

Paper SAS 3344-2019

The Shape of SAS® Code

Charu Shankar, SAS® Institute Inc.

ABSTRACT

There are many languages that co-exist in the ecosystem of your SAS® toolbox. This Hands-

On Workshop teaches you how to use four SAS languages - Base SAS, PROC SQL,

Perl language elements, and the SAS® Macro Language - to help you manipulate and

investigate your data. Learn to leverage these powerful languages to check your data with

simple, yet elegant techniques such as Boolean logic in PROC SQL, operators such as the

SOUNDS-LIKE operator in the DATA step and PROC step, functions such as the SCAN

function in the DATA step, efficient checking of your data with Perl regular expressions, and

last but not least, the amazing marriage between PROC SQL and the SAS Macro Language

to hold data you just found in a variable that you can use over and over again. This

workshop focuses on coding techniques for data investigation and manipulation using Base

SAS.

DATA USED IN THIS PRESENTATION

TABLE NAME DETAILS

Sashelp.demographics The Sashelp.demographics data set provides the 2004 revision

of data derived from world population prospects. The data set

contains 197 observations.

Sashelp.mwelect The Sashelp.mwelect data set provides midwest electrical supply

monthly sales by product group. The data set contains 11,296

observations.

Pflugerville Code to build the dataset is provided in the References section of

this paper

Table 1. Details about the data sets used in this Hands-on workshop

1. INTRODUCTION

When the author set out to share the power of different languages in the SAS® toolkit, her

initial targeted audience was the novice user. What she didn’t fully realize was the value of

this topic to experienced users as well. For example, there is value to the user who came up

to the author after her presentation to share that they were now able to view PROC SQL

with a Boolean angle, and the advanced user also benefitted by learning about PERL regular

expressions in SAS. Clearly, this paper won’t be able to teach you every single nuance of

2

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

these majestic languages in the short timeframe of a hands-on workshop. The purpose of

this paper is to synthesize & distill each language to its best strengths. Whether you are a

novice user or an experienced SAS coder, the hope is for you to get something new out of

this paper. Comments and feedback are always appreciated.

The goal of this Hands-on workshop is to understand the shape of 4 SAS® languages. Four

business scenarios have been developed in this Hands-on workshop to practice the four

SAS® languages:

Business Scenario 1 – Using the most misspelled city in Texas, this scenario will discuss the

fundamental concepts of the SAS data step and how to filter data using the WHERE clause

with the Sounds-like operator and the Contains Operator. It will also reveal where the

sounds-like operator works well and where the contains operator may be a better fit.

Business Scenario 2 – Using the SASHELP. Mwelect dataset, this scenario will discuss how to

find a pattern using the language of Perl.

Business Scenario 3 – Using the SASHELP. demographics dataset, this scenario will discuss

how to create a macro variable to find the country with the highest population in 2004.

Business Scenario 4 – Using the SASHELP. demographics dataset, this scenario will discuss

how to use Boolean logic in PROC SQL to obtain population range counts by region.

REVIEW OF SAS PROGRAMS

A SAS program is a sequence of one or more steps.

DATA steps typically build and manipulate SAS data sets. So, we can reference the DATA

step as the Builder. Keeping the building capability in mind helps while writing data step

code as the executable statements are, for the most part processed in sequence.

PROC steps typically process SAS data sets to generate reports and graphs, and to manage

data. So, we can reference the PROC Step as the Analyzer. Keeping the analytic capability

in mind helps while writing PROC steps as the order of statements is usually not important.

Figure 1. The role of the DATA STEP vs the PROC STEP

DATA
STEP

PROC
STEP

Builder Analyzer

 3

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

DATA EXTRACTION TOOL – LIBRARY TO READ SAS DATASETS

A SAS data library is a collection of one or more SAS files that are recognized by SAS and

can be referenced and stored as a unit. A library is simply an alias, a pointer or a reference

pointing to a physical location on your computer, e.g. a folder on your C drive.

Figure 2. The Libname Statement

Libname Code

libname sgf "c:\HOW\shankar\data’;

2. SHAPE 1 - THE SAS DATA STEP – THE MANIPULATOR

BUSINESS SCENARIO 1 – FIND ALL PFLUGERVILLE RECORDS

You have been tasked to find all records for the city of Pflugerville in Texas. However,

there’s a small problem. The city’s name is so misspelled. How can you filter your data?

Figure 3. Map of Texas with Pflugerville

LIBNAME libref engine "path";

Library name Data Type Data Location

• eight-character maximum
• starts with a letter or

underscore
• continues with letters,

numbers, or underscores

Other engines such as
Oracle, Teradata,
PostgreSQL, etc.

4

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

USING THE DATA STEP TO CREATE A SAS DATASET

The Data Step is a powerful tool to create, clean, and prepare your data. These are some of

the tasks it can perform:

• Filter rows and columns

• Compute new columns

• Conditionally process data

Figure 4. Data Step Code

FILTER DATA WITH THE WHERE CLAUSE

The WHERE expression defines the condition (or conditions) for selecting observations.

Figure 5. The Where Expression

THE SOUNDS LIKE OPERATOR

The sounds-like operator =* is very useful when fuzzy matching of character values is

needed. It matches character strings based on their phonetic values. The sounds-like

operator is based on the SOUNDEX algorithm for identifying words that sound alike.

Data step Code

data citytypo;
 set sgf.citysoundslike;
 where city=*'Pflugerville';
run;

DATA output-table;

 SET input-table;

RUN;

 5

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Data step Results

However, the sounds like operator does not work in every instance. Observe what happens

when we try to find all students named John in the SASHELP.CLASS data set.

Data Step Code

Data Step Results

THE SOUNDEX ALGORITHM

Why did our search for John return Jane as well? Consider the Soundex Algorithm. Soundex

is an indexing system that translates a name into a 4-digit code. The advantage of Soundex

is its ability to locate names by the way they sound, rather than by exact spelling.

Figure 6. The Soundex Algorithm Chart

data sgf.john;
 set sashelp.class;
 where name =*'John';
run;

6

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The steps used by SOUNDEX to derive the phonetic equivalent of a character string are

as follows:

a) Retain the first letter of the character string.

b) Discard the letters A E H I O U W Y.

c) Assign a numeric value to the following consonants:

1. B F P V

2. C G J K Q S Z

3. D T

4. L

5. M N

6. R

d) Discard all duplicate classification values if they are adjacent. That is, DT results in a

single value of 3, and NN results in a single value of 5).

Here is the answer to our puzzle as to why a search for John pulled up Jane as well

Figure 7. John sounds like Jane

THE CONTAINS OPERATOR

The CONTAINS operator selects observations that include the specified substring.

• ? can be used instead of the mnemonic.

• The position of the substring within the variable’s values is not important.

• Comparisons made with the CONTAINS operator are case sensitive.

Figure 8. The Contains Operator

Let’s see what happens when we use the contains operator.

JOHN Soundex JANE Soundex

J J J J

O discarded A discarded

H discarded N 5

N 5 E discarded

 7

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Data Step Code

data sgf.thisisJohn;
 set sashelp.class;
 where name contains "John";
run;

Data Step Results

3. SHAPE 2 - PERL – MATCH A PATTERN

BUSINESS SCENARIO 2 - MATCH A PATTERN

We have been tasked to isolate all SKUs that match this pattern 'DDD ddddd '.

Figure 9. Matching a pattern

USING PERL TO MATCH A PATTERN

Perl was designed specifically for text processing. The 1990s saw the growth of the World

Wide Web. It also saw the rise of text-based information during that period. As one of the

languages very capable of text manipulation and undergoing rapid development, Perl was

suited to the task at hand. As a result, it became a very popular web programming language,

even being referred to as the ‘duct-tape of the Web’.

8

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Perl is a very high-level language. That means that the code is quite dense. A Perl program

might be around 30% to 70% as long as the corresponding program in C.

PERL IN SAS

Perl regular expressions were added to SAS in Version 9. SAS regular expressions (similar to

Perl regular expressions but using a different syntax to indicate text patterns) have been

around since version 6.12, but many SAS users are unfamiliar with either SAS or Perl regular

expressions.

Because SAS already has such a powerful set of string functions, you might wonder why you

need regular expressions. Many of the string processing tasks can be performed either with

the traditional character functions or regular expressions. However, regular expressions can

sometimes provide a much more compact solution to a complicated string manipulation task.

MATCHING A PATTERN

Since the backslash, forward slash, parentheses and several other characters have special

meaning in a regular expression, you may wonder, how do you search a string for a \

character or a left or right parenthesis? You do this by preceding any of these special

characters with a backslash character (in Perl jargon called an escape character). So, to

match a \ in a string, you code two backslashes like this: \\. To match an open parenthesis,

you use \(.

/ delimiters

\(matches an open paranthesis

\D matches a non-digit

\d matches a digit

\s matches a space

{n,m} Matches the previous subexpression n or more times, but no more than m

\) matches a closed paranthesis

Perl Code

title 'Midwest Electrical Supply Monthly Sales by product group';
title2 "SKUs that match this pattern only 'DDD ddddd ";

proc print data=sashelp.mwelect;
 where prxmatch(("/\D{3}\s\d{5}\s/"), SKU) > 0;

run;

 9

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Perl Results

4. SHAPE 3 - MACRO – AUTOMATE FIND AND REPLACE

BUSINESS SCENARIO 3 - USING MACRO VARIABLES TO AUTOMATE

We have been asked to find the country with the highest population in 2004. Since we

would like to feed this data to another report, we will store the country name and the

population count in 2 macro variables that we can reuse over and over again.

Figure 10. Using macro variables to automate results

CREATING AND REFERENCING MACRO VARIABLES

The process of creating macro variables is simple. First, we create the macro variables and

then submit code to create a report using the defined macro variables.

Figure 11. Creating and referencing macro variables

10

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

CREATING MACRO VARIABLES WITH PROC SQL

In PROC SQL, use an INTO clause to create macro variables and assign a value to them or

to update existing macro variable values. The INTO clause must follow the SELECT clause.

Figure 12. Creating macro variables with PROC SQL

CREATING MACRO VARIABLES: SYNTAX 1

Syntax 1 places values from the first row returned by an SQL query into one or more macro

variables. Data from additional rows returned by the query is ignored. The value from the

first column in the SELECT clause is placed in the first macro variable listed in the INTO

clause, and so on.

Figure 13. Creating macro variables: Syntax 1

MACRO TO GRAB COUNTRY WITH THE HIGHEST POPULATION

Macro Code

proc sql noprint;
 select pop format comma13. , name
 into : Maxpop , : country
 from sashelp.demographics
 order by 1 descending;
 %put &=country;
 %put &=maxpop;

Macro Results in the log

45 %put &=country;

COUNTRY=CHINA

46 %put &=maxpop;

MAXPOP=1,323,344,591

SELECT …
 INTO …
FROM table|view …
 <additional clauses>

SELECT column-1 format=format-name. <, …column-n>
 INTO :macvar_1<, ... :macvar_n>
 FROM table|view …

 11

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5. SHAPE 4 – PROC SQL – SPEAK ELEGANT BOOLEAN

BUSINESS SCENARIO 4 - USING BOOLEAN LOGIC TO COUNT ROWS

We would like to obtain population range counts by region.

Figure 14. World map with region names

BOOLEAN LOGIC IN PROC SQL

Everything in the digital world can be broken down into 1 or 0, or rather Yes or No. We will

take advantage of this Boolean capacity to get population counts by each region. First, it

would be useful to understand the syntax order of PROC SQL.

PROC SQL SYNTAX ORDER

The specified order of the clauses below, within the SELECT statement is required.

Figure 15. PROC SQL syntax order

AFR - Africa

AMR - Americas

WPR - Western Pacific

EUR - Europe

SEAR - South east Asia

EMR - Middle East;

PROC SQL;
SELECT object-item <, ...object-item>

 FROM from-list
 <WHERE sql-expression>
 <GROUP BY object-item <, … object-item >>
 <HAVING sql-expression>
 <ORDER BY order-by-item <DESC> <, …order-by-
item>>;
QUIT;

12

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

USING PROC SQL TO GET COUNTS

Proc Sql Code

title "population counts by country";
title2 "&country";
title3 "had the maximum population of &maxpop in 2005";
proc sql;
 select region,
 sum(pop <= 1000000) 'upto 1,000,000',
 sum(pop between 1000001 and 10000000) '1 - 10 million',
 sum(pop between 10000001 and 50000000) '10 - 50 million',
 sum(pop between 50000001 and 100000000) '50 - 100 million',
 sum(pop between 100000001 and 500000000) '100 - 500 million',
 sum(pop > 500000001) '500 million and above'
 from sashelp.demographics
 group by 1
 ;
quit;

Proc Sql Results

 13

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

6. REFERENCES

“How the data step works: A Basic Introduction”. Support.sas.com website.

http://support.sas.com/documentation/cdl/en/basess/58133/HTML/default/viewer.htm#

a001290590.htm

Kuligowski, Andrew T.; Shankar, Charu. “Know thy data: Techniques for data

exploration”. Proceedings of SAS Global Forum 2013, San Francisco, CA.

http://support.sas.com/resources/papers/proceedings13/145-2013.pdf

SAS processing: compile & execute phase

Shankar, Charu. November 2011. “Retail therapy the SAS way”. Blogs.sas.com website.

https://blogs.sas.com/content/sastraining/2011/11/03/retail-therapy-the-sas-way/

Sounds Like Operator.

Shankar, Charu. January 2011. “A new year’s resolution that sounds like more fun than

a spinning class”. Blogs.sas.com website.

https://blogs.sas.com/content/sastraining/2011/01/12/a-new-years-resolution-that-

sounds-like-more-fun-than-a-spinning-class/

Shankar, Charu. January 2011. “Find your data pattern with PERL”. Blogs.sas.com

website.

https://blogs.sas.com/content/sastraining/2011/01/24/find-your-data-pattern-with-perl/

“SAS® 9 PERL regular expression cheat sheet”. Support.sas.com website.

https://support.sas.com/rnd/base/datastep/perl_regexp/regexp-tip-sheet.pdf

“SEARCHING USING Soundex codes”. The Spreadsheet Page

http://spreadsheetpage.com/index.php/tip/searching_using_soundex_codes/

Hadden, Louise S. “Wow! You Did That Map with SAS/GRAPH®?”. Proceedings of SAS

Global Forum 2009, Washington, DC.

https://support.sas.com/resources/papers/proceedings09/215-2009.pdf

SAS Macro INTO clause.

“SAS® 9.4 Macro Language: Reference, Fifth Edition”. Support.sas.com website.

https://go.documentation.sas.com/?docsetId=mcrolref&docsetTarget=n1y2jszlvs4hugn1

4nooftfrxhp3.htm&docsetVersion=9.4&locale=en

”SAS® 9.4 SQL Procedure User’s Guide, Fourth Edition”. Support.sas.com website.

http://support.sas.com/documentation/cdl//en/sqlproc/69822/HTML/default/viewer.htm

#titlepage.htm

Boolean: #1 SAS programing tip for 2012

Shankar, Charu. May 2012. “#1 SAS programming tip for 2012”. Blogs.sas.com website.

https://blogs.sas.com/content/sastraining/2012/05/10/1-sas-programming-tip-for-

2012/

Shankar, Charu. April 2012. Go home on time with these 5 PROC SQL tips ”.

Blogs.sas.com website.

https://blogs.sas.com/content/sastraining/2012/04/24/go-home-on-time-with-these-5-

proc-sql-tips/

http://support.sas.com/documentation/cdl/en/basess/58133/HTML/default/viewer.htm#a001290590.htm
http://support.sas.com/documentation/cdl/en/basess/58133/HTML/default/viewer.htm#a001290590.htm
http://support.sas.com/resources/papers/proceedings13/145-2013.pdf
https://blogs.sas.com/content/sastraining/2011/11/03/retail-therapy-the-sas-way/
https://blogs.sas.com/content/sastraining/2011/01/12/a-new-years-resolution-that-sounds-like-more-fun-than-a-spinning-class/
https://blogs.sas.com/content/sastraining/2011/01/12/a-new-years-resolution-that-sounds-like-more-fun-than-a-spinning-class/
https://blogs.sas.com/content/sastraining/2011/01/24/find-your-data-pattern-with-perl/
https://support.sas.com/rnd/base/datastep/perl_regexp/regexp-tip-sheet.pdf
http://spreadsheetpage.com/index.php/tip/searching_using_soundex_codes/
https://support.sas.com/resources/papers/proceedings09/215-2009.pdf
https://go.documentation.sas.com/?docsetId=mcrolref&docsetTarget=n1y2jszlvs4hugn14nooftfrxhp3.htm&docsetVersion=9.4&locale=en
https://go.documentation.sas.com/?docsetId=mcrolref&docsetTarget=n1y2jszlvs4hugn14nooftfrxhp3.htm&docsetVersion=9.4&locale=en
http://support.sas.com/documentation/cdl/en/sqlproc/69822/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/sqlproc/69822/HTML/default/viewer.htm#titlepage.htm
https://blogs.sas.com/content/sastraining/2012/05/10/1-sas-programming-tip-for-2012/
https://blogs.sas.com/content/sastraining/2012/05/10/1-sas-programming-tip-for-2012/
https://blogs.sas.com/content/sastraining/2012/04/24/go-home-on-time-with-these-5-proc-sql-tips/
https://blogs.sas.com/content/sastraining/2012/04/24/go-home-on-time-with-these-5-proc-sql-tips/

14

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Code for building the Pflugerville dataset

data sgf.misspelled;
 length studentId $4 Name $7 city $20 state $2;
 input studentid $ name $ city $ state $;
 datalines;
1111 aaaa ploogervile TX
2222 bbbb Phlugerville TX
3333 cccc plugerrville TX
4444 dddd Phloogerville TX
5555 eeee Plugerville Tx
;

run;

7. ACKNOWLEDGMENTS

The author is grateful to the many SAS users that have entered her life. Each User has

either asked or answered a question. This in turn gave the author the impetus to

research and study new ways to express the wonderful shape of SAS code. Sometimes a

user appeared in the form of a teacher to show her the many ways in which to express

the Shape of SAS code. The users are too many to thank individually so this is a thank

you to every single user who has touched her life. She is grateful to the SAS global

forum committee for inviting her to present a paper. She would also like to express her

gratitude to her manager, Stephen Keelan without whose support and permission, this

paper would not be possible.

8. CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Charu Shankar

SAS Institute Canada, Inc.

Charu.shankar@sas.com

https://blogs.sas.com/content/author/charushankar/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://blogs.sas.com/content/author/charushankar/

