
1

Paper 3405-2019

Sparking Your Data Innovation: SAS® Integration with Apache Spark

Kumar Thangamuthu, SAS Institute Inc.

ABSTRACT

Apache Hadoop is a fascinating landscape of distributed storage and processing. However,

the environment can be a challenge for managing data. With so many robust applications

available, users are treated to a virtual buffet of procedural and SQL-like languages to work

with their data. Whether the data is schema-on-read or schema-on-write, Hadoop is

purpose-built to handle the task. In this introductory session, learn best practices for

accessing data and deploying analytics to Apache Spark from SAS®, as well as for

integrating Spark and SAS® Cloud Analytic Services for powerful, distributed, in-memory

optimization.

INTRODUCTION

Apache Hive on Apache Hadoop has been the de facto standard for interacting with Hadoop

data for batch processing. Batch processing focuses on data management, ETL types of

processing, and huge volumes of data. Hive uses the MapReduce framework to process

data, a batch engine. As you probably know already, performance can be a problem. High-

latency is among the most notable issues with MapReduce. And unfortunately, business-

style queries were also an afterthought. MapReduce is a disk-based batch engine, and it

takes time to set up multiple tasks in a job for execution.

Apache Spark offers another option to execute jobs in Hadoop. The goal of Spark is to keep

the benefits of MapReduce’s scalable, distributed, fault-tolerant processing framework, while

making it more efficient and easier to use.

This paper contains code examples to integrate Hadoop and SAS using Spark as the data

access service. Examples used are from SAS/ACCESS Interface to Hadoop with the option to

execute in Spark. However, the same examples can be executed in Hive with just a change

to a parameter option.

WHAT IS SPARK?

Apache Spark is a distributed general-purpose cluster-computing framework. Spark’s

architectural foundation is the resilient distributed dataset (RDD), a read-only multiset of

data items distributed over a cluster of machines and maintained to enable fault tolerance.

Spark and its RDDs were developed in response to limitations of the MapReduce cluster

computing paradigm, which enforces a particular linear data flow structure for distributed

programs. MapReduce programs read input data from disk, map a function across the

data, reduce the results of the map, and store reduction results on disk. Spark’s RDDs

function as a working set for distributed programs that offers distributed shared memory.

Spark is platform-independent, but SAS products require Spark to be running on a Hadoop

cluster.

INTRODUCTION TO SAS/ACCESS INTERFACE TO HADOOP

SAS/ACCESS Interface to Hadoop enables you to work with data from three supported

modes of operation:

• Hive/MapReduce

• Spark

2

• HDMD

With SAS/ACCESS Interface to Hadoop, SAS can read and write data to and from Hadoop as

if it were any other relational data source to which SAS can connect. This interface provides

fast, efficient access to data stored in Hadoop.

In SAS Viya, SAS/ACCESS Interface to Hadoop includes SAS Data Connector to Hadoop. All

users with SAS/ACCESS Interface to Hadoop can use the serial SAS Data Connector to

Hadoop. If you have licensed SAS In-Database Technologies for Hadoop, you will also have

access to the SAS Data Connect Accelerator to Hadoop. SAS Data Connect Accelerator to

Hadoop can load or save data in parallel between Hadoop and SAS using SAS Embedded

Process, as a Hive/MapReduce or Spark job. To access and process Hadoop data in Spark,

SAS/ACCESS Interface to Hadoop uses a PLATFORM= parameter option.

The SAS® Viya Data Connector or SAS® Viya Data Connect Accelerator enables you to load

large amounts of data into the CAS server for parallel processing. SAS® Cloud Analytic

Services (CAS) is the cloud-based run-time environment for data management, distributed

computing, and high-performance analytics with SAS Viya. A platform for distributed

computing, CAS can run in the cloud while providing the best-in-class analytics that SAS is

known for.

When possible, SAS/ACCESS Interface to Hadoop also does streaming reads and streaming

writes directly from the Hadoop Distributed File System (HDFS) to improve performance.

This differs from the traditional SAS/ACCESS engine behavior, which exclusively uses

database SQL to read and write data.

STORING SAS DATA ON HADOOP CLUSTER

SAS/ACCESS Interface to Hadoop uses an HDMD (Hadoop Metadata) mode of operation.

When you specify the HDFS_METADIR=connection option, SAS data sets are persisted on

HDFS in a format that can be read directly by SAS. This is a useful way to store large

amounts of SAS data on a low-cost Hadoop cluster. Metadata about the SAS data set is

persisted as a file with the SASHDMD file type. SAS/ACCESS creates SASHDMD metadata

when it writes output from SAS. As an alternative, the HDMD procedure can create these

metadata files.

SAS/ACCESS INTERFACE TO HADOOP ON SPARK CONFIGURATIONS

We will look at examples that use the MVA™ SAS LIBNAME statement and CAS CASLIB

statement to connect to Hadoop and process data. The SAS connection to the Hadoop

cluster requires two paths on the SAS client to locations containing Hadoop JAR files and

Hadoop configuration files. Contents for these two paths are gathered using the SAS

HadoopTracer script.

ENVIRONMENT VARIABLES

The following two environment variables are required when connecting to Hadoop using the

LIBNAME statement.

1. SAS_HADOOP_JAR_PATH

Specifies the directory path for the Hadoop and Spark JAR files. If the pathname

contains spaces, enclose the pathname value in double quotation marks. To specify

multiple pathnames, concatenate pathnames by separating them with a colon (:) in

a UNIX environment.

For example, if the Hadoop JAR files are copied to the

location /third_party/Hadoop/jars/lib and Spark JAR files are copied to the

3

location /third_party/Hadoop/jars/lib/spark, then the following OPTIONS

statement syntax sets the environment variable appropriately:

options

set=SAS_HADOOP_JAR_PATH="/third_party/Hadoop/jars/lib:/third_party/Hado

op/jars/lib/spark";

2. SAS_HADOOP_CONFIG_PATH

Specifies the directory path for the Hadoop cluster configuration files. If the

pathname contains spaces, enclose the pathname value in double quotation marks.

For example, if the cluster configuration files are copied from the Hadoop cluster to

the location /third_party/Hadoop/conf, then the following OPTIONS statement

syntax sets the environment variable appropriately.

options set=SAS_HADOOP_CONFIG_PATH "/third_party/Hadoop/conf";

These environment variables are not used by CASLIB statements. Hadoop JAR and config

paths are specified as parameters in the CASLIB statement, which we will discuss shortly:

• hadoopjarpath =”Hadoop and Spark JAR files path”

• hadoopconfigdir =”Hadoop Configuration files path”

CONNECTING TO A HADOOP CLUSTER

There are two ways to connect to a Hadoop cluster using SAS/ACCESS Interface to Hadoop,

based on the SAS platform:

• LIBNAME statement to connect from MVA SAS

• CASLIB statement to connect from CAS

LIBNAME STATEMENT

The SAS/ACCESS LIBNAME statement enables you to assign a traditional SAS libref

connection to a data source. After you assign the libref, you can reference database objects

(tables and views) as if they were SAS data sets. The database tables can be used in DATA

steps and SAS procedures.

Here is a LIBNAME statement that connects to a Hadoop cluster:

libname hdplib hadoop server="hadoop.server.com"

 port=10000

 user="hive"

 schema='default'

 properties="hive.execution.engine=SPARK";

Here are some important items to note in this LIBNAME statement:

• Libref – This LIBNAME statement creates a libref named hdplib. The hdplib libref is

used to specify the location where SAS will find the data.

• SAS/ACCESS Engine Name – In this case, we are connecting to Hadoop, so we

specify the HADOOP option in the LIBNAME statement.

• The SERVER= option tells SAS which Hadoop Hive server to connect to. In this case,

we are connecting to the Hive server. This value will generally be supplied by your

system administrator.

• The PORT= option specifies the port where the Hive server is listening. 10000 is the

default, so it is not required. It is included just in case.

4

• USER= and PASSWORD= are not always required.

• The SCHEMA= option is used to specify the Hive schema to which you want to

connect. It is optional; by default, it connects to the “default” schema.

• The PROPERTIES= option specifies Hadoop properties. Choosing SPARK for the

property hive.execution.engine enables SAS Viya to use Spark as the execution

platform.

Output 1. SAS Log Output from a LIBNAME Statement

Once the libref has been created, any data processed, or jobs executed using the libref will

use Spark as the execution platform.

CASLIB STATEMENT

A caslib is an in-memory space in SAS® Viya to hold tables, access control lists, and data

source information. All data is available to CAS through caslibs, and all operations in CAS

that use data are performed with a caslib in place.

Here is the CASLIB statement to the Hadoop data source with Spark as the execution

platform:

caslib splib sessref=mysession datasource=(srctype="hadoop",

 dataTransferMode="auto",

 username="hive",

 server="hadoop.server.com",

 hadoopjarpath="/opt/sas/viya/config/data/hadoop/lib:/opt/sas/viya/conf

ig/data/hadoop/lib/spark",

 hadoopconfigdir="/opt/sas/viya/config/data/hadoop/conf",

 schema="default"

 platform="spark"

 dfdebug="EPALL"

properties="hive.execution.engine=SPARK");

Here is an explanation of the parameters that are used to create a caslib:

• CASLIB – A library reference. The caslib is the space holder for the specified data

access. The splib cas library is used to specify the Hadoop data source.

• sessref – Holds the CAS library in a specific CAS session. Mysession is the current

active CAS session.

• DATASOURCE= Holds Hadoop connection options. A few options are common across

all data sources, such as SRCTYPE=, SERVER=, and SCHEMA=. There are also

76 libname hdplib hadoop server="hadoop.server.com"

77 port=10000

78 user="hive"

79 schema='default'

80 properties="hive.execution.engine=SPARK";

NOTE: HiveServer2 High Availability via ZooKeeper will not be used for this

connection. Specifying the SERVER= or PORT= libname

 option overrides configuration properties.

NOTE: Libref HDPLIB was successfully assigned as follows:

 Engine: HADOOP

 Physical Name:

jdbc:hive2://hadoop.server.com:10000/default?hive.execution.engine=SPARK

5

Hadoop-specific parameters, such as PLATFORM=, HADOOPJARPATH=,

HADOOPCONFIGDIR=.

• SRCTYPE= As you have probably guessed from the name, this option is used to

specify the type of data source that the connection is indented to.

• DATATRANSFERMODE= Specifies the type of data movement between CAS and

Hadoop. This option accepts one of three values – serial, parallel, auto. When AUTO

is specified, CAS choose the type of data transfer based on available license in the

system. If Data Connect Accelerator to Hadoop has been licensed, parallel data

transfer will be used, otherwise serial mode of transfer is used.

• USERNAME= and PASSWORD= are not always required.

• HADOOPJARPATH= Specifies Hadoop and Spark JAR files location path on the CAS

cluster.

• HADOOPCONFIGDIR= Specifies Hadoop configuration files location path on the CAS

cluster. These config files are used to connect to Hadoop from CAS.

• SCHEMA= An option that is used to specify the Hive schema to which you want to

connect. It is optional, but by default it connects to the “default” schema.

• PLATFORM= An option that is used to specify the type of Hadoop platform to execute

the job or transfer data using SAS Embedded Process. Default value is “mapred” for

Hive MapReduce. When “Spark” is used, data transfer and job executes as a Spark

job.

• DFDEBUG= An option that is used to get additional information back from SAS

Embedded Process that is used to transfer data in the SAS log.

• The PROPERTIES= Specifies Hadoop properties. Choosing “SPARK” for the property

hive.execution.engine enables SAS Viya to use Spark as the execution platform.

Output 2. SAS Log Output from a CASLIB Statement

CAS libraries can be part of a session, where users have access to the data source tables for

the lifetime of the temporary session. But if you need to store a caslib permanently, a caslib

can be promoted to a global space where all users can access its tables or data. In fact, by

default a global library called “public” is available in CAS clusters.

The PLATFORM option is used by the SAS Embedded Process to process and execute data in

Spark.

76 caslib splib datasource=(srctype="hadoop",

77 dataTransferMode="auto",

78 server="hadoop.server.com",

79

hadoopjarpath="/opt/sas/viya/config/data/hadoop/lib:/opt/sas/viya/config/da

ta/hadoop/lib/spark",

80 hadoopconfigdir="/opt/sas/viya/config/data/hadoop/conf",

81 username="hive"

82 schema="default"

83 platform="spark"

84 dfdebug="EPALL"

85 properties="hive.execution.engine=SPARK");

NOTE: 'SPLIB' is now the active caslib.

NOTE: Cloud Analytic Services added the caslib 'SPLIB'.

NOTE: Action to ADD caslib SPLIB completed for session MYSESSION.

6

DATA ACCESS USING SPARK

Spark provides the ability to read HDFS files and query structured data from within a Spark

application. With Spark SQL, data can be retrieved from a table stored in Hive using a SQL

statement and the Spark Dataset API. Spark SQL provides ways to retrieve information

about columns and their data type and supports the HiveQL syntax.

SAS Data Connect Accelerator for Hadoop with the Spark platform option uses Hive as the

query engine that will be used to access Spark data.

Using SAS Data Connect Accelerator for Hadoop, data can be loaded to CAS or saved to

Hadoop from CAS in parallel using the SAS Embedded Process, which is installed on all

Hadoop cluster nodes. Data movement happens between Spark and CAS through SAS

generated Scala code. This approach is useful when data already exists in Spark and either

needs to be used for SAS analytics processing or moved to CAS for massively parallel data

and analytics processing.

LOADING DATA FROM HADOOP TO CAS USING SPARK

There are many important reasons to load data from Hadoop to CAS. Processing data in

CAS offers advanced data preparation, visualization, modeling and model pipelines, and

finally model deployment. Model deployment can be performed using available CAS modules

or pushed back to Spark if the data is already in Hadoop, an example of which we will see

soon.

Here is an example of the code to load data from Hadoop to CAS using Spark:

proc casutil

 incaslib=splib

 outcaslib=casuser;

 load casdata="gas"

 casout="gas"

 replace;

run;

76 proc casutil

77 incaslib=splib

78 outcaslib=casuser;

NOTE: The UUID 'b75390d7-065c-9240-806f-2dff63b13e77' is connected using

session MYSESSION.

79

79 ! load casdata="gas"

80 casout="gas"

81 replace;

NOTE: Performing parallel LoadTable action using SAS Data Connect

Accelerator for Hadoop.

NOTE: SAS Embedded Process tracking URL:

NOTE: Job Status: SUCCEEDED

NOTE: Job ID:

7

Output 3. SAS Log Output from PROC CASUTIL LOAD data CAS Action Statement

Display 1. Load Data from Hadoop to CAS Using Spark

The PROC CASUTIL can be used to call many CAS actions to process data. In this case, the

table named “gas” was loaded to the CAS in-memory server, which was made possible

using the LOAD CAS action.

INCASLIB and OUTCASLIB are input and output CAS libraries to read and write data

respectively. “splib” in INCASLIB corresponds to the CAS library created earlier using

CASLIB statement. “casuser” in OUTCASLIB corresponds to the default CAS library of the

user in SAS® Viya.

From the log file, Data Connect Accelerator for Hadoop was used to move data in parallel to

CAS. Display 1 shows that the YARN application executed the work as a Spark job. This was

possible because the CASLIB statement had Platform= Spark option specified. The data

movement direction, in this case Hadoop to CAS can be identified using the Spark job name,

“SAS CAS/DC Input,” where Input is data loaded into CAS.

SAVING DATA FROM CAS TO HADOOP USING SPARK

Data can be saved back to Hadoop from CAS at many stages of the analytic life cycle. For

example, data in CAS can be used to prepare, blend, visualize, and model. Once the data

meets the business use case, if you want to share it with other part of the organization,

data can be saved in parallel to Hadoop using Spark jobs. When a data transfer job is

initiated, Procedure CAS calls SAVE CAS action to move data. Based on the licensed transfer

NOTE: Job Name: SAS CAS/DC Input [in: default.gas]

NOTE: File splits..... : 0

NOTE: Input records ...: 0

NOTE: Input bytes: 0

NOTE: Output records ..: 0

NOTE: Output bytes: 0

NOTE: Transcode errors : 0

NOTE: Truncations: 0

NOTE: Map Progress: 0.00%

NOTE: Cloud Analytic Services made the external data from gas available as

table GAS in caslib CASUSER(demo).

NOTE: The Cloud Analytic Services server processed the request in 16.61905

seconds.

82 run;

8

mechanism, in this case SAS Data Connect Accelerator to Hadoop initiates a parallel

Embedded Process transfer from CAS worker nodes to Hadoop data nodes.

Here is an example of using the SAVE CAS action to move data to Hadoop using Spark:

proc cas;

session mysession;

 table.save /

 caslib="splib"

 table={caslib="casuser", name="gas"},

 name="gas.sashdat"

 replace=True;

quit;

Output 4. SAS Log Output from PROC CASUTIL SAVE Data CAS Action Statement

76 proc cas;

77 session mysession;

78 table.save /

79 caslib="splib"

80 table={caslib="casuser", name="gas"},

81 name="gas.sashdat"

82 replace=True;

83 quit;

NOTE: Active Session now mysession.

NOTE: Performing parallel SaveTable action using SAS Data Connect

Accelerator for Hadoop.

NOTE: SAS Embedded Process tracking URL:

NOTE: Job Status: SUCCEEDED

NOTE: Job ID:

NOTE: Job Name: SAS CAS/DC Output [out: default.gas]

NOTE: File splits..... : 0

NOTE: Input records ...: 0

NOTE: Input bytes: 0

NOTE: Output records ..: 0

NOTE: Output bytes: 0

NOTE: Transcode errors : 0

NOTE: Truncations: 0

NOTE: Map Progress: 0.00%

NOTE: Cloud Analytic Services saved the file gas2 in caslib SPLIB.

{caslib=SPLIB,name=gas}

NOTE: PROCEDURE CAS used (Total process time):

 real time 12.67 seconds

 cpu time 0.38 seconds

9

Display 2. Save Data from CAS to Hadoop Using Spark

Data from CAS is saved as a Hadoop table using Spark as the execution platform. As SAS

Data Connect Accelerator for Hadoop is used to transfer data in parallel, individual Spark

executors in each of the Spark executor nodes handles data execution for that specific

Hadoop cluster node.

Display 2 shows the SAVE data execution as a Spark job. The Spark job named “SAS

CAS/DC Output” specifies that the data was moved from CAS to Hadoop.

IN-DATABASE SCORING USING SPARK

The integration of the SAS Embedded Process and Hadoop allows scoring code to be run

directly on Hadoop. Both DS2 and DATA step models can be published and scored inside

Hadoop. Scoring models in Hadoop can be run with either MapReduce or the Spark2 engine.

DS2 supports Apache Spark and JDBC-compliant Hadoop data sources. You can access the

Spark data through the SAS Workspace Server or the SAS Compute Server by using

SAS/ACCESS to Hadoop. You can access the Spark data from the CAS server by using SAS

data connectors.

SCORING DATA FROM CAS USING SPARK

PROC SCOREACCEL provides an interface to the CAS server for DATA step and DS2 model

publishing and scoring. Model code can be published from CAS to Spark and then executed

there via the SAS Embedded Process.

PROC SCOREACCEL supports a file interface for passing the model components (model

program, format XML, and analytic stores). The procedure reads the specified files and

passes their contents on to the model-publishing CAS action. In this case, the files must be

visible from the SAS client.

Here is an example in which the CAS Publishmodel and Runmodel actions are used to

publish and execute score data in Spark:

%let CLUSTER="/opt/sas/viya/config/data/hadoop/lib:

/opt/sas/viya/config/data/hadoop/lib/spark:/opt/sas/viya/config/data/hadoop/c

onf";

proc scoreaccel sessref=mysess1;

publishmodel

 target=hadoop

 modelname="simple01"

 modeltype=DS2

10

/*

 filelocation=local */

programfile="/demo/code/simple.ds2"

username="cas"

modeldir="/user/cas"

classpath=&CLUSTER.

; runmodel

 target=hadoop

 modelname="simple01"

 username="cas"

 modeldir="/user/cas"

 server=hadoop.server.com'

 intable="simple01_scoredata"

 outtable="simple01_outdata"

 forceoverwrite=yes

 classpath=&CLUSTER.

 platform=SPARK

;

quit;

11

Output 5. SAS Log Output from SAS Scoring Accelerator from CAS

Display 3. Running Model Score in Spark Using SAS Scoring Accelerator from CAS

76 proc scoreaccel sessref=mysess1;

NOTE: Added action set 'modelPublishing'.

NOTE: Added action set 'ds2'.

77 publishmodel

78 target=hadoop

79 modelname="simple01"

80 modeltype=DS2

81 /* filelocation=local */

82 programfile="/demo/code/simple.ds2"

83 username="cas"

84 modeldir="/user/cas"

85 classpath=&CLUSTER.

86 ;

NOTE: Running 'modelPublishing' action set with 2 workers.

NOTE: Model 'simple01' has been successfully published to the external

database.

87 runmodel

88 target=hadoop

89 modelname="simple01"

90 username="cas"

91 modeldir="/user/cas"

92 server='hadoop.server.com'

93 intable="simple01_scoredata"

94 outtable="simple01_outdata"

95 forceoverwrite=yes

96 classpath=&CLUSTER.

98 platform=SPARK

99 ;

NOTE: Running 'modelPublishing' action set with 2 workers.

NOTE: Job Status: SUCCEEDED

NOTE: Job Name: SAS Scoring Accelerator [in:

default.simple01_scoredata] [out: default.simple01_outdata]

NOTE: Execution of model 'simple01' succeeded.

100 quit;

NOTE: PROCEDURE SCOREACCEL used (Total process time):

 real time 34.10 seconds

 cpu time 0.32 seconds

12

In this PROC SCOREACCEL example, a simple DS2 model is published to Hadoop and

executed there with Spark. The CLASSPATH statement specifies a link to the Hadoop

cluster. The input and output tables, simple01_scoredata and simple01_outdata, already

exist on the Hadoop cluster. Display 3 shows that SAS Scoring Accelerator was used to

score the model in Spark, and the Spark job name reflects the input and output tables.

SCORING DATA FROM MVA SAS USING SPARK

To run a scoring model in Hadoop, follow these steps:

1. Create a traditional scoring model by using SAS Enterprise Miner or an analytic store

scoring model, generated using SAS Factory Miner HPFOREST or HPSVM

components.

2. Start SAS.

3. Specify the Hadoop connection attributes:

%let indconn= user=myuserid;

The INDCONN macro variable is used to provide credentials to connect to the Hadoop

HDFS and MapReduce. You must assign the INDCONN macro variable before you run

the %INDHD_PUBLISH_MODEL and the %INDHD_RUN_MODEL macros.

4. Run the %INDHD_PUBLISH_MODEL macro.

With traditional model scoring, the %INDHD_PUBLISH_MODEL performs multiple

tasks using some of the files that are created by the SAS Enterprise Miner Score

Code Export node. Using the scoring model program (score.sas file), the properties

file (score.xml file), and (if the training data includes SAS user-defined formats) a

format catalog, this model performs all the following tasks:

• translates the scoring model into the sasscore_modelname.ds2 file, which is

used to run scoring inside the SAS Embedded Process

• takes the format catalog, if available, and produces the

sasscore_modelname_ufmt.xml file. This file contains user-defined formats

for the scoring model that is being published.

• uses SAS/ACCESS Interface to Hadoop to copy the sasscore_modelname.ds2

and sasscore_modelname_ufmt.xml scoring files to HDFS

5. Run the %INDHD_RUN_MODEL macro.

The %INDHD_PUBLISH_MODEL macro publishes the model to Hadoop, making the

model available to run against data that is stored in HDFS.

The %INDHD_RUN_MODEL macro starts a Spark job that uses the files generated by

the %INDHD_PUBLISH_MODEL to execute the DS2 program. The Spark job stores the DS2

program output in the HDFS location that is specified by either the OUTPUTDATADIR=

argument or by the <outputDir> element in the HDMD file. Here is an example:

option

set=SAS_HADOOP_CONFIG_PATH="/opt/sas9.4/Config/Lev1/HadoopServer/conf";

option

set=SAS_HADOOP_JAR_PATH="/opt/sas9.4/Config/Lev1/HadoopServer/lib:/opt/sas9.4

/Config/Lev1/HadoopServer/lib/spark";

%let scorename=m6sccode;

%let scoredir=/opt/code/score;

option sastrace=',,,d' sastraceloc=saslog;

option set=HADOOPPLATFORM=SPARK;

13

%let indconn = %str(USER=hive HIVE_SERVER=’hadoop.server.com');

%put &indconn;

%INDHD_PUBLISH_MODEL(dir=&scoredir.,

 datastep=&scorename..sas,

 xml=&scorename..xml,

 modeldir=/sasmodels,

 modelname=m6score,

 action=replace);

%INDHD_RUN_MODEL(inputtable=sampledata,

outputtable=sampledata9score,

scorepgm=/sasmodels/m6score/m6score.ds2,

trace=yes,

 platform=spark);

Display 4. Model Scoring in Spark Using SAS Scoring Accelerator from MVA SAS

To execute the job in Spark, either set the HADOOPPLATFORM= option to SPARK or set

PLATFORM= to SPARK inside the INDHD_RUN_MODEL macro. SAS Scoring Accelerator uses

SAS Embedded Process to execute the Spark job with the job name containing the input

table and output table.

EXECUTING USER-WRITTEN DS2 CODE USING SPARK

User-written DS2 programs can be complex. When running inside a database, a code

accelerator execution plan might require multiple phases. By generating Scala programs

that integrate with the SAS Embedded Process program interface to Spark, the many

phases of a Code Accelerator job can be comprised of one single Spark job.

IN-DATABASE CODE ACCELERATOR

SAS In-Database Code Accelerator on Spark is a combination of generated Scala programs,

Spark SQL statements, HDFS files access, and DS2 programs. SAS In-Database Code

Accelerator for Hadoop enables the publishing of user-written DS2 thread or data programs

to Spark, where they can be executed in parallel, exploiting Spark’s massively parallel

processing power. Examples of DS2 thread programs include large transpositions,

computationally complex programs, scoring models, and BY-group processing. For more

information about DS2 BY-group processing, consult the SAS In-Database product

documentation.

14

To use Spark as the execution platform, the DS2ACCEL option in the PROC DS2 statement

must be set to YES or the DS2ACCEL system option must be set to ANY; and the

HADOOPPLATFORM system option must be set to SPARK. In addition, the Hive table or

HDFS file that is used as input must reside on the cluster, and SAS Embedded Process must

be installed on all the nodes of the Hadoop cluster that can run a Spark Executor.

There are six different ways to run the code accelerator inside Spark. They are called Cases.

The generation of the Scala program by the SAS Embedded Process Client Interface

depends on how the DS2 program is written. In the following example, we are looking at

Case 2, which is a thread and a data program, neither of them with a BY statement:

proc ds2 ds2accel=yes;

thread work.workthread / overwrite=yes;

 method run();

 set hdplib.cars;

 output;

end; endthread; run;

 data hdplib.carsout (overwrite=yes); dcl thread work.workthread m;

 dcl double count;

 keep count make model;

method run(); set from m; count+1; output;

end; enddata; run; quit;

The entire DS2 program runs in two phases. The DS2 thread program runs during Phase

One, and its tasks are executed in parallel. The DS2 data program runs during Phase Two

using a single task.

CONCLUSION

Hadoop plays an essential role in acquiring data as a data lake store in the ever-growing

stores of a data-driven world. Managing and processing that data in an efficient manner is

key to deriving business insights. With SAS® Data Management and SAS® Advanced

Analytics, you can prepare data, model data, and score data, which can open many

previously unknown possibilities . Combining Hadoop and SAS creates a powerful solution to

achieve business goals.

Moving and processing data using Spark elevates the performance of the overall Analytics

solution that SAS offers. With parallel data movement between CAS and Spark using SAS

Data Connect Accelerator for Hadoop in Spark, scoring modeled data using SAS Scoring

Accelerator for Hadoop and Spark, and most importantly, giving users the power and

flexibility to write DS2 and DATA Step code to be executed in Spark using SAS In-Database

Code Accelerator for Hadoop, you are now ready to collect, store, and process data with

confidence using the power of SAS.

This paper has enabled you to explore all three of these areas using Apache Spark as the

execution platform. The code samples that we have provided have prepared you to execute

either the individual components or a combined analytic life cycle.

REFERENCES

Ghazaleh, David. 2016. “Exploring SAS® Embedded Process Technologies on Hadoop.”

Proceedings of the SAS Global Forum 2016 Conference. Cary, NC: SAS Institute Inc.

Available http://support.sas.com/resources/papers/proceedings16/SAS5060-2016.pdf.

http://support.sas.com/resources/papers/proceedings16/SAS5060-2016.pdf

15

DeHart, C., Maher, S., and Kemper, B. 2017. “Introduction to SAS® Data Connectors and

SAS® Data Connect Accelerators on SAS® Viya®.” Proceedings of the SAS Global Forum

2017 Conference. Cary, NC: SAS Institute Inc. Available

https://support.sas.com/resources/papers/proceedings17/SAS0331-2017.pdf.

Apache Spark Documentation. Available

https://spark.apache.org/docs/latest/configuration.html

CONTACT INFORMATION

Your comments and questions are values and encouraged. Contact the author at:

 Kumar Thangamuthu

SAS Institute Inc.

kumar.thangamuthu@sas.com

www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://support.sas.com/resources/papers/proceedings17/SAS0331-2017.pdf
https://spark.apache.org/docs/latest/configuration.html
mailto:kumar.thangamuthu@sas.com
http://www.sas.com/

