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ABSTRACT  

In the excitement and hype around machine learning (ML) and artificial intelligence (AI) most of the time 
is spend in the model building. Much less energy is expended on how to take the insights from models 
and deploy them efficiently to create value and improve business outcomes.  
This paper will show a complete example using DevOps principals for building models and deploying 
them using SAS® in conjunction with opens source projects including Docker, Flask, Jenkins, Jupyter, and 
Python.  The reference application is a recommendation engine on a web property with a global user 
base. This use case forces us to confront security, latency, scalability, repeatability.  The paper will 
outline the final solution but also include some of the problems encountered along the way that 
informed the final solution.  
 

INTRODUCTION  

 

SAS Communities is a peer-to-peer community for SAS users to ask questions and find 

answers from each other and from experts at SAS. To improve the experience of users on 

the site we wanted to create personalized recommendations. To help visitors find articles of 

interest among the tens of thousands of active articles on the site. In Figure 1 Screen Shot 

of Recommendations you can see the finished product. I am the first to acknowledge that 

this does not make the most exciting demo but there is coordination between different 

personas and technologies to make the recommendation experience transparent to the end 

user. 

 

 

Figure 1 Screen Shot of Recommendations 
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My goals in writing this paper are: first is to demonstrate how SAS is using its technology to 

solve its own business challenges of improving the user experience on our SAS Communities 

web property. Second, to provide a template for how you can implement these ideas in your 

organization either a web property or some other service that would benefit from 

recommendations. Next, to highlight how SAS works with open source tools. Finally, how 

SAS can be used in a cloud ready environment without long installation and configuration 

times.  

From the software point of view, this project uses several SAS products along with open 

source tools. SAS and open source tools work in concert with each other to help users be 

more productive and impactful to their organizations. 

From the human capital perspective, this project involved several personas. A data scientist 

to prepare the data and build the models, a systems engineer to deploy and monitor the 

model on a daily basis, a security engineer to help ensure compliance and safety of our 

applications, a full stack developer to integrate the API call into the website. 

ARCHITECTURE AND TOOLS 

 

This project uses SAS DATA step for the data prep and the FACTMAC procedure, as part of 

SAS Visual Data Mining and Machine Learning (VDDML) for the recommendation model. 

Table 1. Utilized Open Source Tools is a list of the Open source tools used across the 

project. If you’re a SAS user, then many or even all the tools in the table might be 

unfamiliar. If your first impression is that the table is rather long, I agree. Integration with 

open source tools will bring you into contact with many projects all with different levels of 

maturity and style and function. Don’t be intimidated, keep in mind this project spans 

several personas and many of these tools are standard and well known across IT / systems 

professionals. It would be very unusual for a single person to use all these tools. 

Table 1. Utilized Open Source Tools 

Open Source Tool Description 

Jupyter Web Based IDE; supports many kernels including Python and 

SAS. 

SASPy Open Source project that allows python programmers to use the 

SAS computing engine (9.4m0 or newer). 

Python-SWAT Open Source project that allows python programmers to use the 

SAS Viya computing engine. 

Docker Container technology that allows quick consistent deployment of 

environments. 

Kubernetes Open source project to manage and scale docker containers. 

OpenStack Private cloud infrastructure. 

Terraform Orchestration tool for quickly deploying cloud assets. 

Git Source management tool. 

Python Open Source programming language; object oriented; created 

in 1985. 
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Analytics professions have been building models for years and years. It is the fun and 

exciting part of the job for most nerds like me. The part that is often manual time 

consuming and costly to the organization. This paper demonstrates how SAS can be used, 

along with open source tools, to create a modeling and deployment process that follows the 

Continuous Integration/ Continuous Deployment (CI/CD) methodology 

Figure 2. SAS Community Recommendation Process illustrates the process that I have used 

to create personalized recommendations for the SAS Community users based on their past 

browsing history. The Build box from Figure 2 is the domain of the modeler and you can 

read more about that role in this project in the Modeling section. 

While I had the main responsibility for this project, no successful project is done alone. 

Partnering with colleagues within your organization and leveraging their strengths and 

expertise will reduce implementation time and cost to the organization.  

 

Figure 2. SAS Community Recommendation Process 

The  

 

MODELING   

This is primary domain for the data scientist (or appropriate vogue business title). They 

have three main responsibilities: prepare the data, build a great model, generate the 

artifacts for packaging and deployment. 

PREPARING THE DATA 

There are several required steps in preparing the data for modeling. The size of the and 

frequency of this problem posed several challenges in this area. The first challenge is the 

data size. SAS Communities is a very popular site and the transactional historical data is 

large. Using data from late 2015 to present is about 40GB of data. So the first task is to 

remove the variables and rows that do not relate to our modeling problem. 
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The next challenge is creating ratings. In most cases users provide recommendations on the 

products or services they consume. Netflix ratings on movies is one example in this case we 

do not have recommendations, but machine learning techniques are not very effective if 

there is no discrimination between articles. So, we must augment the data using a process 

called implicit feedback in which we will take all the articles a user has seen and then 

randomly sample from a set of articles they have not seen to get two equal sized partitions. 

The viewed articles receive a rating of 1 and the non-viewed articles receive a rating of 0. 

The coding challenge is to extract the articles viewed by a particular user and then sample 

without replacement from non-viewed articles in an efficient manner. The code must be as 

efficient as possible because there are over 130,000 registered members of the SAS 

Community and this process is run every day to provide the most up to date 

recommendations. To illustrate the speed requirement if the process took just one second 

per user that would be more than 36 hours if done serially so parallelization and efficiency 

are paramount. 

In using SAS 9.4m6 I was able to reduce the data prep to 23 minutes through macros and 

hash tables. I then moved the DATA step code to CAS DATA step and the time was reduced 

to just over 3 minutes on the same hardware. CAS DATA step has the added benefit in this 

case that when the code moved to a cloud deployment it maximizes the computing for 

whatever size system it runs on without additional code modifications on my part. 

Here is my code for implicit feedback per user: 

data mycas.implict_feedback; 

    array found[&nconv.] _temporary; 

    array compressed[&nconv.] _temporary; 

    set mycas.conversations; 

    by user_uid; 

    retain count; 

    if first.user_uid then do; 

        count=0; 

        do i = 1 to dim(found); 

          found[i]=0; 

       end;  

    end; 

    found[conversation_ord] = 1; 

    rating=1; 

    count+1; 

    output; 

The code above initializes two temporary arrays to store the conversations 

a specific user has viewed from the universe of all conversations. The size 

of the array &nconv is the number of unique conversations at the time of 

modeling. Every article is output with a rating of 1. 

 

The code below runs after we have a complete list of the conversations 

viewed by a user. It randomly selects a set of conversations that a user 

has not viewed and sets their rating to 0. The resulting dataset, 

mycas.implicit_feedback, has exactly twice as many observations as the 

starting dataset, mycas.conversations. 

 

    if last.user_uid then do; 
        unseen = 0;    

        seen = 0; 

        /* make the compressed array of unseen conversations */ 

        do i = 1 to dim(found); 

            if found[i]=0 then do; 

                unseen+1; 
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                compressed[unseen] = i; 

            end; 

            else do; 

                conversation_ord = i; 

                seen+1; 

            end; 

        end; 

        /* shuffle them */ 

        retsize = min(count,max(seen,unseen));  

        if seen > unseen then put user_uid= seen= unseen=; 

        do i = 1 to retsize; 

            j = floor(rand('uniform')*unseen)+1; 

            temp = compressed[i]; 

            compressed[i] = compressed[j]; 

            compressed[j] = temp; 

        end; 

        do i = 1 to retsize; 

            conversation_ord = compressed[i]; 

            rating = 0; 

            output; 

        end; 

    end; 

run; 

 

BUILDING THE BEST MODEL 

With the data prepared we can move to modeling. Part of the business requirements for the 

recommendations were to create recommendations that favor articles with accepted 

solutions and favor newer articles. The logic for this is that accepted solutions will be more 

useful to users and the articles you’ve viewed recently are more applicable to your current 

interests than those from several years ago. The FACTMAC procedure doesn’t have a weight 

statement yet so I created duplicate rows to nudge PROC FACTMAC to follow these 

requirements.  

Here is the SAS code to weight data by both recency and having an accepted solution: 

 

%let wf=3; 

data mycas.weighted_factmac / single=no; 

    set mycas.implict_feedback; 

    if _n_=1 then do; 

        declare hash conv (dataset:'mycas.conversation_uid_index'); 

        conv.DefineKey('conversation_ord'); 

        conv.DefineData('start_id', 'end_id'); 

        conv.DefineDone(); 

         

        declare hash row_lookup (dataset: "mycas.conversations"); 

        row_lookup.DefineKey('id'); 

        row_lookup.DefineData('event_time_ms', 'isSolvedTopic'); 

        row_lookup.DefineDone(); 

    end; 

    if rating=0 then do; 

        conv.find(); 

        id = (start_id + floor((1+end_id-start_id)*rand("uniform"))); 

        row_lookup.find(); 

    end; 

    decay = (datepart(event_time_ms)-&mindate.)/(&maxdate. - &mindate.); 
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    rep = int((1-decay)*10); 

    daysback = intck("DAYS", datepart(event_time_ms), today(), "C"); 

    do i = 1 to rep*&wf.; 

        output; 

    end; 

run; 

 

Using HASH objects I can quickly look up the information needed to properly weight the 

observations. 

 

One important feature of FACTMAC is the autotuning. The AUTOTUNE feature uses 

optimization to search for the best hyperparameters saving me time hunting for the ideal 

combination of settings (that could change over time). The running of this model takes 

hundreds of CPU hours to complete the search for the best hyperparameters but it saves 

much more than that in human capital costs. For more information on AUTOTUNE see the 

suggested reading section.  

In the latest iteration, FACTMAC modeling using the AUTOTUNE statement costs about 300 

CPU hours of time and because the problem is only changing slightly each day (one new day 

of data among more than 1000 days) I reduced the daily run time by using some of the 

options available in AUTOTUNE. Here is my code for the FACTMAC procedure: 

proc factmac data=mycas.weighted_factmac  outmodel=mycas.factors_out; 

   autotune maxtime=3600 objective=MSE  

        TUNINGPARAMETERS=(nfactors(init=20) maxiter(init=200) 

learnstep(init=0.001)); 

   input user_uid conversation_uid /level=nominal; 

   target rating /level=interval; 

   savestate rstore=mycas.sascomm_rstore; 

run; 

 

I use the MAXTIME option to limit the search to one hour and I use the TUNINPARAMETERS 

option to start with best configuration from my last complete run (which I run periodically). 

This strategy gives me the best known hyperparameters within a time budget and an 

opportunity to find even better hyperparameters with the extra time. 

 

CREATING ARTIFACTS  

With the data prep and modeling complete I can now create all the needed artifacts to 

quickly and efficiently deploy a scoring model. The main artifact I need is an ASTORE (see 

suggested reading for more information) which is a portable compressed binary object that 

contains the scoring logic to predict how much a specific user would enjoy a specific 

conversation on the SAS Community. In addition to the ASTORE, Table 2. Modeling Artifacts 

details the items created. 

Table 2. Modeling Artifacts 

Artifact Purpose 

Data set of active articles To speed the scoring with a preloaded list 

Json file of most popular 

articles 

This is the fallback recommendation when nothing 

better can be presented 
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Artifact Purpose 

Articles viewed in the last N 

days 

We don’t want to continue to recommend the same 

things over and over so if you’ve looked at an article we 

won’t recommend it for a while. 

Data file with keys and 

timestamps 

This file is used to ensure files are transferred correctly 

and for reporting information at score time. 

FACTMAC ASTORE Compressed binary container the scoring logic for each 

user and item. 

 

The artifacts from Table 2. Modeling Artifacts are produced daily because we get updates to 

the data daily. These artifacts are packaged into a Docker container they could also be 

placed under source management in Git. 

ORCHESTRATION  

The orchestration of this process has evolved over time. It is my recommendation that you 

not try to automate and script everything in the beginning but instead continuously improve 

the process over time in progressive steps. This is one of the main philosophies of CI/CD 

that I think is well aligned with how projects develop and mature over time. 

This project started out with just a Jupyter notebook to create the artifacts. Figure 3 

Improvement of Process to reach Cloud Ready show the evolution toward fully cloud 

deployed and autonomous. Here are the written details: 

After the initial model was created, I encapsulated the notebook in a Docker container to 

ensure software stability from run to run. After that, I created a bash script to run the steps 

via the Unix utility cron instead of running the steps manually each day. I was only ready 

for cron once the process was repeatable and stable. I expected each step to work, I was 

not hoping it would work. With the bash script I could automate the process to run daily 

even when I was out of the office. Over time, I needed better monitoring. I moved my bash 

script into Jenkins, an open source orchestration tool use by SAS R&D. After a few weeks it 

was decided the project should be managed by IT not R&D so I needed to migrate my script 

from Jenkins to Bamboo (a comparable product from Atlassian) which was the orchestration 

tool of choice for the IT team. When I moved the project to Bamboo, we discovered that the 

bamboo agents (servers available for tasks) were not sufficiently large to run my project. 

So, I evolved the project one last time to initiate the hardware resources in OpenStack (an 

open source cloud operating system) using Terraform. 

I share these details with you to demonstrate that the result of a fully scalable cloud 

deployment of SAS to prepare, model, and score was not the initial release instead it was an 

evolution to meet the project objectives. The project can now access large amounts of 

computing power for a short period of time and upon completion release the computing 

power to others.  
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Figure 3 Improvement of Process to reach Cloud Ready 

DEPLOYMENT 

The deployment aspect of this project was the newest to me. Because of the need to run 

daily, a robust automated deployment process without an outage was required. We wanted 

users to have personalized recommendations with less than a two second delay. Working 

with the IT staff, the best practice is to build a scoring container in docker and then manage 

that container via Kubernetes. Docker was also used to build the model artifacts because it 

guaranteed an immutable environment and portability to different hosts.  

The scoring docker container is different from the modeling building container in a few 

significant ways. The first difference is that the scoring container is purpose built to score 

just one model, in this case, personalized recommendations for SAS Community users. The 

model building container has a complete version of SAS along with visualization tools. This 

makes the sizes very different. The scoring container is around 800MB and the model 

building container is around 13 GB. The smaller container makes it easier to deploy and 

scale. This smaller container also adds a measure of security because the scoring container 

is exposed to the internet (with several security measures) but has only the essential 

components needed to score incoming requests not a general-purpose workflow.  

Inside the scoring container we have a Flask application running under Gunicorn. These are 

both open source projects written in Python. The Flask application receives the incoming API 

request and sends it to the ASTORE through the micro analytics service (MAS). MAS is a 

capability through SAS Model Manager or SAS Decision Manager. By using MAS, you can 

achieve very low latency scoring. When a user hits the SAS Community webpage while 

logged in, a request is sent to Kubernetes cluster which is running the scoring docker 

Manual steps

Bash Script

Jenkins Script

Bamboo Script

Fully Cloud Ready
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containers. It is then routed to a specific container and received by the flask application. 

The flask application sends the userid and the number of items requested N (the default is 

5; max is 25). To return the best N article recommendations, all active articles must be 

scored (around 85,000 minus any articles that the user has viewed in the cooling off 

period). After all the appropriate articles have been scored, it sorts the list by the users 

predicted rating and takes the top N. This typically happens in about 200ms which means it 

is performing about 400,000 transactions per second per core after initial startup. The 

actual flow of information is relatively simple. A request is made from a user by viewing a 

SAS Community webpage and the request is validated by the firewall and routed to a 

scoring container running in Kubernetes (known as a pod) the scoring container processes 

the request and then returns the top n items back as a json string to the web page all in 

about 200ms. See Figure 4. Scoring Infrastructure. 

 

 

Figure 4. Scoring Infrastructure 

  

CONCLUSION 

This paper has detailed how SAS created personalized recommendations for the SAS 

Communities web property using SAS technology along with open source tools. This project 

uses a CI/CD framework that allows for automated daily updates to recommendations so 

that users are always getting the most current recommendations possible. 

The recommendations are using cloud infrastructure to eliminate persistent hardware 

requirements for building the daily model and it can be scaled to meet the desired time 

constraints. The runtime scoring is using standard IT tools, Docker and Kubernetes, to fit 

seamlessly into workflows. 

The SAS system integrates with open source tools to provide leading edge analytics in a 

cloud ready environment.  
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