SAS ENterprise Miner
	GUI: model studio in SAS visual data mining and machine learning

	Conclusion
	References
	Contact Information

