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ABSTRACT

SAS® Visual Data Mining and Machine Learning 8.3 in SAS® Viya® 3.4 includes a new patternMatch action,
which you can use to execute graph queries that search for copies of a query graph within a larger graph, with
the option of respecting node or link attributes (or both). This feature is also available via the PATTERNMATCH
statement in the NETWORK procedure. This paper presents examples of pattern matching in social network and
anti-money laundering applications. It also provides a functional comparison to Neo4j’s query language, Cypher, and
computational comparisons to both iGraph and Neo4j.

INTRODUCTION

SAS Visual Data Mining and Machine Learning 8.3 in SAS Viya 3.4 includes the network action set and corresponding
NETWORK procedure, which contain a number of graph theory and network analysis algorithms that can augment
data mining and machine learning approaches. In many practical applications of data mining and machine learning
models, pairwise interaction between the entities of interest in the model often plays an important role. For example,
when you are modeling churn in a telecommunications network to support a retention campaign, the influence of
individual customers on other customers—such as friends and acquaintances that they regularly interact with—might
contribute to the propensity of the other customers to churn. You could likewise imagine a customer being able to
influence the propensity of his or her acquaintances to acquire new products. Social networks such as Facebook and
Twitter are obvious examples of networks that represent such interactions between individuals.

Networks also appear explicitly and implicitly in many other application contexts. Networks are often constructed from
certain relationships that are based on natural co-occurrence; examples are relationships among researchers who
coauthor articles, actors who appear in the same movie, words or topics that occur in the same document, items that
appear together in a shopping basket, terrorism suspects who travel together or are seen in the same location, and
so on. In these types of relationship, the strength or frequency of each interaction is modeled as a weight on the
corresponding link of the resulting network.

To support the myriad ways in which networks appear in data mining, the network action set makes no assumptions
about the context or application from which the network arises. It provides a number of network analysis algorithms
that take an abstract graph or network as input, help explain network structure, and compute important network
measures. Depending on the application, this type of network analysis can stand on its own and provide independent
value, or it can support machine learning models—for example, by providing additional features that are derived from
network measures such as node centrality.

This paper uses the NETWORK procedure in the presentation of examples. For more information about the NETWORK
procedure, see SAS Visual Data Mining and Machine Learning: The NETWORK Procedure. For more information
about the network action set, see SAS Visual Data Mining and Machine Learning: Programming Guide. The general
interface for using the network action set is the same for all languages that SAS Viya supports: CASL, Python,
Java, Lua, and R. For more information about how SAS Viya supports these languages, see An Introduction to SAS
Viya Programming. For the remainder of this paper, the authors refer to the network analytics package as Network,
independent of the chosen interface language.

PATTERN MATCHING

Given two graphs, G (main) and Q (query), subgraph isomorphism is the problem of finding all subgraphs Q0 of
G that are isomorphic to Q (that is, that have the same topology as graph Q ). Pattern matching addresses the
analogous problem in the presence of node and link attributes. It is the problem of finding all subgraphs Q0 of G
isomorphic to graph Q such that all node and link attributes defined in Q are preserved in Q0 under the isomorphism
map.
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For example, consider the undirected graph G, shown in Figure 1. G has one link attribute (weight) and one node
attribute (color).

Figure 1 Undirected Graph G
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Now consider the query graph Q, shown in Figure 2.

Figure 2 Query Graph Q
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There are two isomorphic mappings of the query graph Q in the main graph G, as shown in Figure 3.

Figure 3 Subgraphs
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Subgraph isomorphism and pattern matching have applications in many areas, including social network analysis,
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fraud detection, pattern recognition, data mining, chemistry, and biology. See, for example, Aggarwal and Wang
(2010); Gallagher (2006); Conte et al. (2004); Shasha, Wang, and Giugno (2002).

The focus of this paper is to introduce a new action, patternMatch in the network action set (and the corresponding
NETWORK procedure), in SAS Visual Data Mining and Machine Learning 8.3 and later, which can be used to solve
the problem of pattern matching.

PATTERNMATCH EXAMPLES

In PROC NETWORK, you can find pattern matches by using the PATTERNMATCH statement.

The specification of a graph in PROC NETWORK consists of a nodes data table (optional) and a links data table. The
nodes data table contains a list of nodes with one column for the node label and any number of additional columns for
each node attribute. The links data table contains a list of links (specified as a pair of node labels: a from node and
a to node) and any number of additional columns for each link attribute. The links data table is specified using the
LINKS= option in the PROC NETWORK statement. The nodes data table is specified using the NODES= option in the
PROC NETWORK statement.

The query graph is specified using the LINKSQUERY= option or the NODESQUERY= option (or both) in the PROC
NETWORK statement. The specification of the query graph and its attributes works the same way that it does for the
main graph. If you use attributes in the query data tables, the PATTERNMATCH statement returns subgraphs that
exactly match the specified values in addition to matching the defined graph structure (topology).

New in SAS Visual Data Mining and Machine Learning 8.4 is the ability to further customize the query using the
SAS Function Compiler (FCMP), which provides greater flexibility than the use of query data tables. For a general
overview of FCMP and examples of its use in creating user-defined functions, see the chapter “The FCMP Procedure”
in Base SAS Procedures Guide. In PROC NETWORK, you can use FCMP to provide a set of functions, each of
which, when associated with a specific pattern match query, defines an additional Boolean condition that a subgraph
from the main graph must satisfy in order to be considered a match. You can use FCMP syntax and programming
statements, in addition to the attributes of the query (or main) graph in defining such a condition. The flexibility you
have in defining FCMP functions permits both exact and inexact attribute matching for individual nodes and links
(by using the NODEFILTER= option and the LINKFILTER= option, respectively), and these functions can be further
tailored to specific nodes and links in the query graph. In addition, the ability to use functions that apply to pairs of
nodes and links (by using the NODEPAIRFILTER= option and the LINKPAIRFILTER= option, respectively) enables
you to define conditions of more global scope than conditions on attributes of individual nodes and links.

The following two subsections consider two example applications of the PATTERNMATCH statement in PROC
NETWORK.

Pattern Matching in a Social Network

This example considers a portion of a social network that conveys relationships between people (friends), residences
(lives in), and preferences for particular restaurants (likes). The network, directed graph G, is shown in Figure 4.

Figure 4 Social Network G
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The following data provide a snapshot of the social connections between Matt and a few of his friends:
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data mycas.NodesSocial;
infile datalines dsd;
length node $40. type $40. subtype $20.;
input node $ type $ subtype $;
label=node;
datalines;

Matt, Person,
Rob, Person,
Chuck, Person,
Stephen, Person,
Manoj, Person,
Bryan, Person,
Jack, Person,
Raleigh, City,
Philadelphia, City,
Charlotte, City,
The Pit Authentic, Restaurant, BBQ
Red Hot Blue, Restaurant, BBQ
JimmyJs, Restaurant, BBQ
Second Empire, Restaurant, American
Cafe Luna, Restaurant, Italian
Vivo Rist, Restaurant, Italian
Moonlight, Restaurant, Italian
Dumplings, Restaurant, Chinese
;
data mycas.LinksSocial;

infile datalines dsd;
length from $40. to $40. connection $20.;
input from $ to $ connection $ rating;
datalines;

Matt, Rob, friends, .
Rob, Matt, friends, .
Matt, Chuck, friends, .
Chuck, Matt, friends, .
Chuck, Rob, friends, .
Rob, Chuck, friends, .
Jack, Rob, friends, .
Rob, Jack, friends, .
Matt, Stephen, friends, .
Stephen, Matt, friends, .
Matt, Manoj, friends, .
Manoj, Matt, friends, .
Matt, Bryan, friends, .
Bryan, Matt, friends, .
Matt, Jack, friends, .
Jack, Matt, friends, .
Matt, Philadelphia, lives in, .
Stephen, Philadelphia, lives in, .
Stephen, JimmyJs, likes, 7
Stephen, Cafe Luna, likes, 8
Rob, Raleigh, lives in, .
Chuck, Raleigh, lives in, .
Manoj, Raleigh, lives in, .
Jack, Raleigh, lives in, .
Bryan, Charlotte, lives in, .
Rob, The Pit Authentic, likes, 7
Jack, Red Hot Blue, likes, 9
Chuck, The Pit Authentic, likes, 8
Chuck, Cafe Luna, likes, 6
Chuck, Second Empire, likes, 7
Jack, Vivo Rist, likes, 8
Manoj, Dumplings, likes, 6
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Bryan, Red Hot Blue, likes, 9
Bryan, Vivo Rist, likes, 6
Rob, Moonlight, likes, 10
;

The nodes in the nodes data table mycas.NodesSocial represent people, cities, and restaurants. The node attribute
type defines the node type. In the case of a restaurant, the node attribute subtype defines the type of restaurant.

The links in the links data table mycas.LinksSocial represent connections between the nodes. The type of connection
is defined by the link attribute connection, and in the case of people connected to restaurants, the link attribute rating
specifies a rating on a scale of 1 to 10.

For these data, a typical social network pattern search might be to find “friends of Matt who like barbecue restaurants.”
A query graph that captures this pattern is shown in Figure 5.

Figure 5 Query Graph Q

Matt Xfriends BBQlikes 

In order to construct this pattern, the query graph can be represented using the data that are created by the following
DATA steps:

data mycas.NodesSocialQuery;
infile datalines dsd;
length node $40. label $40. type $40. subtype $20.;
input node $ label $ type $ subtype $;
datalines;

Matt, Matt, Person,
X,, Person,
BBQ,, Restaurant, BBQ
;
data mycas.LinksSocialQuery;

infile datalines dsd;
length from $40. to $40. connection $20.;
input from $ to $ connection $;
datalines;

Matt, X, friends
X, Matt, friends
X, BBQ, likes
;

The query graph nodes data table implies that:

� The query node Matt must be a person with the node attribute label=Matt.

� The query node X can be any person.

� The query node BBQ must be a barbecue restaurant (that is, type=Restaurant and subtype=BBQ).

The query graph links data table implies that:

� Person Matt and person X must be friends.

� Person X must like the restaurant that is assigned to node BBQ.

You can use the following statements to find all subgraphs that have the specified pattern:
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proc network
direction = directed
nodes = mycas.NodesSocial
links = mycas.LinksSocial
nodesQuery = mycas.NodesSocialQuery
linksQuery = mycas.LinksSocialQuery;
nodesVar

vars = (label type subtype);
linksVar

vars = (connection);
nodesQueryVar

vars = (label type subtype);
linksQueryVar

vars = (connection);
patternMatch

outMatchNodes = mycas.OutMatchNodes
outMatchLinks = mycas.OutMatchLinks;

run;

The progress of the procedure is shown in Output 1.

Output 1 PROC NETWORK Log: Pattern Matching in a Social Network

NOTE: --------------------------------------------------------------------------

NOTE: Running NETWORK.                                                          

NOTE: --------------------------------------------------------------------------

NOTE: The number of nodes in the input graph is 18.                             

NOTE: The number of links in the input graph is 35.                             

NOTE: The number of nodes in the query graph is 3.                              

NOTE: The number of links in the query graph is 3.                              

NOTE: Processing the pattern matching query using 8 threads across 1 machines.  

NOTE: The algorithm found 5 matches.                                            

NOTE: Processing the pattern matching query used 0.00 (cpu: 0.00) seconds.      

NOTE: The Cloud Analytic Services server processed the request in 0.007591      

      seconds.                                                                  

NOTE: The data set MYCAS.OUTMATCHNODES has 15 observations and 6 variables.     

NOTE: The data set MYCAS.OUTMATCHLINKS has 15 observations and 4 variables.     

Output 2 displays the output data table mycas.OutMatchNodes, which shows the mappings from nodes in the query
graph to nodes in the input graph for each match. For this query, five friends (X) match the specified criteria: Bryan,
Chuck, Jack, Rob, and Stephen.
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Output 2 Node Mappings for Friends Who Like Barbecue

match nodeQ node label type subtype

1 BBQ Red Hot Blue Red Hot Blue Restaurant BBQ

1 Matt Matt Matt Person

1 X Bryan Bryan Person

2 BBQ The Pit Authentic The Pit Authentic Restaurant BBQ

2 Matt Matt Matt Person

2 X Chuck Chuck Person

3 BBQ Red Hot Blue Red Hot Blue Restaurant BBQ

3 Matt Matt Matt Person

3 X Jack Jack Person

4 BBQ The Pit Authentic The Pit Authentic Restaurant BBQ

4 Matt Matt Matt Person

4 X Rob Rob Person

5 BBQ JimmyJs JimmyJs Restaurant BBQ

5 Matt Matt Matt Person

5 X Stephen Stephen Person

Output 3 displays the output data table mycas.OutMatchLinks, which shows the subgraphs for each match.

Output 3 Subgraphs for Friends Who Like Barbecue

match from to connection

1 Bryan Matt friends

1 Bryan Red Hot Blue likes

1 Matt Bryan friends

2 Chuck Matt friends

2 Chuck The Pit Authentic likes

2 Matt Chuck friends

3 Jack Matt friends

3 Jack Red Hot Blue likes

3 Matt Jack friends

4 Matt Rob friends

4 Rob Matt friends

4 Rob The Pit Authentic likes

5 Matt Stephen friends

5 Stephen JimmyJs likes

5 Stephen Matt friends

Next, you can find “friends of Matt who like barbecue restaurants and live in Raleigh,” shown in Figure 6, by using the
data that are created by the following DATA steps and the same call to PROC NETWORK as before:

data mycas.NodesSocialQuery;
infile datalines dsd;
length node $40. label $40. type $40. subtype $20.;
input node $ label $ type $ subtype $;
datalines;

Matt, Matt, Person,
X,, Person,
Raleigh, Raleigh, City,
BBQ,, Restaurant, BBQ
;
data mycas.LinksSocialQuery;

infile datalines dsd;
length from $40. to $40. connection $20.;
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input from $ to $ connection $;
datalines;

Matt, X, friends
X, Matt, friends
X, Raleigh, lives in
X, BBQ, likes
;

Figure 6 Query Graph Q
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Output 4 displays the output data table mycas.OutMatchNodes. For this query, three friends (X) match the specified
criteria: Rob, Chuck, and Jack.

Output 4 Node Mappings for Friends Who Like Barbecue and Live in Raleigh

match nodeQ node label type subtype

1 BBQ The Pit Authentic The Pit Authentic Restaurant BBQ

1 Matt Matt Matt Person

1 Raleigh Raleigh Raleigh City

1 X Rob Rob Person

2 BBQ The Pit Authentic The Pit Authentic Restaurant BBQ

2 Matt Matt Matt Person

2 Raleigh Raleigh Raleigh City

2 X Chuck Chuck Person

3 BBQ Red Hot Blue Red Hot Blue Restaurant BBQ

3 Matt Matt Matt Person

3 Raleigh Raleigh Raleigh City

3 X Jack Jack Person

Output 5 displays the output data table mycas.OutMatchLinks.
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Output 5 Subgraphs for Friends Who Like Barbecue and Live in Raleigh

match from to connection

1 Matt Rob friends

1 Rob Matt friends

1 Rob Raleigh lives in

1 Rob The Pit Authentic likes

2 Chuck Matt friends

2 Chuck Raleigh lives in

2 Chuck The Pit Authentic likes

2 Matt Chuck friends

3 Jack Matt friends

3 Jack Raleigh lives in

3 Jack Red Hot Blue likes

3 Matt Jack friends

Next, you can find “friends of Matt who like barbecue restaurants, give the restaurant a rating of 9 or higher, and live in
Raleigh,” by refining the query using an FCMP link filter function and PROC NETWORK call, as follows:

proc cas;
source myFilter;
function myLinkFilter(connectionQ $, rating);

if (connectionQ='likes') then return (rating >= 9); else return (1);
endsub;
endsource;

loadactionset "fcmpact";
setSessOpt{cmplib="casuser.myRoutines"}; run;
fcmpact.addRoutines /

saveTable = true,
funcTable = {name="myRoutines", caslib="casuser", replace=true},
package = "myPackage",
routineCode = myFilter;

run;
quit;
proc network

direction = directed
nodes = mycas.NodesSocial
links = mycas.LinksSocial
nodesQuery = mycas.NodesSocialQuery
linksQuery = mycas.LinksSocialQuery;
nodesVar

vars = (label type subtype);
linksVar

vars = (connection rating);
nodesQueryVar

vars = (label type subtype);
linksQueryVar

vars = (connection);
patternMatch

linkFilter = myLinkFilter
outMatchNodes = mycas.OutMatchNodes
outMatchLinks = mycas.OutMatchLinks;

run;

Output 6 displays the output data table mycas.OutMatchNodes. For this query, only one friend (X) matches the
specified criteria: Jack.
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Output 6 Node Mappings for Friends Who Like Barbecue (with Rating � 9) and Live in Raleigh

match nodeQ node label type subtype

1 BBQ Red Hot Blue Red Hot Blue Restaurant BBQ

1 Matt Matt Matt Person

1 Raleigh Raleigh Raleigh City

1 X Jack Jack Person

Output 7 displays the output data table mycas.OutMatchLinks.

Output 7 Subgraphs for Friends Who Like Barbecue (with Rating � 9) and Live in Raleigh

match from to connection rating

1 Jack Matt friends .

1 Jack Raleigh lives in .

1 Jack Red Hot Blue likes 9

1 Matt Jack friends .

Finally, you can find “a pair of friends of Matt who like the same barbecue restaurant, live in Raleigh, and are friends
of each other,” shown in Figure 7, by using the data that are created by the following DATA steps:

data mycas.NodesSocialQuery;
infile datalines dsd;
length node $40. label $40. type $40. subtype $20.;
input node $ label $ type $ subtype $;
datalines;

Matt, Matt, Person,
X,, Person,
Y,, Person,
Raleigh, Raleigh, City,
BBQ,, Restaurant, BBQ
;
data mycas.LinksSocialQuery;

infile datalines dsd;
length from $40. to $40. connection $20.;
input from $ to $ connection $;
datalines;

Matt, X, friends
X, Matt, friends
Matt, Y, friends
Y, Matt, friends
X, Raleigh, lives in
Y, Raleigh, lives in
X, BBQ, likes
Y, BBQ, likes
X, Y, friends
Y, X, friends
;

The query node Matt must be a person with the node attribute label=Matt. The query nodes, X and Y, can be any pair
of friends that both live in Raleigh. The query node BBQ must be a barbecue restaurant (that is, type=Restaurant and
subtype=BBQ) that is liked by both persons X and Y. Person X and person Y must be friends with Matt.

You can use the following statements to find all subgraphs that have the specified pattern:

proc network
direction = directed
nodes = mycas.NodesSocial
links = mycas.LinksSocial
nodesQuery = mycas.NodesSocialQuery
linksQuery = mycas.LinksSocialQuery;
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nodesVar
vars = (label type subtype);

linksVar
vars = (connection);

nodesQueryVar
vars = (label type subtype);

linksQueryVar
vars = (connection);

patternMatch
outMatchNodes = mycas.OutMatchNodes
outMatchLinks = mycas.OutMatchLinks;

run;

Figure 7 Query Graph Q
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Output 8 displays the output data table mycas.OutMatchNodes. For this query, only one pair of friends (Chuck and
Rob) match the specified criteria. There are two isomorphic mappings: one where X=Rob, Y=Chuck and one where
X=Chuck, Y=Rob.

Output 8 Node Mappings for a Pair of Friends

match nodeQ node label type subtype

1 BBQ The Pit Authentic The Pit Authentic Restaurant BBQ

1 Matt Matt Matt Person

1 Raleigh Raleigh Raleigh City

1 X Rob Rob Person

1 Y Chuck Chuck Person

2 BBQ The Pit Authentic The Pit Authentic Restaurant BBQ

2 Matt Matt Matt Person

2 Raleigh Raleigh Raleigh City

2 X Chuck Chuck Person

2 Y Rob Rob Person

Output 9 displays the output data table mycas.OutMatchLinks.
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Output 9 Subgraphs for a Pair of Friends

match from to connection

1 Chuck Matt friends

1 Chuck Raleigh lives in

1 Chuck Rob friends

1 Chuck The Pit Authentic likes

1 Matt Chuck friends

1 Matt Rob friends

1 Rob Chuck friends

1 Rob Matt friends

1 Rob Raleigh lives in

1 Rob The Pit Authentic likes

2 Chuck Matt friends

2 Chuck Raleigh lives in

2 Chuck Rob friends

2 Chuck The Pit Authentic likes

2 Matt Chuck friends

2 Matt Rob friends

2 Rob Chuck friends

2 Rob Matt friends

2 Rob Raleigh lives in

2 Rob The Pit Authentic likes

Pattern Matching for Anti-Money Laundering

This example considers a subset of banking transactions between corporations. Money laundering can be accom-
plished by a series of sequential transactions through a subset of real (or fictitious) corporations that starts and ends
at the same entity.

The following data provide a small subset of banking transactions between corporations:

data mycas.NodesAML;
input node $ year @@;
datalines;

A 2015 B 2014 C 2016 D 2016 E 2016 F 2017
;
data mycas.LinksAML;

format time DATE9.;
input from $ to $ time DATE9. @@;
datalines;

A B 02OCT2017 A C 03OCT2017 B C 03OCT2017 B D 04OCT2017 C A 02OCT2017 C D 04OCT2017
D A 01NOV2017 D E 01NOV2017 D F 17DEC2017 E B 04OCT2017 F B 13FEB2018 F E 13FEB2018
;

The nodes in the nodes data table mycas.NodesAML represent corporations and the years they were established.
The links in the links data table mycas.LinksAML represent banking transactions between the corporations and the
date of the transaction. The data are shown graphically in Figure 8.
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Figure 8 Banking Transactions Q
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In order for investigators to focus their resources, one suspicious pattern they can search for is cyclic, sequential
banking transactions through corporate entities that were established in the same year. For example, they can search
for cycles of length 3.

The query graph Q that defines the pattern to search for is shown in Figure 9. In addition, the pattern requires that
Y2 D Y3 and T1 < T2 < T3.

Figure 9 Query Graph Q

1

2
year=Y2

time=T1

3
year=Y3

time=T2

time=T3

In order to construct this pattern, the query graph (a directed cycle of length 3) can be represented using the data that
are created by the following DATA steps:
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data mycas.NodesQuery;
input node @@;
datalines;

1 2 3
;
data mycas.LinksQuery;

input from to @@;
datalines;

1 2 2 3 3 1
;

The following statements specify the node and link pair filter functions. The node pair filter function
myNodePairFilter enforces that the two inner corporations of the cycle were both established in the same
year. The link pair filter function myLinkPairFilter enforces that the sequence of transactions in the cycle has
increasing timestamps.

proc cas;
source myPairFilter;
function myNodePairFilter(nodeQ[*], year[*]);

if (nodeQ[1]=2 and nodeQ[2]=3) then return (year[1]=year[2]); else return (1);
endsub;
function myLinkPairFilter(fromQ[*], toQ[*], time[*]);

if (toQ[1] = 1) then return (1); else
if (toQ[1] = fromQ[2]) then return (time[1]<time[2]); else return (1);

endsub;
endsource;

loadactionset "fcmpact";
setSessOpt{cmplib="casuser.myRoutines"}; run;
fcmpact.addRoutines /

saveTable = true,
funcTable = {name="myRoutines", caslib="casuser", replace=true},
package = "myPackage",
routineCode = myPairFilter;

run;
quit;

You can use the following statements to find all subgraphs that have the specified pattern:

proc network
direction = directed
nodes = mycas.NodesAML
links = mycas.LinksAML
nodesQuery = mycas.NodesQuery
linksQuery = mycas.LinksQuery;
nodesVar

vars = (year);
linksVar

vars = (time);
patternMatch

nodePairFilter = myNodePairFilter
linkPairFilter = myLinkPairFilter
outMatchNodes = mycas.OutMatchNodes
outMatchLinks = mycas.OutMatchLinks;

run;

For these data, only one subset of transactions matches the specified pattern.

Output 10 displays the output data table mycas.OutMatchNodes, which shows the mappings from nodes in the
query graph to nodes in the input graph.
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Output 10 Node Mappings for Suspicious Banking Transactions

match nodeQ node year

1 1 A 2015

1 2 C 2016

1 3 D 2016

Output 11 displays the output data table mycas.OutMatchLinks, which shows the subgraph for the matching pattern.

Output 11 Subgraph for Suspicious Banking Transactions

match from to time

1 A C 03OCT2017

1 C D 04OCT2017

1 D A 01NOV2017

The result is shown graphically in Figure 10.

Figure 10 Subgraph for Suspicious Banking Transactions
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COMPUTATIONAL COMPARISON

This section presents a computational and functional comparison to two popular frameworks for solving the pattern
matching problem. The first framework, iGraph (Csárdi and Nepusz 2006), is a popular open-source network analysis
package written in C with user interfaces to several languages, including R and Python. The second framework, Neo4j
(Neo4j 2019), is a graph database platform with its own query language, Cypher.
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The experiments were conducted on a machine (server) with Intel Xeon CPU X5550 @ 2.67 GHZ (2 sockets, 4 CPUs
per socket) and 64 GB RAM, running Red Hat Enterprise Linux Server (release 6.3). The relevant software versions
are listed below:

� SAS Visual Data Mining and Machine Learning 8.4 in SAS Viya 3.4

� iGraph 0.7.1

� Neo4j 3.5.1 Community Edition

The data, scripts, and logs used in the experiment can be found at https://github.com/sascommunities/sas-global-
forum-2019.

Data

This experimental study considers three data sources. One data set (amazon-meta) comes from real data (Leskovec,
Adamic, and Huberman 2007), two data sets (er_* and ba_*) are generated synthetically, and one data set comes
from a standardized benchmark (Heflin 2019).

The amazon-meta data set is from a webcrawl over Amazon’s website. Nodes represent books, music CDs, video
DVDs, and VHS tapes. Nodes are linked together if their products are likely to be purchased together. Each node is
given a label that specifies the product category that the node belongs to, such as “Book: Home & Garden.”

The synthetic data (er_* and ba_*) are created by using the graph generator tools in iGraph. The er_* graphs are
created according to the Erdős-Rényi model, where nodes are randomly connected using a fixed probability (Erdös
and Rényi 1959). The ba_* graphs follow the Barabási-Albert model, which uses a preferential attachment mechanism
when determining links between nodes. In this model, a node’s probability of being linked to other nodes is proportional
to the number of existing links the other nodes have (Barabási and Albert 1999). As a result, unlike graphs generated
from the Erdős-Rényi model, these graphs exhibit a power-law degree distribution, as found in scale-free networks. In
both models, each node is randomly assigned a label attribute from a fixed number of unique labels. The last number
in the graph name represents the number of unique labels. For example, each node in er_u_10_15_50 is labeled with
one of 50 unique attributes.

The well-known Lehigh University Benchmark (LUBM) (Heflin 2019) is used as the final source of data. This is a
semantic web data set that models universities’ students, professors, staff, courses, and so on, and their connections,
such as a student being linked to a professor because the student is advised by that professor. LUBM is given as
a Resource Description Framework (RDF) data set with an ontology that describes abstract relationships between
objects. RDF, when interpreted as a graph, has a flat structure. Nodes do not have attributes. The method described
in Gubichev and Then (2014) is used to convert this format into a property-graph-style format suitable for comparisons
in this paper.

For each graph, the authors generated several different queries. For the amazon-meta and synthetic cases, they
generated queries that had a variety of topologies, including path and path-like queries, denser topologies, and cliques
(where every node is directly connected to every other node). Path and path-like queries have a diameter and link
count close to the number of nodes in the query graph (for example, q01, q02, and q04 of ba_u_10_15_200). The
authors generated queries of this type by performing a random walk in the graph and keeping the subgraph that
was induced by the walked links. Queries with a denser topology (for example, q03 of ba_u_10_15_200) were also
generated using a random walk, but keeping the subgraph induced by the nodes of the walk. The clique queries (for
example, q05 of ba_u_10_15_200), which have a diameter of 1, were generated by simply finding and using one of
the existing cliques of the graph.

LUBM has a set of predefined queries associated with it, and the authors used the same subset of these queries as
were used in Gubichev and Then (2014). Like the data graph, these queries are converted to match the property-
graph-style setup. In some cases, the queries have inexact attributes because of the ontology of LUBM. For example,
if the original, predefined query looks for nodes of type student, then this paper’s query becomes an inexact match
for nodes that are either of type UndergraduateStudent or of type GraduateStudent, because the ontology defines
student as being one of these two types. In general, the LUBM queries have a simpler topology than the queries that
are generated for the other data sets.

Table 1 gives the size of the main graph (G), the size of the query graph (Q) and its diameter (Diam), the number of
exact (and inexact) attributes per node (N) and link (L), and the number of matches (Matches). Note that queries q08
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and q12 of the LUBM data set are shown with a range of values because they were defined as having variable path
lengths between some nodes.

Table 1 Computational Comparison Data

Main Graph Query Graph
Attributes

Exact Inexact
Name Nodes Links Name Nodes Links Diam N L N L Matches
amazon-meta 512,821 951,231 q01 4 3 2 1 0 0 0 169

q02 10 17 3 1 0 0 0 98,680
q03 10 9 9 1 0 0 0 48

ba_u_10_15_200 1,000,000 14,999,880 q01 5 4 4 1 0 0 0 1,486,258
q02 5 4 4 1 0 0 0 248
q03 5 7 2 1 0 0 0 12,132
q04 10 9 9 1 0 0 0 11,897
q05 10 45 1 1 0 0 0 2

ba_u_10_15_400 1,000,000 14,999,880 q01 5 4 4 1 0 0 0 265,324
q02 5 4 4 1 0 0 0 55
q03 7 11 3 1 0 0 0 27,939
q04 10 9 9 1 0 0 0 51,480
q05 10 45 1 1 0 0 0 2
q06 20 19 18 1 0 0 0 2

er_u_10_15_20 1,000,000 15,000,000 q01 5 4 3 1 0 0 0 253,190
q02 10 9 7 1 0 0 0 1,939,108

er_u_10_15_30 1,000,000 15,000,000 q01 5 4 3 1 0 0 0 33,065
q02 10 9 7 1 0 0 0 31,435
q03 20 19 14 1 0 0 0 31,307

er_u_10_15_50 1,000,000 15,000,000 q01 5 4 3 1 0 0 0 2,616
q02 10 9 7 1 0 0 0 182
q03 20 19 14 1 0 0 0 90

LUBM 1,082,818 3,298,813 q02 3 3 1 1 1 0 1 130
q04 2 1 1 2 1 1 0 34
q05 2 1 1 2 0 1 1 719
q06 1 0 0 0 0 1 0 519,842
q07 3 2 1 2 1 1 0 59
q08 3-4 2-3 2-3 2 1 1 1 7,790
q09 3 3 1 0 1 1 0 13,639
q12 3-5 3-4 2-3 2 1 0 0 15
q13 2 1 1 1 0 0 1 229
q14 1 0 0 1 0 0 0 393,730

Computational Comparison to iGraph

This section compares the performance of Network to the vf2 method in iGraph (Csárdi and Nepusz 2006) for solving
the pattern matching problem. The implementation of pattern matching in iGraph (vf2) does not support multigraphs
properly. Therefore, this computational experiment is restricted to simple graphs (excluding the amazon-meta and
LUBM data sets).

Generally, the process for running a query occurs in two phases: a loading phase for each data set, and a search
phase that consists of solving the pattern matching problem for a particular query.

Table 2 shows the elapsed real time (in seconds) for each data set and associated query, in addition to an overall
speedup factor (Speedup1) on the total time (Total) for executing a series of queries for a particular data set. Both

1The speedup is calculated as a ratio of the total time it takes iGraph to perform a series of queries for a particular data set, divided by the time
it takes Network to perform the same queries. A value greater than 1 implies that Network executes the queries faster.
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iGraph (for a fixed random seed) and Network are deterministic in execution. That is, there is no variability with respect
to running time (on an idle server). Therefore, the authors ran each experiment only once. To keep the performance
comparison simple, the authors counted only the number of matches and did not create output tables.

The mechanisms for loading are slightly different between iGraph and Network. For iGraph, the loading phase (Load)
consists of reading the graph data into memory and setting up the appropriate data structures. iGraph has the
advantage that once the main graph data are loaded into memory, they can be used for subsequent queries (Match)
on that graph without reloading. Although SAS Viya keeps the data table in memory (LoadT), it does not (currently)
retain the graph data structures and therefore must execute part of the loading phase for each query (Build). An
enhancement to Network to allow for persistence of the graph data structures is discussed in the section “FUTURE
DIRECTIONS” on page 24.

Table 2 Computational Comparison iGraph versus Network

iGraph Time Network Time
Main Query Load Match Total LoadT Build Match Total Speedup
ba_u_10_15_200 q01

45

352

11,776 4.45

8.58 1.70

53.45 220.31

q02 97 8.07 1.14
q03 8,933 8.11 1.21
q04 2,204 8.02 1.50
q05 144 8.64 2.03

ba_u_10_15_400 q01

45

42

10,478 5.00

7.97 1.16

72.83 143.88

q02 37 9.16 1.44
q03 9,525 9.15 1.71
q04 153 7.78 1.36
q05 68 7.77 1.46
q06 608 9.15 9.73

er_u_10_15_20 q01
64

1,152
11,924 5.03

9.31 3.72
36.41 327.46q02 10,708 10.27 8.08

er_u_10_15_30 q01

59

376

3,041 5.46

9.82 2.57

53.28 57.08q02 833 10.62 5.51
q03 1,774 9.85 9.44

er_u_10_15_50 q01

60

126

479 5.09

11.20 2.30

45.56 10.52q02 144 9.78 2.83
q03 149 9.87 4.48

Sum 37,699 261.53
Average 12,566 87.18 151.85

From the results, you can see that Network vastly outperforms iGraph on this set of queries. On average, Network is
152 times as fast as iGraph.

Functional Comparison to Cypher

This section shows functional comparisons of pattern matching queries expressed in Network and queries expressed
in the Cypher query language. Specifically, it compares three examples in detail: a straightforward query that has
no inexact matches, a query that has inexact matches (requiring an FCMP node filter in Network), and a query that
consists of a variable path length. The latter two examples come from the benchmark data that were used in these
computational comparisons.

Cypher is the language for querying graphs that are stored in a Neo4j graph database. Neo4j employs a property
graph model, where nodes and links can have an arbitrary number of attributes (key-value pairs). Nodes can also have
labels associated with them, and these labels can be used to represent different groups or roles in your domain. For
example, in the LUBM data set, nodes have labels such as UndergraduateStudent, AssociateProfessor, Department,
and so on. When using Neo4j, you need to decide on your data model (attributes and labels) and load data into the
database. Once the database is created and running, you can use Cypher to perform searches for the patterns.

Although the syntax is different, using Cypher is similar to pattern matching in Network in that you specify the topology
of the subgraph along with the node and link attribute constraints that you want to match in the data graph. In Cypher,

18



the MATCH clause is used to specify the topology of the query graph by using ASCII-Art patterns to represent sets of
nodes and links. Some node and link constraints can be specified in-line with the topology. In addition, you can specify
constraints on subsets of nodes and links by using a WHERE clause after the topology specification. Generally, there
are multiple ways of writing a Cypher query to obtain the same result.

As an example of the Cypher language, consider the social network in the section “Pattern Matching in a Social
Network” on page 3 and the query shown in Figure 6 that looks for “friends of Matt who like barbecue restaurants and
live in Raleigh.” Using the PATTERNMATCH statement in PROC NETWORK to perform this query is explained in that
section. To represent this query in Cypher, you can use the following syntax:

MATCH (Matt)-[:friends]->(X)-[:friends]->(Matt),
(BBQ)<-[:likes]-(X)-[:`lives in`]->(Raleigh)

WHERE Matt.label="Matt" and Matt.type="Person" and X.type="Person" and
Raleigh.label="Raleigh" and Raleigh.type="City" and
BBQ.type="Restaurant" and BBQ.subtype="BBQ"

RETURN (X)

The MATCH clause specifies the topology of the query graph, which consists of an undirected link and two directed
links. Some constraints (such as the type of the links) are specified in-line with the topology. The WHERE clause
specifies additional constraints (such as the property values) that the nodes must have.

Next, consider query q07 of the LUBM data set, which looks for all students who take a course taught by a particular
professor. Because there are two types of students, UndergraduateStudent and GraduateStudent, this query involves
an inexact match on one of the nodes. The Cypher query used for q07 is as follows:

MATCH (S)-[:takesCourse]->(C:Course)<-[:teacherOf]-(P)
WHERE (S:GraduateStudent or S:UndergraduateStudent) and

P.id='Department0.University0.AssociateProfessor0'
RETURN count(S)

Again, the MATCH clause specifies the topology of the query graph that consists of two directed links. The type of
the directed links and the requirement that node C must be labeled as Course is specified in-line with the topology.
Unlike properties, to specify that some node n has label L, you simply write n:L. The WHERE clause constrains the
professor’s ID and the inexact match that is allowed on the node that is represented by variable S, which must be
labeled as a GraduateStudent or an UndergraduateStudent.

This same query can be executed in Network by specifying a topologically equivalent query graph, as shown in
Figure 11, along with an FCMP node filter function. The query graph can be created by the following DATA steps:

data sascas1.nodes;
infile datalines dsd;
length type $6. id $43.;
input node $ type $ id $;
datalines;

S,,
C, Course,
P,, Department0.University0.AssociateProfessor0
;

data sascas1.links;
infile datalines dsd;
length type $11.;
input from $ to $ type $;
datalines;

S, C, takesCourse
P, C, teacherOf
;
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Figure 11 The Query Graph of LUBM Query q07

S

C
type:Course

takesCourse

P
ID:Department0.University0.AssociateProfessor0

teacherOf

Along with this query graph, an FCMP node filter function is needed because node S, the unattributed node, can be a
node whose type is either GraduateStudent or UndergraduateStudent. To handle this inexact match, you can use the
following FCMP node filter function as part of the pattern match:

source myFilter;
function myNodeFilter(nodeQ $, type $);

if(nodeQ='S') then return type in ('GraduateStudent' or 'UndergraduateStudent');
else return (1);

endsub;

Finally, as a more complicated example, consider query q12, which has a variable path length. At a high level, q12 is
looking for the number of subgraphs where a professor is the head of a department and works for a department that is
a suborganization of University0. The Cypher syntax for finding the number of all such subgraphs is:

MATCH (P)-[:worksFor]->(D1:Department)-[:subOrganizationOf*1..2]->(U),
(P)-[:headOf]->(D2:Department)

WHERE (P:FullProfessor) and U.id='University0'
RETURN count(P)

The suborganization relationship is transitive, meaning that in these data the path between department D1 and
University0 might be of length 1 or length 2. In addition, the two departments have different variable names (D1 and
D2) because (although unlikely in this context) they might not necessarily refer to the same department if a strict
translation of the original, predefined RDF query is used. Interestingly, although D1 and D2 have distinct names, they
are still allowed in Cypher to map to the same node in the data graph (unless an additional condition is specified in the
WHERE clause). Thus, this query handles both cases where D1 and D2 are the same department and cases where
D1 and D2 are different departments.

Network can perform the equivalent query with four pattern match invocations. An invocation is needed for each
possible path length (in this case, length 1 and length 2), and for each of these lengths, D1 and D2 can refer to the
same node or to different nodes. In total, this yields four distinct combinations whose query graphs and corresponding
DATA steps are shown in Table 3. In this case, the pattern needs to be matched over the id and type variables of the
nodes data and the type variable of the links data. No FCMP filter functions are needed here.
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Table 3 Query Graphs and Corresponding DATA Steps of LUBM
Query q12

DATA Step Query Graph

data sascas1.nodes;
infile datalines dsd;
length id $11. type $13.;
input node $ id $ type $;
datalines;

P,, FullProfessor
D1,, Department
D2,, Department
U, University0,
;

data sascas1.links;
infile datalines dsd;
length type $17.;
input from $ to $ type $;
datalines;

P, D1, worksFor
P, D2, headOf
D1, U, subOrganizationOf
;

P
type:FullProfessor

D1
type:Department

worksFor

D2
type:Department

headOf

U
ID:University0

subOrganizationOf

data sascas1.nodes;
infile datalines dsd;
length id $11. type $13.;
input node $ id $ type $;
datalines;

P,, FullProfessor
D1,, Department
D2,, Department
U, University0,
B,,
;

data sascas1.links;
infile datalines dsd;
length type $17.;
input from $ to $ type $;
datalines;

P, D1, worksFor
P, D2, headOf
D1, B, subOrganizationOf
B, U, subOrganizationOf
;

P
type:FullProfessor

D1
type:Department

worksFor

D2
type:Department

headOf

B

subOrganizationOf

U
ID:University0

subOrganizationOf
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Table 3 (continued)

DATA Step Query Graph

data sascas1.nodes;
infile datalines dsd;
length id $11. type $13.;
input node $ id $ type $;
datalines;

P,, FullProfessor
D,, Department
U, University0,
;

data sascas1.links;
infile datalines dsd;
length type $17.;
input from $ to $ type $;
datalines;

P, D, worksFor
P, D, headOf
D, U, subOrganizationOf
;

P
type:FullProfessor

D
type:Department

worksFor  headOf  

U
ID:University0

subOrganizationOf

data sascas1.nodes;
infile datalines dsd;
length id $11. type $13.;
input node $ id $ type $;
datalines;

P,, FullProfessor
D,, Department
U, University0,
B,,
;

data sascas1.links;
infile datalines dsd;
length type $17.;
input from $ to $ type $;
datalines;

P, D, worksFor
P, D, headOf
D, B, subOrganizationOf
B, U, subOrganizationOf
;

P
type:FullProfessor

D
type:Department

worksFor  headOf  

B

subOrganizationOf

U
ID:University0

subOrganizationOf

Computational Comparison to Neo4j

Neo4j is a graph database that has some graph analytical functionality. Network is a graph engine that is designed
primarily for analytical functions and relies on standard SAS Viya data management tools (through tables) for
manipulation of data. This computational study focuses on a performance comparison of the graph engines. Although
the workflow for processing a query differs conceptually in Neo4j versus Network, the end results (the matches) are
exactly the same.

There are a number of alternative ways to execute queries in Neo4j. The process chosen for running a query in
Neo4j consists of two main phases in four parts. For a particular data set, the loading phase consists of creating
the database and warming up the data. The first part of the loading phase consists of loading the data set into the
database (CreateDB). The second part of the loading phase consists of warming up the database (Warmup), which
means bringing the graph data into memory for faster execution. For each query of a particular data set, the search
phase consists of constructing a plan for the search execution and then running the search. There is a great deal of
variance in the observed execution time each time you run a query, particularly for queries that have more complex
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topologies. It seems that the generation of plans is done nondeterministically and can have a large effect on overall
execution time. That is, some plans perform much worse than other plans. For this reason, the authors ran the Neo4j
search phase for each query five times and report the average execution time (Match).

Table 4 gives the elapsed real time (in seconds) for each data set and associated query.

Table 4 Computational Comparison Neo4j versus Network

Neo4J Time Network Time
Main Query Create Warm Match Total LoadT Build Match Total Speedup
amazon-meta q01

4.977 1.01

1.33

50.64 0.73

1.02 0.31

4.64 10.92q02 41.63 1.01 0.31
q03 1.69 1.00 0.26

ba_u_10_15_200 q01

18.897 5.63

7.50

86.94 4.45

8.58 1.70

42.78 2.03

q02 3.18 8.07 1.14
q03 36.96 8.11 1.21
q04 14.77 8.02 1.50
q05 ** 8.64 2.03

ba_u_10_15_400 q01

17.321 5.55

5.25

394.09 5.00

7.97 1.16

63.60 6.20

q02 3.07 9.16 1.44
q03 327.14 9.15 1.71
q04 11.17 7.78 1.36
q05 ** 7.77 1.46
q06 24.58 9.15 9.73

er_u_10_15_20 q01
17.873 5.60

13.16
80.92 5.03

9.31 3.72
36.41 2.22q02 44.29 10.27 8.08

er_u_10_15_30 q01

17.014 5.55

9.38

97.35 5.46

9.82 2.57

53.28 1.83q02 19.77 10.62 5.51
q03 45.64 9.85 9.44

er_u_10_15_50 q01

18.046 5.50

6.74

78.28 5.09

11.20 2.30

45.56 1.72q02 14.49 9.78 2.83
q03 33.51 9.87 4.48

LUBM q02

20.265 4.27

1.28

33.82 4.10

2.77 0.81

60.04 0.56

q04 0.25 3.04 0.70
q05 0.10 2.99 1.16
q06 1.14 2.36 0.27
q07 0.58 2.76 1.60
q08 0.13 5.76 2.26
q09 4.44 3.05 6.10
q12 0.12 12.07 1.55
q13 1.22 2.87 1.41
q14 0.02 2.31 0.09

Sum 822.04 306.31
Average 227.64 86.85 3.64

From the results, you can see that Network outperforms Neo4j on the majority of queries in this study. On average,
Network is 3.6 times as fast as Neo4j. The one exception is the LUBM standard benchmark, where Neo4j is almost
twice as fast as Network.

For LUBM, if you focus on just the search phase, the total execution time for the 10 queries is 9.29 seconds for Neo4j,
and 15.96 seconds for Network. The difference is negligible. In this case, the disadvantage of needing to rebuild the
graph data structures for each query adds significant overhead for Network. In addition, as discussed in the section
“Functional Comparison to Cypher” on page 18, queries q08 and q12 require multiple executions of Network versus
one execution of Neo4j to find the same set of matches. Overcoming this deficit is discussed in the section “FUTURE
DIRECTIONS” on page 24.
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Despite these current deficiencies, Network still greatly outperforms Neo4j on all complex queries. Recall from Table 1
that the LUBM queries are quite small (at most four links) in comparison to the majority of other queries in this study.

Another factor in comparing Neo4j and Network is the use of memory. The authors did not perform a thorough
analysis of memory consumption. However, they did observe that for the two clique queries (ba_u_10_15_200/q05
and ba_u_10_15_400/q05) Neo4j failed to complete because of insufficient memory after more than one hour of
execution time. In this study, the heap memory size given to Neo4j was 24GB, as recommended by their utility. That
is, Neo4j requires more than 24GB to complete these queries. In contrast, the maximum amount of memory used by
Network for any specific query was 1.9GB.

FUTURE DIRECTIONS

In future releases of Network, several new features are being considered to improve the convenience and flexibility of
the interface, as well as to improve performance.

On the interface side, one particular area of interest is the automation of variable path topologies. As discussed in the
section “Functional Comparison to Cypher” on page 18, Neo4j provides the ability to perform variable path length
topologies using one Cypher language request (using the 1**n construct). In order to perform the same queries in
Network, the topology of each specific path length must be requested separately, leading to unnecessary overhead.
In a future release, the authors will consider automating this type of query into one request.

On the performance side, allowing for persistent storage of graph data structures can improve overall execution time
when numerous queries are to be requested against the same data source. As discussed in the section “Computational
Comparison to Neo4j” on page 22, although the search phase for Neo4j and Network perform roughly the same for
the LUBM example, the additional overhead of reloading hurts overall performance for Network. In a future release, it
will be possible to retain the graph data structures within the same session. A prototype code yields the results that
are shown in Table 5.

Table 5 Computational Comparison Neo4j versus Network (Persistent
Data)

Neo4J Time Network Time
Main Query Create Warm Match Total LoadT Build Match Total Speedup
amazon-meta q01

4.977 1.01

1.33

50.64 0.75 1.11

0.31

2.74 18.48q02 41.63 0.31
q03 1.69 0.27

ba_u_10_15_200 q01

18.897 5.63

7.50

86.94 2.88 8.53

1.34

16.58 5.25

q02 3.18 1.14
q03 36.96 1.22
q04 14.77 1.47
q05 ** 1.60

ba_u_10_15_400 q01

17.321 5.55

5.25

394.09 3.32 8.50

1.14

26.12 15.09

q02 3.07 1.10
q03 327.14 1.34
q04 11.17 1.36
q05 ** 1.46
q06 24.58 9.37

er_u_10_15_20 q01
17.873 5.60

13.16
80.92 2.94 10.70

4.58
27.50 2.94q02 44.29 9.27

er_u_10_15_30 q01

17.014 5.55

9.38

97.35 2.91 10.12

2.45

28.42 3.43q02 19.77 4.34
q03 45.64 8.60

er_u_10_15_50 q01

18.046 5.50

6.74

78.28 2.94 11.68

1.91

24.16 3.24q02 14.49 2.85
q03 33.51 4.78
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Table 5 (continued)

Neo4J Time Network Time
Main Query Create Warm Match Total LoadT Build Match Total Speedup
LUBM q02

20.265 4.27

1.28

33.82 1.90 2.95

0.76

20.14 1.68

q04 0.25 0.58
q05 0.10 1.00
q06 1.14 0.28
q07 0.58 1.62
q08 0.13 2.16
q09 4.44 6.13
q12 0.12 1.33
q13 1.22 1.35
q14 0.02 0.09

Sum 822.04 145.66
Average 227.64 41.22 7.16

From the results, you can now see that this prototype version of Network outperforms Neo4j across all data sources
in this study. On average, this version of Network is 7.2 times as fast as Neo4j (1.7 times as fast on the LUBM
benchmark).

CONCLUSION

This paper introduces a new feature in the network analytics package of SAS Visual Data Mining and Machine Learning
for solving the pattern matching problem. The breadth of applications for this feature across several industries makes
it an important area of focus. This paper gives some simple examples of usage with the NETWORK procedure. In
addition, this paper describes a computational comparison against two popular network analysis frameworks, iGraph
and Neo4j. For those familiar with Neo4j’s Cypher language, the section on translating a Cypher query into a Network
query should serve as a good starting reference point. In future releases, the authors intend to expand the set of
available features to cover more complex queries.

From the results, it is clear that Network vastly outperforms both iGraph and Neo4j with respect to execution time.
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