
1

Paper SAS3337-2019

SCORE! Techniques for Scoring Predictive Regression Models
Using SAS/STAT® Software

Phil Gibbs and Randy Tobias, SAS Institute Inc.

ABSTRACT
Scoring new data to compute predictions for an existing model is a fundamental stage in the
analytics life cycle. This task has never been easier, given recent additions to SAS/STAT®
syntax. This paper shows how to use these new features in SAS/STAT software to make it
simple to predict the response for new data. The paper discusses practical applications for
scoring with the SCORE statement within a modeling procedure, with the PLM procedure
using a stored model fit, and with the CODE statement in the DATA step. The paper also
discusses tried-and-true methods of scoring using the SCORE procedure and using the
missing-value-for-the-response trick.

INTRODUCTION
One of the most sought-after skills for a statistician is knowing how to create predictive
regression models. This skill is also the core piece of the analytics life cycle. The key reason
for developing a predictive regression model is to predict the response for data that is not
observed in the model’s training data set. Also known as model scoring, this prediction for
unobserved data is a necessary element of evaluating the model.
This prediction also could be done for evaluating the model fit or for validating the model
with a new set of data for which the response is known. You can score a simple in-sample
prediction of combinations of the independent variables that are not observed. Finally,
scoring can be used for simple out-of-sample forecasting to predict the future.
This paper covers the most common ways to score with a predictive regression model in
SAS/STAT software. You will learn how to use methods, such as the SCORE and CODE
statements, that are part of individual SAS procedures. Although the SCORE statement
scores observations when the model is fit, the CODE statement works with a subsequent
SAS DATA step to perform the scoring. The new STORE statement and the PLM procedure
can score observations after a procedure creates a model without going through the
expense of refitting. You will learn about older techniques, such as using macro variables to
score a regression model yourself, as well as the tried-and-true technique of computing
predictions by inserting data with missing values for the response. Finally, this paper briefly
describes scoring models in SAS® Viya® software.

WHAT IS SCORING?
What exactly is scoring? Scoring is the task of producing predictions from a predictive
model. Scoring requires three things:
1. a predictive model, that is, a mathematical method f(x,θ) for combining values of

predictor variables x with values of certain quantities θ (also called the parameters of
the model) in order to produce a predicted value for a target or response variable

2. specific values of the predictor variables x
3. specific values of the parameters θ

2

Predictive models can range from the simple to the complex. A model can be as simple as a
linear regression or can become quite complex with the involvement of multivariate
adaptive regression splines.

A simple linear model is just a linear combination of model variable and parameter values:

f(x,θ) = θ0 + x1*θ1 + ... + xp*θp

To score this model, all you need to know are the predictors and the parameters. PROC
SCORE is a nice tool for working with this type of model.
With a more complicated model, more work needs to be done. A general linear model can
be viewed as a linear combination of functions fi(x) of the predictors:
f(x,θ) = f1(x)*θ1 + ... + fp(x)*θp

SAS provides several methods for packaging up these functions into a form that allows for
the creation of predicted values.
Something that you need to consider in deciding how to score is when the data will be
scored. Some SAS/STAT techniques for scoring data work at the time the model is fit. Other
techniques can be used to score new data after the model is fit, even when the original data
is no longer available.
Table 1 shows the methods for scoring that are discussed in this paper (the methods are
listed from the most general to the most specific).

Method What When How
Missing-
response trick

All model types Fit time Requires preprocessing of model
fit data

PROC SCORE Linear
regression

Any time PROC code

SCORE
statement

Many model
types

Fit time PROC code

PROC PLM Many model
types

Any time PROC code

CODE
statement

Many model
types

Any time DATA step code

Table 1. Available Scoring Techniques in SAS/STAT Software

If you are ready to score new data at the point when you are fitting the model, then the
SCORE statement or the missing-response trick should work just fine. If you need to score
new data sometime after the model fit, possibly when the fitting data is no longer available,
then you should use one of the techniques that packages up the model fit. If you want to do
the scoring with a procedure call, then PROC PLM fills that need. If you want to do the
scoring in a DATA step and possibly include calculations that could modify the predicted
values, then the CODE statement is more appropriate.

3

SCORING DATA WITH THE PLM PROCEDURE
One of the most valuable scoring methods in SAS is to use the PLM procedure. PROC PLM
was released with SAS® 9.2 in 2008, so it has been around for a while. This method can be
used with most SAS modeling procedures, including the following:

• GEE
• GENMOD
• GLIMMIX
• GLM
• GLMSELECT
• LIFEREG
• LOGISTIC

• MIXED
• ORTHOREG
• PHREG
• PROBIT
• RELIABILITY
 (SAS/QC)
• SURVEYLOGISTIC

• SURVEYPHREG
• SURVEYREG

To score data with PROC PLM, use the STORE statement in one of the above procedures to
store the model results. Then run PROC PLM to score a new set of data using that model.
There are two noticeable advantages to working with PROC PLM. First, if you get into the
habit of including a STORE statement in your modeling work, then you will never have to
refit a model just to produce predictions for a new set of data. PROC PLM can do that
without the expense of refitting the model. Second, you no longer need access to the
original data that was used to create the model to create predictions for new data. All you
need is the results of the model.
You should be aware of two concerns when you work with PROC PLM and the STORE
statement:
1. The STORE statement stores the model results in an internal SAS file that cannot be

modified in any way. Those model results are useful only with PROC PLM because they
were created when the model was built.

2. The model results can be used only with PROC PLM on the same operating system on
which the model results were created. If the model was built in a 64-bit Microsoft
Windows environment, then those results can be used only with PROC PLM in a 64-bit
Microsoft Windows environment. Cross-environment use is not allowed.

Here is a closer look at how PROC PLM works scoring a model created with PROC
GLMSELECT. The following DATA step generates data for a model with a CLASS effect TRT
(with three levels) and three covariates (X1, X2, and X3):
 data YourModelData;
 call streaminit(614325);
 do trt=1 to 3;

 do rep=1 to ceil(rand('uniform')*35);
 x1=rand('uniform')*10;
 x2=rand('normal')*2;
 x3=rand('normal')*3;
 e=rand('normal');
 y=2 + trt + x1 + 0*x2 + 1.4*x3 + e;
 output;
 end;

 end;
 run;

If you are not familiar with simulating data in SAS, the RAND function simulates data from a
wide range of distributions. In the code above, data is simulated for the covariate X1 from a
uniform distribution on the interval (0,10). Data is simulated for the covariates X2 and X3

4

from a standard normal distribution. The CALL STREAMINIT routine provides a seed value
for the simulation so that the results shown here can be duplicated.

Here is the algebraic representation of the model that is used in the simulation:

Yij = β0 + TRTi + β1*X1ij + β2*X2ij + β3*X3ij + εij
The simulated values that are used are as follows: β0=2, β1=1, β2=0, and β3=1.4. The TRT
effect takes on the levels 1, 2, and 3. ε represents the residual that is added to each
observation.
The DATA step above creates the data used to build the regression model. A second DATA
step, creating the data set YourScoreData, is needed to create data that you want to score
with this model:
 data YourScoreData;

call streaminit(6142352);
do rep=1 to 20;
 trt=ceil(rand('uniform')*3);
 x1=rand('uniform')*10;
 x2=rand('normal')*2;
 x3=rand('normal')*3;
 y=.;
 output;

 end;
 run;

Notice that the response, Y, for each observation in this data is set to missing. The response
variable is not needed in this second data set. Adding the response variable, though, does
no harm.
The syntax for scoring new data with PROC PLM is straightforward. You fit the model using
PROC GLMSELECT and save the fitted model with a STORE statement to compute the scores
later:
 proc glmselect data=YourModelData;
 class trt;
 model y=trt x1 x2 x3 / selection=stepwise;
 store out=YourModel;
 run;

PROC GLMSELECT creates a SAS item store that is called YourModel. (Although, in this
example, the item store is saved to your Work library, you can use a LIBNAME statement to
save these item stores to permanent locations.)
You use this SAS item store to score new data with PROC PLM. You can perform this scoring
today, tomorrow, or even next year without having to refit the model and without needing
access to the original data. The following PLM procedure creates the predicted values and
shows additional flexibility in the PLM syntax:
 proc plm restore=YourModel;

score data=YourScoreData out=YourDataScored
 pred=Predicted lcl=Lower ucl=Upper;

 run;

PROC PLM not only produces predicted values, but also provides upper and lower confidence
bounds on that prediction. The SCORE statement in PROC PLM can even produce predictions
from the output of a Bayesian analysis.

5

PROC PLM does not stop at producing just predictions and associated statistics. The
procedure has options for producing graphs and performing post hoc tests on your model
results. For more information, see the SAS/STAT documentation and Tobias and Cai (2010).

SCORING DATA WITH THE CODE STATEMENT
Want to create predictions with the DATA step? The CODE statement can help. The CODE
statement creates DATA step code that contains the calculations necessary for creating
predicted values from the observations in a SAS data set. This code is exportable. You can
create the model on one operating system and score new data on another operating
system.

The CODE statement is available in the following SAS/STAT procedures:

• GENMOD
• GLIMMIX
• GLM

• GLMSELECT
• LOGISTIC
• MIXED

• PLM
• REG

The syntax for the CODE statement has a single option, specifying the file in which you want
to store the necessary code to create predictions in a DATA step:
 code file='MyCode.sas';

Then you can include that code file in your SAS program today, tomorrow, or next year for
when you want to score a new set of observations:
 data ScoreObs;

set DataToScore;
%include 'MyCode.sas';

 run;

This DATA step runs the code from that external SAS file and then scores the observations
in the data set DataToScore. The data set must contain the same variables, using the same
variable names, as the data set on which the model was developed.
The CODE statement creates a file that contains SAS programming statements with
comments. Unlike the STORE statement, the results of the CODE statement are something
that you can open and view and understand (and perhaps even modify).
A linear regression model shows the basic structure of the code that the CODE statement
creates. The following DATA step produces observations with which you can fit a linear
regression model. The PROC REG step fits the model and writes the code for creating
predictions to the MyRegModel.sas file:
 data RegData;

call streaminit(8741235);
do i=1 to 24;
 x1=rand('uniform')*10;
 x2=rand('uniform')*5;
 e=rand('normal');
 y=3 + 2*x1 + 1.5*x2 + e;
 output;

 end;
 run;

(code continued)

6

 proc reg data=RegData;
model y=x1 x2;
code file='MyRegModel.sas';

 run;
 quit;

The parameter estimates for this model are shown in Output 1.

Output 1. Parameter Estimates for Regression Model

These parameter estimates are used in the code that PROC REG produces. The following
code, which scores new observations for this model, is exactly what PROC REG generates.
The code is written to the FILE= location:
 ***;
 ** SAS Scoring Code for PROC REG;
 ***;

 label P_y = 'Predicted: y' ;
 drop _LMR_BAD;
 _LMR_BAD=0;

 *** Check interval variables for missing values;
 if nmiss(x1,x2) then do;
 LMR_BAD=1;

goto _SKIP_000;
 end;

 *** Compute Linear Predictors;
 drop _LP0;
 _LP0 = 0;

 *** Effect: x1;
 _LP0 = _LP0 + (1.87750737751729) * x1;
 *** Effect: x2;
 _LP0 = _LP0 + (1.33104533272017) * x2;

 *** Predicted values;
 _LP0 = _LP0 + 3.90121078413585;
 _SKIP_000:
 if _LMR_BAD=1 then do;
 P_y = .;
 end;
 else do;
 P_y = _LP0;
 end;

7

The code checks to see whether any of the variables that are needed for the regression are
missing. If variables are missing, no prediction is calculated. The predicted value is built,
one regressor at a time, starting with the model effects X1 and X2. The intercept value is
added in last. Notice that the code uses the full precision that is available for the parameter
estimates. The code does not restrict the precision to that shown in the printed output from
PROC REG (see Output 2).
The code for this model is available below for you to modify. You can remove effects if you
need to create partial predictions. If you need a prediction just for the intercept and X1
effects, then you can remove the line of code that adjusts the prediction for X2.
A “linear predictor” is used in the code (abbreviated as LP) to store the calculation of the
predicted value. In a linear regression, the LP is the predicted value itself. In generalized
linear models, a link function is necessary to produce the predicted value. The following
example demonstrates this.
The DATA step code below produces observations for a logistic regression model. There is a
treatment effect, TRT, that has three levels and a covariate effect, X1. The LOGISTIC
procedure step fits the model and provides the code that is necessary to produce
predictions:
 data LogisticData;

call streaminit(25345278);
do trt=1 to 3;
 do rep=1 to 20;
 x1=-rand('uniform')*2;
 logit=-1 + trt + 1.4*x1;
 p=exp(-logit)/(1+exp(-logit));
 if rand('uniform')>p then y=0; else y=1;
 output;
 end;

 end;
 run;

 proc logistic data=LogisticData;

class trt / param=glm;
model y=trt x1;
code file='MyLogisticModel.sas';

 run;

The code that is produced to score new observations is much more complicated than what is
needed to score a linear regression model. The reason that it is more complicated is not
only the logistic model but also the classification variable TRT. A full discussion of the
concepts in this code is beyond the scope of this paper, but these two features are worth
some special attention.
1. This logistic model involves a CLASS effect, TRT. The code must construct design

variables for the levels of the TRT effect. Those design variables are used to determine
which parameter estimate for the TRT effect applies to the predicted value.

2. A logistic regression model includes a logit link function. This link function is applied to
the linear predictor to produce a predicted probability for each level of the response. The
response level with the highest predicted probability is made the predicted response for
each observation.

8

Output 2 contains the last 10 observations of the LogisticData data set, after the scoring
code is applied to that data. The variables P_y0 and P_y1 contain the predicted probabilities
for the two levels of the response. If P_y0>.5, then the predicted response, I_y, is set to 0.
If P_y1>.5, then the predicted response is set to 1. For these 10 observations, the model
does a nice job of predicting the response. Only observation 51 has an inaccurate
prediction.

Output 2. LogisticData Data Set with the Scoring Code Applied

Modifications to prediction code like the code used here are difficult because of the code
complexity. The code can be modified to create partial predictions, but make sure that you
fully understand what the prediction code is doing before you attempt any modifications.
The full scoring code is in Appendix 1.

SCORING DATA USING MACRO VARIABLES FOR MODEL PARAMETERS
The CODE statement provides a convenient method for scoring new observations with a
statistical model. What if the procedure you need to use lacks this statement, or you just
want to develop the scoring model yourself?
All SAS modeling procedures write the parameter estimates for the model to an output data
set. These parameter estimates can be stored in SAS macro variables, and those macro
variables can be used in SAS DATA step code to create predictions.
Recall the DATA step that created data for the section on scoring models with PROC PLM.
The MIXED procedure can also be used to fit a model against this data:
 proc mixed data=YourModelData;

class trt;
model y=trt x1 x2 x3 / solution;
ods output solutionf=ParmEsts;

 run;

 proc print data=ParmEsts;
 run;

9

The parameter estimates table, as stored in the data set ParmEsts, is shown as Output 3.

Output 3. Parameter Estimates from PROC MIXED

The power of the SQL procedure can extract these parameter estimates from this data set
and store them in SAS macro variables. Here is the SQL code:
 proc sql noprint;

select count(*)into :nobs from ParmEsts;
select Estimate into :Beta_1 - :Beta_%sysfunc(strip(&nobs)) from
ParmEsts;

 quit;

The code counts the number of parameter estimates in the data set ParmEsts and then
stores that value in the SAS macro variable &NOBS. The second SELECT statement reads
each of the observation values for the ESTIMATE variable. Those values are then stored in
the SAS macro variables &Beta_1, &Beta_2, and so on.
To check that you have stored the parameter estimates correctly, the macro %PrintBetas
writes out the values of the parameter estimate macro variables:
 %macro PrintBetas;

%do i=1 %to &nobs;
 %put &&Beta_&i;

%end;
 %mend;
 %PrintBetas;

The final action is to build the prediction model in a SAS DATA step. If the model is a linear
regression, then the SAS code that is needed to calculate the predicted value is easy to
write. This model, however, involves a CLASS variable.
The following code determines the appropriate parameter estimate to use for the TRT effect
and assigns that value to the prediction:
 data YourDataScored;

set YourModelData;
if trt=1 then TrtEffect=&Beta_2;
else if trt=2 then TrtEffect=&Beta_3;
else TrtEffect=&Beta_4;
PredY = &Beta_1 + TrtEffect + x1*&Beta_5 + x2*&Beta_6 + x3*&Beta_7;

 run;

10

The PredY variable stores the predicted value, adding in the intercept (&Beta_1) and the
covariate components for the prediction.
One advantage to this technique is that you can easily construct partial predictions when
you want to look only at the TRT effect or at the prediction accounting for a set of
covariates. A disadvantage is that you cannot easily construct standard errors for these
predictions.

SCORING DATA WITH THE SCORE STATEMENT
The SCORE statement discussed in the section on scoring with PROC PLM is also available in
some SAS/STAT procedures that do direct modeling. Here are some of the procedures that
can use the SCORE statement:

• ADAPTIVEREG
• COUNTREG

(SAS/ETS)
• GAM

• GLMSELECT
• KDE
• LOESS
• LOGISTIC

• PLM
• TPSPLINE

The syntax for the SCORE statement is simple and easy to use. Use the DATA= option to
specify the data set that you want to score. Use the OUT= option to specify the data set to
contain the predictions, along with all the variables from the DATA= data set. This method
is convenient when you need to generate predictions quickly, in-line with estimating the
model. Multiple SCORE statements can score different data sets, and predictions are created
for observations that have missing responses.
The following model was developed in the previous section on PROC PLM. You can build the
model and score a new data set in one step with code like the following:
 proc glmselect data=YourModelData;

class trt;
model resp=trt x1 x2 x3;
score data=YourScoreData out=YourDataScored;

 run;

This code builds a model using the data in YourModelData. It then scores the data in
YourScoreData and stores the new scored responses in YourDataScored. This technique
comes in very handy when you need to quickly produce new responses for either a new set
of data or for a holdout sample to test your model fit.

11

Output 4 shows a partial listing of the output from the scoring process.

Output 4. Partial Output of Regression Model Predictions with the SCORE Statement

The SCORE statement stores the predictions in P_Y, taking the name of the response
variable from the model and adding “P_” to the response variable name. You can specify
your own variable name for the predictions with the PRED= option. You can also use the
RESID= option to specify a variable for the residuals if you have nonmissing values for the
response.
The SCORE statement in PROC LOGISTIC is somewhat unique. You can do much more in
terms of scoring data with this version of the SCORE statement. In addition to predicted
values, the SCORE statement in PROC LOGISTIC can also produce confidence limits, fit
statistics (when the response variable is nonmissing in the new data set), and data for the
receiver operator characteristic (ROC) curve when the response is binary.
PROC LOGISTIC offers another trick for producing predictions and associated statistics. The
OUTMODEL= option in the PROC LOGISTIC statement can be used to save the model results
in a compact (and nonmodifiable) form. You can then run PROC LOGISTIC a second time,
using the INMODEL= option. This action scores the data set that you specify in the SCORE
statement’s DATA= option. There are quite a few statements that do not work in PROC
LOGISTIC when you use this approach. So this method of scoring is most useful when you
want to produce only predicted values.

SCORING DATA THE OLD-FASHIONED WAY
The final scoring technique to be discussed is in fact the oldest method in SAS, and it is
available for any SAS modeling procedure. The idea is to combine your scoring data with
your modeling data into a single SAS data set. If you are a longtime SAS user, then this
technique might already be familiar. This method was the only scoring technique available
in many early SAS procedures.

12

The following code generates data for a linear regression and fits a model using PROC REG:
 data RegData;

call streaminit(661346);
do i=1 to 47;
 x1=rand('uniform')*5;
 x2=rand('uniform')*3;

 x3=rand('uniform')*4;
 e=rand('normal');
 y = 2 + 2*x1 + 1.5*x2 - 2*x3 + e;
 output;
 end;
 run;

 proc reg data=RegData;

model y=x1 x2 x3;
 run;

Output 5 shows the results of the PROC REG model fit. Notice that 47 observations were
read and used from the input data set and that the corrected total sum of squares (SS) =
777.79156.

Output 5. Model Fit Results from PROC REG

Now suppose you want to obtain predictions for a new set of observations. You could use
any of the techniques previously discussed, or you can simply merge these new
observations with the existing data. If you set the response value to missing, then none of
these new observations affect your model fit. This code creates eight new observations with
a missing response, adds the new observations to the existing data, and refits the model:
 data ScoreData;

input x1 x2 x3 @@;
y = .;

 datalines;
 2.50 1.13 1.84 3.78 2.43 2.49
 1.75 2.27 2.79 3.19 0.65 0.41
 1.28 1.58 0.24 0.03 2.10 1.89
 3.54 0.75 0.03 3.70 0.14 1.74
 ;
 run;

(code continued)

13

 data AllData;
set RegData ScoreData;

 run;

 proc reg data=AllData;
model y=x1 x2 x3;
output out=Scores p=pred r=resid stdp=stderr;

 run;

The code uses the power of the SAS SET statement to merge the two data sets together.
The OUTPUT statement in PROC REG scores all observations in the input data set and writes
those predictions, along with the residuals and standard errors of the mean prediction, to
the Scores data set.
PROC REG can read all 55 observations from the data set AllData. However, the procedure
uses only the original 47 observations to fit the model, because the response variable Y for
the new eight observations in ScoreData is set to missing. That is the key distinction here.
Setting those responses to missing enables you to fit the model without the new
observations affecting the fit.
Output 6 shows a partial printout (the last 16 observations) of the Scores data set. The
predictions are there for the new observations, where the response is missing, and you also
get standard errors for these predictions. Residual values are not available for these new
observations because you have no actual response to compare with the prediction.

Output 6. Predictions for the Last 16 Observations in the Scores Data Set

14

The technique of appending observations to score is a tried-and-true method. One
disadvantage is that in order to score new data, you need to refit the model. If the model
takes hours to estimate, there is no way to avoid that cost using this technique.

PROBLEMS IN SCORING NEW OBSERVATIONS
Situations arise where predictions will not be possible for new observations. One of the
more common situations is when the data contains missing values for the predictors. If any
of the variables involved with the right-hand side of the model are missing, then no
prediction for that observation can be produced. There are techniques for overcoming this
deficiency in the data. Missing values in the data can be imputed, using the statistical
information that exists in the nonmissing observations. A common technique is multiple
imputation, where more than one set of plausible values are imputed for the missing
variables. The MI procedure can help with such multiple imputation. With the MIANALYZE
procedure, you can combine the results from these multiple imputations to obtain valid
statistical inferences. For more information, see “The MI Procedure” and “The MIANALYZE
Procedure” chapters in the SAS/STAT documentation (SAS Institute Inc. 2018a; SAS
Institute Inc. 2018b).
If the model contains CLASS variables, then the data to be scored cannot contain any new
levels to those CLASS variables. If your model has a CLASS effect with three types of
treatment and the scoring data has a fourth treatment type, then you cannot create
predictions for those observations. There is no way to fix this issue.
Defining spline effects with the EFFECT statement makes it easy to fit nonparametric models
to your data. But there are some points to watch out for when it comes to scoring. First, for
nonparametric models, the variable values for the scoring observations should be within the
range of variable values used for the model. Scoring spline models on observations that are
outliers can lead to unreliable predictions. Another caveat about models with spline effects
is that you cannot use the CODE statement with them to generate DATA step scoring code.
Use one of the other scoring methods instead, such as providing the stored model fit to
PROC PLM. For more information about using the EFFECT statement to define models, see
Gibbs et al. (2013).

SCORING IN SAS® VIYA®
Here is a peek at the most recent developments in scoring in SAS® Software. This paper has
discussed scoring with predictive statistical models strictly within traditional SAS products,
such as SAS/STAT. Scoring is also a fundamental task for analytics built with SAS Viya.
Accordingly, in SAS Viya you have various approaches to scoring that are similar to those
discussed here. And at the top of the SAS Viya scoring heap are the aStore action and the
corresponding ASTORE procedure.
Scoring with PROC ASTORE for SAS Viya is portable, much like PROC PLM. However, there
are no limitations due to the type of operating system or the version of SAS Viya in which
the model has been trained. You can manage your PROC ASTORE models with SAS® Model
Manager and use them to score new data in parallel inside SAS or SAS Viya, from within a
database, or even in a SAS® Event Stream Processing instance. You can also store your
model on your machine in a universal format that is sufficient for scoring on any other
machine. PROC ASTORE supports a broad range of SAS Viya analytical models, from
random forest to deep neural networks in addition to statistical regression procedures. For
more information about PROC ASTORE, see SAS® Visual Data Mining and Machine Learning
8.3: Procedures (SAS Institute Inc. 2018c) and SAS® Visual Data Mining and Machine
Learning 8.3: Programming Guide (SAS Institute Inc. 2018d).

15

CONCLUSION
This paper presented many techniques for scoring new data with SAS/STAT software.
Although the methods of appending scoring data to the model data and of creating macro
variables from your model parameters can work well, the methods involving the SCORE
statement or PROC PLM are more attractive for their simplicity and their reduced cost. They
are also far more versatile. The SCORE statement and PROC PLM can avoid the cost of
refitting the model when new predictions are needed.
As always, though, use the approach that makes the most sense for your model and data.

APPENDIX 1. SCORING CODE FOR LOGISTIC REGRESSION MODEL
 ***;
 ** SAS Scoring Code for PROC Logistic;
 ***;

 length I_y $ 12;
 label I_y = 'Into: y' ;
 label U_y = 'Unnormalized Into: y' ;

 label P_y0 = 'Predicted: y=0' ;
 label P_y1 = 'Predicted: y=1' ;

 drop _LMR_BAD;
 _LMR_BAD=0;

 *** Check interval variables for missing values;
 if nmiss(x1) then do;

_LMR_BAD=1;
goto _SKIP_000;

 end;

 *** Generate design variables for trt;
 drop _0_0 _0_1 _0_2 ;
 _0_0= 0;
 _0_1= 0;
 _0_2= 0;
 length _st12 $ 12; drop _st12;
 _st12 = left(trim(put (trt, BEST12.)));
 if _st12 = '1' then do;
 _0_0 = 1;
 end;
 else if _st12 = '2' then do;
 _0_1 = 1;
 end;
 else if _st12 = '3' then do;
 _0_2 = 1;
 end;
 else do;
 _0_0 = .;
 _0_1 = .;
 _0_2 = .;
 _LMR_BAD=1;

(code continued)

16

 goto _SKIP_000;
 end;

 *** Compute Linear Predictors;
 drop _LP0;
 _LP0 = 0;

 *** Effect: trt;
 _LP0 = _LP0 + (-2.23097285884297) * _0_0;
 _LP0 = _LP0 + (-1.37571829625743) * _0_1;
 *** Effect: x1;
 _LP0 = _LP0 + (1.29765942262973) * x1;

 *** Predicted values;
 drop _MAXP _IY _P0 _P1;
 _TEMP = 2.05089016000076 + _LP0;
 if (_TEMP < 0) then do;
 _TEMP = exp(_TEMP);
 _P0 = _TEMP / (1 + _TEMP);
 end;
 else _P0 = 1 / (1 + exp(-_TEMP));
 _P1 = 1.0 - _P0;
 P_y0 = _P0;
 _MAXP = _P0;
 _IY = 1;
 P_y1 = _P1;
 if (_P1 > _MAXP + 1E-8) then do;
 _MAXP = _P1;
 _IY = 2;
 end;
 select(_IY);
 when (1) do;
 I_y = '0' ;
 U_y = 0;
 end;
 when (2) do;
 I_y = '1' ;
 U_y = 1;

end;
otherwise do;

 I_y = '';
 U_y = .;

end;
 end;
 _SKIP_000:
 if _LMR_BAD = 1 then do;
 I_y = '';
 U_y = .;
 P_y0 = .;
 P_y1 = .;
 end;
 drop _TEMP;

17

REFERENCES
Gibbs, Phil, Randy Tobias, Kathleen Kiernan, and Jill Tao. 2013. “Having an EFFECT: More
General Linear Modeling and Analysis with the new EFFECT Statement in SAS/STAT®
Software.” Proceedings of the SAS Global Forum 2013 Conference. Cary, NC: SAS Institute
Inc. Available at support.sas.com/resources/papers/proceedings13/437-2013.pdf.

SAS Institute Inc. 2018a. “The MI Procedure.” In SAS/STAT® 15.1 User’s Guide. Cary, NC:
SAS Institute Inc. Available at
go.documentation.sas.com/?docsetId=statug&docsetTarget=statug_mi_toc.htm&d
ocsetVersion=15.1&locale=en.

SAS Institute Inc. 2018b. “The MIANALYZE Procedure.” In SAS/STAT® 15.1 User’s Guide.
Cary, NC: SAS Institute Inc. Available at
go.documentation.sas.com/?docsetId=statug&docsetTarget=statug_mianalyze_to
c.htm&docsetVersion=15.1&locale=en.

SAS Institute Inc. 2018c. SAS® Visual Data Mining and Machine Learning 8.3: Procedures.
Cary, NC: SAS Institute Inc. Available at
go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casm
l&docsetTarget=titlepage.htm&locale=en.

SAS Institute Inc. 2018d. SAS® Visual Data Mining and Machine Learning 8.3: Programming
Guide. Cary, NC: SAS Institute Inc. Available at
go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casa
ctml&docsetTarget=titlepage.htm&locale=en.

Tobias, Randy, and Weijie Cai. 2010. “Introducing PROC PLM and Postfitting Analysis for
Very General Linear Models in SAS/STAT® 9.22.” Proceedings of the SAS Global Forum 2010
Conference. Cary, NC: SAS Institute Inc. Available at
support.sas.com/resources/papers/proceedings10/258-2010.pdf.

ACKNOWLEDGMENTS
The authors acknowledge Arash Banadaki for the material on scoring in SAS® Viya® with
PROC ASTORE.

RECOMMENDED READING
For more information about scoring and other statistical topics, see Rick Wicklin’s excellent
SAS blog “The DO Loop,” blogs.sas.com/content/iml/.

https://support.sas.com/resources/papers/proceedings13/437-2013.pdf
https://support.sas.com/resources/papers/proceedings10/258-2010.pdf
https://blogs.sas.com/content/iml/

18

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:
 Phil Gibbs
 SAS Institute Inc.
 SAS Campus Drive
 Cary, NC 27513
 Email: support@sas.com
 Web: support.sas.com/en/support-home.html

 Randy Tobias
 SAS Institute Inc.
 SAS Campus Drive
 Cary, NC 27513
 Email: Randy.Tobias@sas.com
 Web: support.sas.com/en/support-home.html

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

mailto:support@sas.com
https://support.sas.com/en/support-home.html
mailto:Randy.Tobias@sas.com
https://support.sas.com/en/support-home.html

	Abstract
	Introduction
	WHat is scoring?
	SCORING DATA With the PLM PROCEDURE
	SCORING DATA With the CODE STATEMENT
	scoring data using macro variables for model parameters
	SCORING DATA With the score statement
	SCORING DATA The OLD-FASHIONED Way
	Problems in scoring new observations
	Scoring in SAS® VIYA®
	Conclusion
	Appendix 1. ScorING code for logistic regression model
	References
	Acknowledgments
	Recommended Reading
	Contact Information

