
1 

Paper SAS3393-2019 

Exploring the SAS® Viya® Operations Infrastructure 
Bryan Ellington, SAS Institute Inc.  

ABSTRACT 
SAS® Viya® includes a new event-driven operations infrastructure for logs, metrics, and 
notifications. This paper explores the components, flows, and capabilities that give you 
powerful new insight into the operation of a SAS Viya deployment. With a particular focus 
on command-line tools, the paper teaches you how to view consolidated log and metric 
flows, check the status of services, and validate the deployment and its components. 
Various third-party and enterprise integration scenarios are also explored. 

INTRODUCTION  
The release of SAS Viya provided an opportunity to rethink and reimagine the operational 
architecture of a SAS deployment. The new approach provides a set of focused, decoupled 
components that function similarly to UNIX commands and that enable new levels of power 
and flexibility for administrators. This set of technologies and components is collectively 
referred to as the SAS Viya operations infrastructure. 

This paper serves as an introduction and overview of SAS Viya operations infrastructure, 
including the architecture, components, and flows. Because the focus of this paper is on the 
underlying infrastructure, command-line utilities, and extensibility integration, the 
implementation of the operations infrastructure in SAS® Environment Manager is not 
covered in any detail. 

You will gain a working knowledge of how the various services, tools, and technologies 
provide administrators deep visibility into the operational aspects of a SAS Viya deployment, 
including health, logs, metrics, notifications, and other events. 

ARCHITECTURE 

Goals 
The SAS Viya operations infrastructure was designed with these goals in mind, all of which 
were improvements over SAS 9.4: 

• Minimal dependencies – Monitoring the environment cannot depend on the environment itself, so 
components are designed “from the outside looking in.” 

• Discrete, composable components – Individual components should be small, focused, and with 
clean interfaces that allow simple flows and composition. 

• Extensibility and integration – Although a complete operational solution is included with SAS Viya, 
it is straightforward to integrate with existing enterprise systems and common industry tools and 
technologies. 

• Highly available – The design is robust, scalable, and tolerant of point failures. 

• Cloud-friendly – From streaming of logs and metrics to support of a dynamic service registry and 
multi-tenancy, the operations infrastructure is designed to support cloud deployments. 

Event-Driven Architecture 
The SAS Viya operations infrastructure, along with several other components of SAS Viya, is 
designed around an event-driven architecture. An event in this context is simply an 



2 

indication that something potentially interesting happened in the environment. These are 
some examples of events:  

• a log message 

• a service health check result 

• a set of system metrics 

• a user logoff 

• the start or end of a scheduled job 

An event-driven architecture logically separates, or decouples, producers of events from 
consumers of events. Events are published by producers and consumers subscribe to a 
subset of events that the consumers handle. The key component in the middle is the 
message broker, which accepts published events and sends them to the appropriate 
subscribers. If events are produced faster than they can be consumed, the events are 
queued on a per-subscriber basis. 

In SAS Viya, events are published in a standardized JSON format. Although they share 
common wrapper fields, each event type (such as log, metric, notification, or resource), 
which is referred to as a ‘payload,’ has a unique specification that is customized for its 
purpose. 

Nearly every service is an event producer. RabbitMQ serves as the message broker. There 
are few visible services that function primarily as consumers, although many services use 
events for internal communication and synchronization (such as when a tenant is on-
boarded or a user logs out). 

In the SAS Viya operations infrastructure, components collect, normalize, and publish logs, 
metrics, and notifications from all machines in a SAS Viya deployment. These events, along 
with others produced by the platform at large, are consumed, persisted into a data mart, 
and loaded into Cloud Analytic Services (CAS) for use by SAS Environment Manager or for 
direct exploration by administrators. 

 
Figure 1. SAS Viya event-driven architecture 



3 

The components of the SAS Viya operations infrastructure were designed to have minimal 
dependencies on the rest of the platform. This allows the components to effectively monitor 
and validate the environment even when it is not completely healthy. In some cases (for 
example, system metric collection), a component does not have dependencies on other 
components, but does depend on the availability of Consul for its key/value store and 
service registry and RabbitMQ as the message broker. 

COMPONENTS 

SAS-OPS-AGENT 
The sas-ops-agent is the operations agent deployed to each machine in a SAS Viya 
deployment. The sas-ops-agent command runs as a service and manages the execution a 
set of periodic tasks, many of which publish metric or notification events. It would take an 
entire paper to properly cover even a fraction of the capabilities of the sas-ops-agent in 
detail. For now, it’s important to know that it manages a configurable set of tasks that 
perform functions such as these: 

• Metric collection – usually performed once every 60 seconds, with one task per resource type 

• System checks – checks for low memory, high disk space usage, and so on 

The sas-ops-agent is also responsible for publishing events produced by the tasks that it 
executes. This capability allows the tasks to remain simple and have a single purpose. For 
example, metric collectors are required only to produce valid JSON on stdout, and they do 
not need to know how to create events or to connect and publish to RabbitMQ. 

SAS-PEEK 
The sas-peek command is a metric collection utility. It finds and queries various 
components of SAS Viya and produces JSON output containing the metric data. The metric 
data it produces includes metrics for the host system (such as CPU, memory, network, 
filesystems, and I/O), processes, CAS servers, SAS microservices, RabbitMQ, and Postgres. 

Because the sas-peek command runs on every machine in a deployment, by default only 
local resources are reported to avoid duplication of metrics. Multiple levels of detail are 
supported for each type of metric collected. Although the sas-peek command is normally 
executed by the sas-ops-agent command, it can be run manually, as in this example: 

$ sas-peek network --level 1 --format pretty 
{ 
  "version": 1, 
  "collectorName": "sas-peek-network", 
  "collectorVersion": "1.4.59", 
  "timeStamp": "2019-02-20T14:50:38.545856-05:00", 
  "properties": { 
    "consulNodeName": "ptnode20.ptest.sas.com", 
    "hostname": "ptnode20.ptest.sas.com", 
    "os": "linux_amd64" 
  }, 
  "measurements": [ 
    { 
      "resourceType": "system_network_interface", 
      "resourceId": "FXb33IIfNYjjK2ZDMnEtsA==", 
      "properties": { 
        "address": "10.122.32.70", 
        "broadcast": "10.122.35.255", 



4 

        "interfaceFlags": "up|broadcast|multicast", 
        "interfaceName": "eth0", 
        "linklocal6": "fe80::1ec1:deff:fe1d:4226", 
        "mac": "1c:c1:de:1d:42:26", 
        "mtu": "1500", 
        "netmask": "fffffc00", 
        "prefix6": "0", 
        "resourceName": "ptnode20.ptest.sas.com|eth0" 
      }, 
      "metrics": [ 
        { 
          "name": "receiveBytes", 
          "unit": "B", 
          "type": "counter", 
          "detailLevel": 1, 
          "value": 8973264278618 
        }, 
        { 
          "name": "receivePackets", 
          "unit": "count", 
          "type": "counter", 
          "detailLevel": 1, 
          "value": 16443622557 
        }, 
        { 
          "name": "transmitBytes", 
          "unit": "B", 
          "type": "counter", 
          "detailLevel": 1, 
          "value": 6169640661219 
        }, 
        { 
          "name": "transmitPackets", 
          "unit": "count", 
          "type": "counter", 
          "detailLevel": 1, 
          "value": 15205215799 
      ] 
    } 

SAS-WATCH 
Sas-watch is a service that monitors a directory tree of .log files for changes, parses each 
line, and publishes structured log events to RabbitMQ. The sas-watch command runs on 
each machine and enables administrators to access a consolidated flow of logs from an 
entire SAS Viya deployment. 

SAS-STREAM 
The sas-stream command is a service that writes event data to the operations data mart. 
The service consumes most events that flow through a deployment and writes the data in 
tabular form in near real time to the data mart. 

DATA MART EXTRACT, TRANSFORM, LOAD (ETL) 
Periodically, data written by the sas-stream command is processed by a SAS ETL process. 
This process calculates derived data (for example, CPU % from raw counters), loads and 



5 

indexes logs into the CAS search facility, and loads metric, notifications, resource, and other 
events into CAS tables. 

FLOWS 
Using the components described in the previous topics, we can now fill in the generic event-
driven architecture diagram from Figure 1 with SAS Viya operations infrastructure 
components. 

  
Figure 2. SAS Viya Operations Infrastructure Event Flows 

SAS-OPS COMMAND-LINE INTERFACE 
The sas-ops command is the primary command-line interface for the SAS Viya operations 
infrastructure. The sas-ops command is generally run from a terminal session connected to 
any machine in a SAS Viya deployment, although you can also run it remotely. In order to 
run the sas-ops command, you must either be root or the SAS install user, because the 
command requires access to some key files that are readable only by those users. 

Covering each subcommand of the sas-ops command in detail is out of the scope of this 
paper, but the following topics describe a few key subcommands that are particularly useful 
to many administrators. 

validate 
The validate subcommand performs a detailed series of checks on a SAS Viya deployment 
and summarizes the results. Because the checks are deployment-wide, in most cases you 
can run the subcommand from any machine in a deployment and produce nearly identical 
results. This is an example of the validate subcommand. 

$ ./sas-ops validate --level 3 
Mon, 25 Feb 2019 11:01:13 EST - Validating deployment on 
emishipped18w30.opsmonitor.sashq-d.openstack.sas.com... 
  Level 1 - [consul] Verify Consul connectivity... 
  Level 1 - [rabbit] Verify RabbitMQ exchanges... 
  Level 2 - [consul] Verify Consul services... 
  Level 2 - [datamart] Verify operations datamart ETL status... 
  Level 2 - [local] Verify local system... 
  Level 2 - [ops] Verify status of operations services... 



6 

  Level 2 - [tls] Verify TLS... 
  Level 3 - [cas] Verify status of CAS servers... 
  Level 3 - [http] Verify HTTP connectivity... 
  Level 3 - [http] Verify OAuth... 
 
Validation test(s) completed with 1 warnings(s) and 1 errors(s): 
  WARN  evdm step audit status is [OK with warnings] 
  ERROR evdm step resetdm_cas status is [Error] 
 
Use --verbose for additional details 

logs 
You can use the logs subcommand to stream logs from a SAS Viya deployment to the 
terminal. It is similar in concept to the docker-compose logs command with which many 
administrators are familiar. Various filters (such as level, source, and message text) are 
supported, as well as color output and line formatting. Here is a limited example of the 
subcommand. 

$ ./sas-ops logs 
Listening for logs...CTRL+C to quit 
INFO  2019-02-20 15:08:18.000 [sasdatasvrc] - child process with pid: 31587 
exits with status 256 [pid:9327] 
INFO  2019-02-20 15:08:18.000 [sasdatasvrc] - fork a new child process with 
pid: 25705 [pid:9327] 
INFO  2019-02-20 15:08:30.551 [reportalertseval] - service Iteration 11301 
starts 0 evaluation task(s). 
[classname:c.s.r.a.e.evaluation.EvaluationIterator pid:7145 
threadname:Thread-16] 
NONE  2019-02-20 15:08:45.000 [sasstudio] - GET /SASStudio/health HTTP/1.1 
[size:53 status:200 url:/SASStudio/health user:- method:GET 
protocol:HTTP/1.1 remote:10.122.32.70] 
INFO  2019-02-20 15:08:55.692 [themes] - sasboot@@provider(739ee42f) 
[56ad23432f0aeddf] [LOADING] Loading theme sas_corporate 
[classname:c.s.themedesigner.PETCustomThemeService pid:15717 threadname:o-
auto-1-exec-4] 
INFO  2019-02-20 15:08:55.707 [drive] - sasboot@@provider(739ee42f) 
[2e72c95a261baa4d] SASDrive ApplicationSwitcher enabled=true 
[classname:c.s.commons.html.taglib.ApplicationTag pid:9162 threadname:o-
auto-1-exec-7] 
INFO  2019-02-20 15:08:55.725 [drive] - sasboot@@provider(739ee42f) 
[2e72c95a261baa4d] SASDrive ApplicationSwitcher enabled=true 
[classname:c.s.commons.html.taglib.ApplicationTag pid:9162 threadname:o-
auto-1-exec-7] 
INFO  2019-02-20 15:09:00.643 [themes] - sasboot@@provider(739ee42f) 
[1623aa651a994edb] [LOADING] Loading theme sas_corporate 
[classname:c.s.themedesigner.PETCustomThemeService pid:15717 threadname:-
auto-1-exec-10] 
INFO  2019-02-20 15:09:00.653 [drive] - sasboot@@provider(739ee42f) 
[e72e688eb628a6ec] SASDrive ApplicationSwitcher enabled=true 
[classname:c.s.commons.html.taglib.ApplicationTag pid:9162 threadname:o-
auto-1-exec-3] 
INFO  2019-02-20 15:09:00.654 [drive] - sasboot@@provider(739ee42f) 
[e72e688eb628a6ec] SASDrive ApplicationSwitcher enabled=true [threadname:o-
auto-1-exec-3 classname:c.s.commons.html.taglib.ApplicationTag pid:9162] 
INFO  2019-02-20 15:09:02.000 [consul] - Synced check "service:postgres-
datanode0" [command:agent] 



7 

INFO  2019-02-20 15:09:05.189 [collections] - sasboot@@provider(739ee42f) 
[44de500aba9c47fc] HHH000397: Using ASTQueryTranslatorFactory [pid:14363 
threadname:o-auto-1-exec-3 
classname:o.h.h.i.QueryTranslatorFactoryInitiator] 
INFO  2019-02-20 15:09:11.188 [spawner] - The Bridge Protocol Engine Socket 
Access Method lost contact with a peer (11482) during protocol recognition. 
[user:sas index:00011357] 

metrics 
The metrics subcommand, streams events containing metric data to the terminal. The 
subcommand supports filtering by peek. Here is an example that displays system metrics in 
the default ‘line’ format. 

./sas-ops metrics --key metric.sas-peek-system 
Listening for metrics...CTRL+C to quit 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] totalCpu=3.03731631e+09 ms 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] userCpu=3.7259387e+08 ms 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] systemCpu=1.1840616e+08 ms 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] idleCpu=2.51775964e+09 ms 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] actualFreeMemory=78129 MB 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] usedMemory=85220 MB 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] freeMemory=43844 MB 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] actualUsedMemory=50935 MB 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] totalMemory=129063 MB 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] freeSwap=0 MB 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] uptime=385791 s 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] loadAverage1=0.61 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] ioWaitCpu=646040 ms 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] stolenCpu=2.382204e+07 ms 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] contextSwitches=6.862545502e+09 
count 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] openFiles=17408 count 
2019-02-24T22:29:00.079-05:00 [system:ops.sas.com] maximumOpenFiles=1.3134946e+07 
count 

notify 
The notify subcommand sends out a simple message notification event. The --level 
argument controls the level of the notification (info, warn, or alert). Alert-level notifications 
are viewable by the sas-ops alerts --last 10 command. 

alerts 
The alerts subcommand streams alert notification to the terminal. You can use the --last 
[n] argument to display a history of recent alerts (the default is 30). For example, this 
command displays the last three alerts. 

$ ./sas-ops alerts --last 3 
ALERT 2019-02-25T10:03:00.801-05:00 [ops] [ops.sas.com] Death Star has cleared the 
planet 
ALERT 2019-02-25T09:58:00.755-05:00 [ops] [ops.sas.com] Death Star will be in range 
in 5 minutes 
ALERT 2019-02-25T09:53:00.289-05:00 [ops] [ops.sas.com] Stand-by alert. Death Star 
approaching. Estimated time to firing range, fifteen minutes 

OPERATIONS COMMAND-LINE TIPS 



8 

You are encouraged to explore the sas-ops command-line interface, but some of its 
capabilities might not be obvious. Here are some tips that you might find useful under the 
right circumstances. 

SEARCHING LOGS IN REAL-TIME 
You can use the sas-ops logs command to search through logs in near real time. The 
more that you know about the source of the log, the more efficient the search is. For 
example, you can run this command to see error log messages from CAS that contain a 
particular user ID (dvader in this case):  

./sas-ops logs --level error –source cas --match dvader 

VIEWING SYSTEM INFORMATION 
You can use the sas-ops info command to view some system details such as operating 
system, kernel version, user limits, and installed packages. By default, the output will be 
quite long, because the command reports data for every machine in the SAS Viya 
deployment. To limit the output, simply add a sub-path to the end that corresponds to the 
indented headers that label each section of the base output. For example, this command 
displays the the base properties of a machine (ops.sas.com in this case). 

./sas-ops info ops.sas.com/common 
common 
   architecture : amd64 
   boot-time : 2017-09-28T17:39:47.000000-04:00 
   hostname-long : ops.sas.com 
   hostname-short : ops 
   ip-addrs : 10.1.2.34 
   last-update : 2019-02-24T02:42:50.287681-05:00 
   memory-total : 101172146176 
   operating-system : linux 
   timezone : EST 
   timezone-offset : -05:00 

THIRD-PARTY INTEGRATION 
An entire paper could be written on third-party integration with the SAS Viya operations 
infrastructure, but these topics offer some ideas for integrating with external systems. 

sas-ops 
The command sas-ops [logs|metrics|notifications] --format event provides access 
to the stream of events coming from RabbitMQ. Events are sent to stdout in JSON format. 
You could then pipe the events to a query tool such as jq or a custom transformation tool to 
send metrics to a system such as Prometheus. 

Direct to RabbitMQ 
You can also connect to RabbitMQ and directly consume events using third-party software 
such as LogStash feeding ElasticSearch. A particular benefit is that such a system simply 
receives a copy of each event. Because of this, there is no reconfiguration needed on the 
SAS Viya deployment and no effect other that the minimal cost of sending copies. 

CONCLUSION 
The SAS Viya operations infrastructure is a large step forward in providing efficient, flexible, 
forward-thinking capabilities to administrators and operators. SAS Viya operations 
infrastructure works out of the box as well integrated into existing enterprise systems. This 



9 

paper provided a basic introduction and high-level overview, but there is much more to 
discover, with even more great capabilities in the pipeline. 

RECOMMENDED READING 

SAS Institute Inc. 2018. SAS® Viya® 3.4 Administration: Operations 
Infrastructure. Cary, NC: SAS Institute Inc.  
https://go.documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=calopsinf&doc
setTarget=titlepage.htm&locale=en 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged. Contact the author at: 

Bryan Ellington 
SAS Institute Inc. 
Bryan.Ellington@sas.com 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or 
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA 
registration.  

Other brand and product names are trademarks of their respective companies. 


