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ABSTRACT  

Regulatory agencies and pharmaceutical companies use real-world evidence (RWE) 

to generate clinical evidence derived from real-world data (RWD) for routine regulatory drug 

review and to monitor the usage and potential benefits or risks associated with a medical 

product in real-world settings. SAS® Real World Evidence is a visual RWE and visual 

analytics platform that enables quick discovery and creation of patient cohorts for 

population health analytics. We used SAS Real World Evidence to create index event cohorts 

to perform unsupervised and supervised signal detection analyses involving stroke events 

and atypical/typical antipsychotic medications. Use cases that show how SAS Real World 

Evidence enables intersection and application of RWE with population health analytics are 

provided. A population-level estimation example that uses SAS® causal estimation and 

propensity score matching procedures to examine the association between antipsychotic 

drugs and stroke risk is presented in this paper.  

 

INTRODUCTION  

Regulatory agencies and pharmaceutical companies use real-world evidence (RWE) 

to generate clinical evidence derived from real-world data (RWD) for routine regulatory drug 

review and to monitor the usage and potential benefits or risks associated with a medical 

product in real-world settings (Food and Drug Administration, 2018). In the health-care 

sector, providers and payers use RWD to predict health care utilization and resource 

consumption profiles of patients as to curtail costs and improve clinical outcomes. RWD 

provide opportunities to perform prospective and retrospective studies using data derived 

from variety of sources such as claims and billing data, patient registries, and electronic 

medical records. Potential uses of RWD include the collection of longitudinal patient 

information during routine clinical care, which provides clinical evidence data for assessing 

trial feasibility; recruitment of clinical trial subjects; generation of testable hypotheses for 

randomized clinical trials; and construction of episode-of-care profiles and treatment 

pathways for comparative effectiveness research. 

 

Technologies and tools are needed to facilitate the adoption of RWE for clinical and 

epidemiological research, and to bridge the clinical evidence data gap from multiple RWD 

sources. SAS recently released a visual real-world evidence and visual analytics platform 

that enables quick discovery and creation of patient cohorts for population health analytics 

and epidemiological studies. SAS® Health Analytics Framework contains accelerators and 

applications, such as SAS Real World Evidence, which provide the ability to consume and 

enrich data, as well as address many health care or life science use cases. 

 

In this paper, we show how to use SAS Real World Evidence to create study cohorts 

for exploratory clinical studies and comparative effectiveness research. In one example, we 

use SAS Real World Evidence to create analytic data sets to perform unsupervised signal 

detection of stroke events that might be associated with disproportionate reporting of 

atypical and typical antipsychotic medications. In another example, we conduct an 

exploratory supervised signal detection analysis that examines the incidence of stroke 

events and association with antipsychotic medications. Finally, we show how to use SAS 
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Real World Evidence to create index event cohorts and analytical data sets for exploratory 

comparative effectiveness research. SAS Real World Evidence provides some example 

analytical add-in model templates (built using the SAS Real World Evidence Add-in Builder) 

to enable users to perform different types of analytical and modeling tasks.  

 

We show how the product enables intersection and application of RWE with 

population health analytics with a population-level estimation example that uses SAS causal 

estimation and propensity score matching procedures to examine the association between 

antipsychotic medications and stroke risk. Recent studies (Taylor 2017; Hsieh 2t. al. 2013) 

have shown that medications used in the treatment of depression have potential stroke and 

cardiovascular effects. Some antipsychotic drugs such as aripiprazole, olanzapine, and 

risperidone, to mention a few, have antipsychotics black-box warnings for cerebrovascular 

adverse events including stroke. Part of the analyses presented in this paper aim to find out 

whether retrospective analysis of claims-based clinical care data could be used to signal 

stroke events among patients exposed to certain types of antipsychotic drugs. 

 

This paper is organized as follows: first, we present the materials and methods that 

focus on the data source used in this paper and a brief overview of SAS Real World 

Evidence; second, we briefly present the study research design, the supervised and 

unsupervised statistical signaling methods; and finally, we present the study findings based 

on the previously mentioned research use cases. In the appendix, we provide additional 

information about the most commonly used signal detection methods and strategies for 

preparing the data to make them suitable for signal detection analyses. For drug safety 

signals evaluation purposes, we note that these statistical tools enable computation of 

signals for describing risks that might be associated with certain class of drugs, but due to 

known limitations of observational databases, additional research is required to properly 

make statistical inferences and clinical judgments in a meaningful manner. 

 

MATERIALS AND METHODS  

The study cohort design employed to guide the drug safety analytics process flow 

and signals detection analysis presented in this paper is displayed in Figure 1. The process 

flow and analytical tasks are presented as follows: (a) the real-world data domain source 

and the cohort definition setup that use SAS Real World Evidence to identify and create the 

index event drug cohorts, the index antipsychotic drug profiles, the index stroke outcome 

event, and the data sets for signal detection analyses; (b) the data exploration step 

presents the demographic characteristics of the study cohort, as well as the frequency 

distribution of the study drug and outcome event profiles; (c) the analysis and results step 

present the unsupervised and supervised signal detection findings and the causal estimation 

and propensity score matching results for the example use cases (that is, association of 

stroke event and selected antipsychotic drugs); and (d) the interpretation of the RWE-based 

signal detection results in relation to population health analytics. 
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Figure 1. Study cohort design and setup  

 

DATA SOURCES 

Data used for this study come from the publicly available Centers for Medicare and 

Medicaid Services (CMS) Data Entrepreneurs’ Synthetic Public Use Files (DE-SynPUF) for 

Medicare recipients. As stated on the CMS website, DE-SynPUF was created with the goal of 

providing a realistic set of claims data in the public domain while providing the highest 

degree of protection to the Medicare beneficiaries’ protected health information. We use the 

entire 2.3 million-member population data for our study. The database provides de-

identified patient information that included patient demographics, dates of service, 

diagnoses, procedures, and limited years of medications.  

 

We use SAS Real World Evidence to identify and build cohort of patients with at least 

one record of drug prescription in either the typical or atypical antipsychotic drug class (list 

of drugs considered for analysis is provided in the appendix and in Display 1) regardless of 

service setting. The study setup follows a retrospective cohort study design and consists of 

patients aged 18 years and older. The first identified prescription fill date in the database for 

each antipsychotic medication is tagged as the index event date and used to create the drug 

exposure profile for each drug. NDC codes are used to identify records of prescription and 

standardized to a common generic drug name, because a drug might be classified under 

one or multiple NDC codes. The final cohort sample consists of 234,352 patients. User-

defined analysis variables capturing the outcomes, demographics, comorbidity risk factors, 

and other analysis variables are created and added to the final data set used for analysis.  

DRUG EXPOSURE PROFILES AND OUTCOME EVENTS 

The methodology governing the framework for signal detection analyses is a set of 

composite events (Ti, Xi, Ei) representing the time period-exposure drug-outcome event 

profile constructed for each patient that met the study eligibility criteria. The Ti events 

represent contiguous time periods used to divide the study window, the Xi events capture 

the drug exposure profile information by time period, and the Ei events capture the stroke 

event observed during each drug exposure period.  

 

For signal detection analysis purposes, each drug exposure profile (defined by the 

index prescription fill date and subject to the occurrence of first stroke event, or death, or 

the study end date) is binned into one or more model periods. The model period is the time 

window used to accumulate and assign incurred prescription claims and refills to the 

associated window. The model period assignment logic breaks the exposure period into 90-

day contiguous periods that are set between the drug exposure start and end dates, starting 

with the most recent 90 days from the index fill date. For example, for a given index drug, if 

the index fill date and last fill date were to match the study period start and end dates, then 

the possible maximum number of 90-day increment periods is 16. For the study drugs 
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analyzed in this paper, the minimum, median, and maximum number of contiguous model 

periods are 1, 1, and 5, respectively. Model periods are evaluated and constructed 

independently for each selected antipsychotic medication listed in the Appendix. Binning the 

study period into contiguous model periods ensures that the study drugs are examined over 

a consistent time interval. This also allows for temporal analysis of antipsychotic drugs – 

stroke event pairs over time. For cumulative trend analysis, all available data from the first 

to last model periods are analyzed, and prior model period data are iteratively added to 

subsequent model periods for each drug.   

 

For each patient, the presence or absence of the health outcome of interest (in this case, 

stroke event) was checked for during each model period that spans the drug exposure 

window. The study endpoint for each evaluable patient for the stroke event (identified by 

ICD-9 codes listed in the appendix) is the date associated with the first occurrence of stroke 

event detected during the associated model period for the drug, death (from any cause), 

the last known prescription claim interval, or the end of the study in 2011. 

SAS REAL WORLD EVIDENCE 

SAS Real World Evidence is a visual real-world evidence and analytics platform that 

enables quick discovery and creation of patient cohorts for epidemiological studies and 

population health analytics. The platform workflows simplify the process of defining and 

building a cohort, which is a set of patients that meet some specific inclusion and exclusion 

eligibility criteria.  
 

 
Display 1: SAS Real World Evidence: index event definition  

 
The platform supports: 

• a common data submission model for managing real-world data from multiple disparate 

data sources 

• creation and management of ontology code-based index event definitions (Display 1) 

• creation and processing of cohorts of patients based on simple and complex query logic 

and rules that are customized to address different clinical scenarios and temporal 

relationships across different event codes: diagnoses, procedures, prescriptions, vitals, 

and laboratory tests (see Display 2) 

• easy-to-navigate point-and-click interface to assist users with exploring and querying 

large data sources 
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• loading of predefined analysis variables and creation of user-defined analysis variables 

(see Display 2) 

• add-in models and report templates that run against cohort outputs and leverage the 

power of SAS advanced analytics and machine learning algorithms for real-world data 

insights (see Display 3)  

• add-in builder that enables users to develop and execute customized or user-written 

SAS programs and open-source code against cohort outputs 

 

 
Display 2: SAS Real World Evidence: cohort discovery and processing workflow 

 

 

 
Display 3: SAS Real World Evidence: add-in model job workflow 
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STATISTICAL ANALYSIS 

The exploratory signal detection analysis presented is based on statistical 

methodology generally used to detect signals in a safety database such as the United States 

Food and Drug Administration Adverse Event Reporting System (FAERS). For statistical 

algorithm differentiation purposes, we use the term ‘unsupervised signal detection’ analysis 

to refer to this type of disproportionality analysis and compute signal scores that detect 

‘more-than-expected frequency count’ of drug-event associations derived from RWD. The 

methods are used to discover and signal frequency count anomalies or association patterns 

in a large database containing records of exposure to different drugs and reported adverse 

drug reactions. For supervised signal detection analysis, we assume there is a functional 

underlying distribution to model association between an outcome variable of interest (say, 

stroke event) and selected medications of interest (for example, atypical antipsychotic 

(AAP) or typical antipsychotic (TAP) drugs). For both types of analysis, we use the ‘distinct’ 

patient count method to obtain the frequency counts of patients exposed to each AAP or 

TAP drug, those reporting stroke event, and those with both AAP or TAP encounters and 

stroke events.  

 

For each patient included in the study, the first recorded AAP or TAP drug triggered 

in the data is assigned as the index drug for the patient. As illustrated in the frequency table 

displayed in Figure 2, n.. equals the total number of patients in the database, n11 is the 

number of patients with exposure to the study drug during the model period and reporting 

stroke events, n10 is the number of patients that have used the study drug but did not 

experience stroke event during any of the model periods associated with the drug, n01 is the 

number of patients that did not use the study drug but experienced stroke event, and n00 is 

the number of patients that were not exposed to the study drug and did not report stroke 

condition. Crude reporting rates for the AAP/TAP drug-stroke event pairs are computed for 

unsupervised signal detection analysis and crude rate ratios and average treatment effect 

(ATE) estimates are obtained using the supervised analysis method. For the latter method, 

we compute both the unadjusted and adjusted potential ATE estimates as signal measures 

to represent and characterize the antipsychotic medication-stroke event pairs. For each 

index study drug, the comparator drugs are the ‘other’ index AAP/TAP medications 

mentioned earlier. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – The 2x2 drug-event association tabular representation for signal detection analysis 

 

For unsupervised signal detection analysis, we use the standard disproportionality 

methods that include the Bayesian Confidence Propagation Neural Network (BCPNN) 

Information Component (IC), the Relative Odds Ratio (ROR), and the Proportional Reporting 

Ratio (PRR). A risk ratio or score for each signaling method is represented by the lower 

bound of the 95% CI > 1.0 for ROR and PRR, or 95% CI >0 for BCPNN/IC. The score is 

computed as the ratio of the observed count of stroke to the expected count of stroke 

Condition Event No Event Total 

Drug 

Exposed n11 n10 n1. 

Not exposed n01 n00 n0. 

Total n.1 n.0 n.. 

 

Method Score Metric = O/E = Observed frequency/Expected frequency 
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event, and if it exceeds the pre-specified method threshold, is considered as significant and 

flagged as a signal. Additional information about the analysis methods is provided in the 

appendix of this paper.  

 

For supervised signal detection analysis, we use the causal estimation procedure 

(PROC CAUSALTRT) to compute both the unadjusted and adjusted effect of each AAP/TAP 

medication on the target variable (stroke event), and the STDRATE procedure to obtain the 

unadjusted rate ratio estimates. The CAUSALTRT procedure uses various estimation 

methods to adjust for the effects of confounding variables by fitting models for the 

treatment assignment T (in this case, each AAP/TAP drug versus ‘other’ antipsychotic drugs) 

or the outcome Y (in this case, stroke event), or both. We lump together other non-target 

AAP or TAP drugs into the ‘other’ antipsychotic medications category to allow for comparing 

the unsupervised signal detection results with the supervised analysis. Ideally, the 

comparator drug is limited to one drug type for causal estimation analysis. Because we 

consider the analysis presented here still exploratory, we are interested in examining how 

the results compare based on choice of analysis method. For the analysis presented in this 

paper, we use the augmented inverse probability weights (AIPW) estimation method to 

jointly fit both the treatment assignment and outcome event models, and to compute the 

average treatment effect (ATE) for each target antipsychotic medication relative to other 

medications in the same class. The AIPW estimation method fits the propensity score model 

for treatment assignment and incorporates a model for the outcome variable into the 

estimation of the potential outcome means and ATE. The AIPW estimation method is doubly 

robust and provides unbiased estimates for the ATE even if one of the outcome or treatment 

models is mis-specified. For more detailed information about this procedure, see SAS/STAT® 

14.3 User’s Guide: The CAUSALTRT Procedure.  

 

The supervised unadjusted model is an ATE model with the effects of covariates and 

other confounding variables unaccounted for. To obtain the adjusted ATE for each AAP/TAP 

drug-stroke event pair, we include and adjust for demographic factors, number of 

concomitant medications (excluding the study drugs or medications in their drug class), and 

comorbidity risk factors in the outcome event multivariate model. Elixhauser comorbidity 

diagnosis codes are used to capture the patient’s comorbidity status prior to the start of the 

index medication event and transformed into binary variables, coded as a 1 or 0 flag, based 

on information known prior to the index event date (Elixhauser et. al. 1998). For the 

supervised adjusted and unadjusted models that are estimated using the CAUSALTRT 

procedure, the lower bound of the 95% CI for estimated ATE > 0 is flagged as a safety 

signal. For unadjusted rate ratio that is derived using the STDRATE procedure, the lower 

bound of the 95% CI for rate ratio > 1 is flagged as a safety signal.   

 

For the exploratory population-level estimation analysis, we look at whether (a) 

users of typical APs (target group) have a higher risk of stroke compared to users of 

atypical APs (comparator group) and (b) whether users of aripiprazole drug (target group) 

have a higher risk of stroke compared to users of risperidone drug (comparator group). 

Analysis in (a) is completed at the drug class level while analysis in (b) is completed at the 

drug level. The SAS causal estimation procedure is used for the analysis. All analyses are 

performed using SAS statistical software and SAS Real World Evidence 4.4.  

 

STUDY POPULATION 

The index cohort population consists of 234,352 patients that meet the inclusion and 

exclusion criteria and are treated with at least one prescription fill for antipsychotic drug (16 

different drugs in all). The respective number of patients for each medication and associated 
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stroke events are reported in Table 1. Cohort patient demographic characteristics are 

presented in Display 4. There are approximately 180,039 atypical AP users versus 54,313 

typical AP users. Frequency distributions by gender and race look similar across both 

groups, while there is a higher prevalence of comorbidity risk factors in the typical AP group 

relative to the atypical AP group. 

 

 
Display 4: Cohort patient characteristics 

 
Unsupervised signal detection analysis 

 

Table 1 shows the results of the unsupervised signal detection analysis for the three 

disproportionality analysis methods. Of the nineteen antipsychotic medications analyzed, 

the expected count of stroke events, based on PRR disproportionality signaling method, 

range from 1844 stroke events for risperidone therapy, about 356 stroke events for 

haloperidol, about 314 stroke events for quetiapine fumarate, to 31 stroke events for 

iloperidone drug. The associated PRR values are 0.94, 1.18, 0.97 and 0.97, respectively. 

Based on the PRR threshold [(PRR – 1.96SE)>1] for signaling disproportionate reporting of 

stroke condition, only haloperidol (95% CI 1.066-1.30), perphenazine (95% CI 1.15-1.47), 

and thioridazine therapy (95% CI 1.02-1.52) show evidence of elevated risk of stroke 

relative to all other AP medications. The stroke signal results for these medications are 

consistent with those obtained for the unsupervised ROR and BCPNN/IC methods. 

Unadjusted signal results based on these three methods also show decreased stroke risk for 

certain antipsychotic medications such as clozapine therapy relative to other AP drugs in the 

database. 
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Table 1: Unsupervised signal detection results for selected antipsychotic drugs and stroke 
 
Unsupervised signal detection trend analysis 
 

For each study drug, the cumulative trend analysis plot shown in Figure 3 is used to 

examine which of the model periods is likely to contain the signaled stroke event. Consistent 

with what was reported in the unadjusted analysis, only haloperidol shows an elevated risk 

of stroke event and the risk remains consistent until the end of the cumulative therapy 

window. Based on the pre-specified signal threshold, some AP medications show evidence of 

elevated risk of stroke that will require additional follow-up investigation. We further 

examine the significance of signaled stroke event associations with supervised signal 

detection analyses.  

 

 
Figure 3: Trend analysis plot of unsupervised signal detection scores for selected 

antipsychotic drugs and stroke 
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Supervised signal detection analysis 

 

We report the unadjusted rate ratio and adjusted ATE estimates for the AP 

medications based on the supervised signal detection methods in Table 2. In comparison 

with the unsupervised disproportionality analysis findings, the supervised signal detection 

results for stroke event are somewhat similar with relatively few changes. Haloperidol, 

perphenazine, and thioridazine AP drugs all demonstrate unadjusted and adjusted elevated 

risk of stroke. For haloperidol drug, the unadjusted rate ratio is 1.27 (95% CI 1.15-1.41) 

and ATE of 0.0028 (95% CI 0.001-0.005). When we adjust for the effects of covariates in 

the multivariable causal model, the risk increases with ATE of 0.0046 (95% CI 0.003-

0.007). Similar results are found for perphenazine and thioridazine drugs. 
 

 
Table 2: Supervised signal detection analysis results for selected antipsychotic drugs and stroke 

 
Population-level estimation analysis 
 

The population-level estimation results that test for higher risk of stroke event for 

typical AP versus atypical AP medications are shown in Display 5 and Display 6. The AIPW 

estimation method that we use combines the modeling of the treatment assignment with 

the modeling of the outcome variable to estimate the potential outcome means and the ATE 

for typical/atypical AP drugs association with stroke event. Both the robust and bootstrap-

based estimation of the standard error and confidence limits are provided for the ATE 

estimates and confidence intervals. The positive value of AIPW estimate of 0.0186 indicates 

that typical AP drugs exhibit higher than average risk of stroke event compared to atypical 

AP drugs. The ATE is significantly different from 0 at the 0.05 alpha level as shown by both 

the standard and bootstrapped Wald 95% confidence interval (bootstrap: 0.0154, 0.0218). 

Notice that both the standard and bootstrap-based confidence intervals are very close. 

 

We conduct similar analyses for the association between aripiprazole AP versus 

risperidone AP drugs and stroke event (results not displayed) and find a higher than 

average risk of stroke event for aripiprazole AP drugs. The AIPW ATE estimate and 

bootstrap-based confidence intervals are 0.0239 (95% CI: 0.0165 – 0.0312). 
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Display 5: AIPW potential outcome means and ATE estimates for typical and atypical AP 

drugs comparative analysis 

 

 

Causal Effects Estimation Analysis Using Augmented Inverse Probability Weights (Method=AIPW) 
 

  
 

Display 6: Histograms of bootstrap ATE estimates for typical and atypical AP drugs 

comparative analysis 
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CONCLUSION 

Given the known limitations of spontaneous adverse drug event data often used to 

generate and monitor safety signals, especially for newly marketed drugs, RWD provide 

additional and complementary clinical evidence-based information that can be used to 

further investigate the validity and reliability of such signals. RWD capture utilization of 

health care services collected at points of care and contribute to our understanding of 

treatment effectiveness and safety, treatment patterns, and patient interactions with the 

health care system. These factors enable the study of patient behaviors, disease diagnoses, 

proactive surveillance of medications, and adverse health outcomes. It is noteworthy that 

real-world data has its own limitations and potential sources of biases that must be 

considered when conducting studies of this nature. 

Key Points 

• Observational healthcare databases with longitudinal data on patient medical conditions 

and treatment information can be used in the surveillance and signal detection of 

unexpected and serious adverse events. 

 

• Use of multiple signaling algorithms to signal disproportionately reported counts of drug-

adverse event pairs might provide more accurate information and minimize the number 

of false positives for signaling unexpected and serious adverse events than can be 

predicted using a single signaling method. 

 

• Combining results from supervised and unsupervised prediction models that evaluate 

treatment effectiveness and adverse drug reactions can provide more information to 

help make informed judgment on the hypothesized association than those based on one 

method of analysis. 

 

• Results from the signal detection analysis of AP medications and association with stroke 

presented in this paper tend to support findings that have already been published in the 

literature.  
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APPENDIX 

DISPROPORTIONALITY ASSOCIATION SIGNALING METHODS  

A brief discussion of some of the common disproportionality association and 

statistical safety data mining methods is presented in this appendix. A list of some useful 

articles and textbooks where you can get more information about each method is presented 

in this appendix.  

 

One way to characterize and summarize an association between a drug and an event 

(for example, adverse event or health outcome of interest) is to use a 2x2 frequency table 

as shown in figure A. The table usually displays the counts of the cross-classification of the 

two variables and uses an association metric or measure such as risk ratio or rate ratio to 

quantify the relative importance and significance of the association between the two 

variables. Data used to derive these measures can originate from spontaneous adverse 

event reports such as those collected by the United States Food and Drug Administration 

(FDA), or from longitudinal heath records or administrative claims databases. Statistical 

techniques or algorithms used to derive such association metrics (often called 

disproportionality analysis methods when applied to spontaneous reports data) can be as 

simple as proportional reporting ratio (PRR), or reporting odds ratio (ROR), and some 

embedded in Bayesian logic such as the Bayesian Confidence Propagation Neural Network 

(BCPNN) or the Multi-Gamma Poisson Shrinker. In its simplest form, the analysis metric that 

connects all the three disproportionality methods is the ratio of the observed count of 

reports to the expected count of reports for the drug-event pair given the assumption of 

statistical independence in the reporting of the drug and reporting of the event in question. 

The score serves as a statistical measure of deviation and the extent that the number of 

reports associated with a drug-event combination is reported to the SRS database more 

often than expected relative to the rest of the reports in the database. Each of the three 

statistical algorithms attempts to quantify the disproportionality between the observed and 

expected values for the drug-event combination to a chosen threshold. The representation 

of the association between the drug and event and the definition for each method metric are 

provided in the following table. 

 

Table A: The 2x2 drug-event association tabular representation for signal detection analysis 
 

Measure Definition/Formula 

Drug-Event Pair 
Association 

Score = Observed(O)/Expected(E) 

Proportional Reporting 
Ratio (PRR) 

Score metric/threshold = (PRR – 1.96SE) > 1, where 

PRR = (n11/n1.) / (n01 / n0.) 

SE(In PRR) = √(1/n11 - 1/n1. + 1/n01 - 1/n0.) 

Reporting Odds Ratio 
(ROR) 

Score metric/threshold = (ROR – 1.96SE) > 1, where 

ROR = (n11*n00) / (n10 *n01) 

SE(In ROR) = √(1/n11 + 1/n10 + 1/n01 + 1/n00) 

Bayesian Confidence 
Propagation Neural 
Network (BCPNN/IC) 

Measures strength of dependency between a product and a specific AE term.  

Score metric/threshold (IC): E(IC) -2√V(IC) > 0 

E(ICij) = log2{ [(cij+γij)(C+α)(C+β)] / [(C+γ)(ci+αi)(cj+βj)] } and 

V(ICij) =1/(log2)2 { [(C - cij + γ - γij)/((cij + γij)(1+C+γ))] + 
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SUPERVISED SIGNALING METHODS  

For the supervised signal detection analysis, the unadjusted method uses the Mantel-

Haenszel rate ratio statistic from the STDRATE procedure, and the unadjusted average 

treatment effect (ATE) estimate from the intercept-only treatment and outcome model 

using the CAUSALTRT procedure. The latter method is the same as computing the Mantel-

Haenszel risk difference statistic for two-sample populations. The supervised adjusted 

method approach uses the doubly robust estimation method to obtain ATE which in this 

case measures the estimated potential outcome means difference of the event occurrence 

between the drug of interest relative to the other drugs in the database. The method fits 

models for both the outcome event and the treatment drug groups being compared. They 

combine inverse probability weighting and regression adjustment to estimate the potential 

outcome means. The methods are said to be doubly robust because they provide unbiased 

estimates for μ even if one of the models is mis-specified (Bang and Robins 2005). The 

CAUSALTRT procedure implements two doubly robust estimation methods: the augmented 

inverse probability weighting (AIPW) method described in Lunceford and Davidian (2004) 

and the inverse probability weighted regression adjustment (IPWREG) method described in 

Wooldridge (2010). For more detailed information about this procedure, see SAS/STAT® 

14.3 User’s Guide: The CAUSALTRT Procedure and The STDRATE Procedure. The code 

syntax for STDRATE and CAUSALTRT procedure is provided: 

PROC STDRATE: computes directly standardized rates and risks for study 

populations. 

 

PROC STDRATE data=<name of dataset>   

METHOD=mh  

STAT=risk/rate  

EFFECT=diff/ratio  

plots=all;  

POPULATION GROUP=<treatment variable>  

EVENT=<outcome event> TOTAL=<Patients/PYears>; 

STRATA <List of stratification variables> / order=data  

STATS (cl=<options>) EFFECT;  

RUN;  

 

  [(C- ci + α - αi)/(( ci + αi)(1+C+α))] + [(C - cj + β - βj)/((cj +βj)(1+C+β))]  }, 

where  

γ =  γij{ [(C+α)(C+β)] / [(ci+αi)(cj+βj)] } and 

γij=1, αi=1, α=2,  βj=1,  β=2; C= n.., cij= n11, ci= n1., cj= n.1  

Multi-Gamma Poisson 
Shrinkage /Empirical 
Bayes (MGPS/EB05) 

Derived from the expectation value of the logarithm of relative ratios (RR=N/E) 
under the posterior probability distributions of each true RR. 
 
Score metric (EBGM): EB05 > 2 
EBGMij = 2EBlog2ij  

EB05  ≈  EBGMij * exp{-1.645/√(cij + 1)} and 

EB95  ≈  EBGMij * exp{1.645/√(cij + 1)} 

where cij = n11 

http://127.0.0.1:60281/help/statug.hlp/statug_causaltrt_references.htm#statug_causaltrtbang_h05
http://127.0.0.1:60281/help/statug.hlp/statug_causaltrt_references.htm#statug_causaltrtlunc_j04
http://127.0.0.1:60281/help/statug.hlp/statug_causaltrt_references.htm#statug_causaltrtwool_j10
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PROC CAUSALTRT: estimates the average causal effect of a binary treatment, T, 

on a continuous or discrete outcome, Y. Good for data from nonrandomized 

trials or observational studies. 

 

PROC CAUSALTRT data=<input data set> method=AIPW COVDIFFS PPSMODEL 

POUTCOMEMOD;  

CLASS <list of class variables>;  

PSMODEL <treatment variable> = < List of variables for propensity score 

matching> / plots=(PSDist PSCOVDEN(effects(name of variables)));  

MODEL <outcome variable> = <List of variables for outcome event prediction> 

/ <options>;  

BOOTSTRAP bootci(all) plot=hist seed=1234;     

RUN; 

 

List of antipsychotic drugs and stroke event diagnosis codes 

 

Atypical APs Typical APs Stroke ICD-9-CM Dx 

ARIPIPRAZOLE 

ASENAPINE 

BREXPIPRAZOLE 

CARIPRAZINE 

CLOZAPINE 

ILOPERIDONE 

LURASIDONE 

OLANZAPINE 

OLANZEPINE/FLUOXETINE 

PALIPERIDONE 

QUETIAPINE 

RISPERIDONE 

ZIPRASIDONE 

CHLORPROMAZINE HCL 

FLUPHENAZINE  

HALOPERIDOL 

LOXAPINE 

MOLINDONE 

PERPHENAZINE 

PERPHENAZINE/AMITRIPTYLINE 

THIORIDAZINE 

THIOTHIXENE 

TRIFLUOPERAZINE 

 

430 

431 

433.01, 433.21, 433.31, 

433.81, 433.91,  

434.01, 434.11, 434.91 

436 
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