
1 

Paper SAS3317-2019 

Exploring Computer Vision in Deep Learning: Object Detection and 

Semantic Segmentation 
Xindian Long, Maggie Du, and Xiangqian Hu, SAS Institute Inc., Cary, NC 

 

ABSTRACT  

This paper describes the new object detection and semantic segmentation features in SAS 

Deep Learning, which are targeted to solve a wider variety of problems that are related to 

computer vision. The paper focuses on algorithms that are supported on SAS® Viya®, 

specifically Faster R-CNN and YOLO (you only look once) for object detection, and U-Net for 

semantic segmentation. This paper shows how to use the functionality of the Deep 

Learning action set in SAS® Visual Data Mining and Machine Learning in addition to DLPy, 

an open-source, high-level Python package for deep learning. The paper demonstrates 

applications of object detection and semantic segmentation on different scenarios, and it 

shows how to prepare data, build networks, select parameters, load or train the weights, 

and display results. Future development and potential applications in different areas are 

discussed. 

INTRODUCTION  

Computer vision is about understanding the visual world around us through digital images 

and videos. In applications such as self-driving cars, production line automation, face 

recognition, and medical image processing, computer software analyzes the image content 

and accomplishes one or several of the following basic tasks: image classification, keypoints 

detection, object detection, segmentation, and so on. Briefly, image classification represents 

the task of given an image, discovering the main content in the image. Object detection 

locates the positions and categories of objects in a given image. Semantic segmentation 

classifies the pixel-level category assignments, while instance segmentation, assigns 

different labels for pixels belong to different instances of the same object type. 

Traditionally, computer vision tasks are accomplished by manually designed features, 

including Gabor filter, Gaussian filter, Scale Invariant Feature Transform (SIFT) filter, and so 

on. Recently, Deep Learning (that is, deep neural networks) has been proven to boost the 

field tremendously. Not only can computers complete the above tasks much faster, more 

accurately, but also with little human crafted features since these features are learned 

automatically using the input data.   

SAS Viya® supports computer vision through SAS Deep Learning with features including 

image classification, keypoints detection, object detection, and semantic segmentation. For 

all these features, two interfaces are available:  

• CAS (Cloud Analytic Services) actions: These give users more granular control over 

the various options.  

• DLPy (https://github.com/sassoftware/python-dlpy): It has a Keras-type Python interface with a 

higher abstraction. 

From this paper, you will learn how to use the features of object detection and semantic 

segmentation by working through some real-world examples. The object detection examples 

use different CAS actions through our CAS action set python programming interface, while 

the semantic segmentation is illustrated through DLPy. 

OBJECT DETECTION 

http://www.vlfeat.org/api/sift.html
https://github.com/sassoftware/python-dlpy
https://github.com/sassoftware/python-dlpy


2 

Object detection analyzes complex images that contain a mixed multitude of objects, at 

different distances and locations, amidst varying, often visually noisy backgrounds. Objects 

can appear anywhere within the visual frame, be near or far, and can overlap with each 

other. Object detection locates and classifies unknown objects, as well as determining their 

boundaries as shown in Figure 1. 

 

Figure 1. The Concept of Object Detection 

Object detection is a challenging and one of the most fundamental tasks in computer vision. 

Lately CNN (Convolutional Neural Networks) based deep learning algorithms like YOLO [1] 

(You only look once), SSD [2] (Singleshot multibox detector), R-CNN [3] (Region proposal 

networks), Faster R-CNN [3], RetinaNet [4], and so on, have been implemented to address 

this problem and have been very successful.  

Object detection algorithms can be categorized as below: 

1. The first algorithm category is to do region proposal first. This means regions highly 

likely to contain an object are selected either with traditional computer vision techniques 

(like selective search), or by using a deep learning based region proposal network 

(RPN). Once you have gathered the small set of candidate windows, you can formulate a 

set number of regression models and classification models to solve the object detection 

problem. This category includes algorithms like Faster R-CNN, R-FCN [5], and FPN-FRCN 

[6]. Algorithms in this category are usually called two-stage methods. They are 

generally more accurate, but slower than the single-stage method introduced below. 

2. The second algorithm category only looks for objects at fixed locations with fixed sizes. 

These locations and sizes are strategically selected so that most scenarios are covered. 

These algorithms typically separate the original images into fixed size grid regions. For 

each region, these algorithms try to predict a fixed number of objects of certain, pre-

determined shapes and sizes. Algorithms belonging to this category are called single-

stage methods. Examples of such methods include YOLO, SSD, and RetinaNet. 

Algorithms in this category usually run faster but are less accurate. This type of 

algorithm is often used for applications requiring real-time detection. 

SAS deep learning supports two representative algorithms, Faster R-CNN and YOLO, which 

belong to the two above algorithm categories respectively.  

YOLO 



3 

YOLO (You Only Look Once) is the representative algorithm in single-stage object detection 

method.  The steps it follows to detect objects are represented in Figure 2 and in the list 

below: 

 

Figure 2 Steps illustrating the YOLO Algorithm 

1. Separate the original image into grids of equal size. 

2. For each grid, predict a preset number of bounding boxes with predefined shapes 

centered around the grid center. Each prediction is associate with a class probability and 

an object confidence (whether it contains an object, or it is just the background). 

3. Finally, select those bounding boxes associated with high object confidence and class 

probability. The object category is the object class with the highest class probability. 

The preset number of bounding boxes with pre-defined shapes are called anchor boxes. 

They are obtained from the data by the K-means algorithm. The anchor box captures prior 

knowledge about object size and shape in the data set. Different anchors are designed to 

detect objects with different sizes and shapes.  

For example, in Figure 3, there are three anchors at one location. The red anchor box turns 

out to detect the person in the middle. In other words, the algorithm detects the object with 

the approximate size of this anchor box. The final prediction is usually different from the 

anchor location or size itself; an optimized offset obtained from the feature map of the 

image is added to the anchor location or size. 

 

Figure 3 Anchor Boxes 



4 

FASTER R-CNN 

Faster R-CNN is a two-stage object detection algorithm. Figure 4 illustrates the two stages 

in Faster R-CNN. Although “faster” is included in the algorithm name, that does not mean 

that it is faster than the one-stage method. The name is a historical artifact – it simply 

indicates that it is faster than it is previous versions, the original R-CNN [7] algorithm, and 

the Fast R-CNN [8], by sharing the computation of feature extraction for each region of 

interest (RoI), and by introducing the deep learning-based region proposal network (RPN). 

After using many CNN layers to extract feature maps, the region proposal network (RPN) 

generates many windows that are highly likely to contain an object. The algorithm then 

retrieves the feature maps inside each window, resizes (or polls) them into fixed sizes (RoI 

pooling), and predicts the class probability and a more accurate bounding box for the 

object. 

One question to consider is how the RPN generates these windows. Like YOLO, RPN also 

uses anchor boxes. Unlike YOLO, the anchor boxes are not generated from data but instead 

are of fixed sizes and shapes selected strategically to cover main object shapes and sizes. 

The anchor boxes can also cover the image more densely. Note that instead of performing a 

classification on many object categories, the RPN only does a binary classification on 

whether the window contains an object or not.  

 

Figure 4 Stages in the Faster R-CNN Object Detection Algorithm  

Picture from the Original Faster R-CNN Paper [3] 

BUILD DEEP LEARNING MODELS 

Building and using any deep learning model involves four steps illustrated in Table 1. In the 

following sections, you can see how these steps are completed using SAS deep learning 

toolkit.  



5 

1. Preparing and Loading the Data 

2. Building the model architecture, namely, the model DAG (Directed Acyclic Graph) 

consisting of many layers. 

3. Loading or Training the weights 

4. Inference and Visualization 

Table 1 Steps in Building and Using a Deep Learning Model 

DATA EXPLORATION AND PREPARATION 

An essential part of any data science project is to explore the data, complete any pre-

processing if needed, and prepare it for training or inferences. CAS provides toolsets to help 

you through the process. 

Images and Labels 

The images and label data need to be organized into a CAS table before training or scoring. 

Each image can contain more than one labeled object. Each label should contain the object 

category and the object bounding box. 

In this paper, we assume images and associated labels are already joined and put in a CAS 

table.  In the table there is a column for the image, and there are many columns for 

bounding box and category labels. Figure 5 shows some records for the table trainset. 

 

 

Figure 5 The Joined Table Containing Images and Labels 

Data Format 

In Figure 5, you can see that for record 598, there are two labeled objects, as shown in the 

_nObjects_ column; the first object category, and bounding box location is stored in 

columns _Object0_, _Object0_x, _Object0_y, _Object0_width, 

_Object0_height. The values in location columns in the table are smaller than 1, 

because they are in YOLO format, which are normalized according to the input image size. 

YOLO is the recommended format since it is easier to do data augmentation with it. 

Visualize the Images and Labels 

To check if your label is correct visually, you can use the extractDetectedObjects action 

to extract the object location/category and generate images with the bounding boxes, class 

names, and score values (when the table is the output of the dlscore action), annotated on 

the image. 



6 

s.image.extractdetectedobjects  

(casout={'name':'trainSetAnnoted','replace':True}, 

 coordType=’Yolo’, maxobjects=30, table=s.CASTable(‘trainSet’)) 

 

 Figure 6 shows the annotated images generated. 

 

Figure 6 Images and Annotations: The Bounding Boxes and Categories 

BUILDING THE MODEL ARCHITECTURE 

The Backbone Network 

Both YOLO and Faster R-CNN Object Detection model need a backbone network to extract 

features from the images. The backbone network typically is a well-known network used for 

image classification, for example, ResNet, VGG16, Darknet, and so on. The backbone 

network usually consists of the data layer, many convolutional layers, batch normalization 

and pooling layers.  

Table 2 shows how you connect to a CAS server, load the action sets needed, create a CNN 

model with name TinyYOLO and add layers to build the backbone network for the model. 

Only the first few layers and the last layer for the backbone network is shown for simplicity. 

import swat  # The python interface to SAS Cloud Analytic Services (CAS). 

 

s = CAS('cas04.unx.sas.com', 29990)   # connect to the CAS server 

s.loadactionset('image')              # load the image action set 

s.loadactionset('deepLearn')          # load the deep learning action set 

 

s.buildModel(model=dict(name=‘TinyYOLO’,replace= True),type=CNN')     

s.addLayer(model=modelName, name='data', 

          layer=dict(type='input', nChannels=3,width=imgWidth, 

           height = imgHeight, scale = 1.0/255)) 

s.addLayer(model=modelName, name='conv1', 

             layer=dict(type='convolution', nFilters=16, width=3, height=3,                                  

                   stride=1, includeBias=False, std=1e-1, act='identity'),                                               

           srcLayers = ['data'])         

s.addLayer(model=modelName, name='bn1', 

           layer=dict(type='batchnorm', act='leaky'),        

           srcLayers = ['conv1'])     

s.addLayer(model=modelName, name='pool1', 



7 

           layer=dict(type='pooling',width=2, height=2,stride=2, pool='max'), 

             srcLayers = ['bn1'] 

…… 

s.addLayer(model=modelName, name='conv9',  

           layer=dict(type='convolution', nFilters=125,  

                 width=1, height=1,    # filter width and height                       

                 stride=1, includeBias=False, std=1e-1, act='identity'), 

           srcLayers = ['bn8']) 

 

Table 2 Code Snippet to Build the Backbone Network for YOLO Object Detection Model 

The YOLO Detection Layer 

Table 3 shows how to add the YOLO detection layer following the last layer of the backbone 

network, and some typical parameters used.  In the last convolutional layer conv9, the 

width and height of the output feature map should both equal to gridNumber (13), and the 

depth (nFilters) should be equal to:  

predictionsPerGrid * (classNumber + coordNumber + 1),  

in which gridNumber, predictionsPerGrid, classNumber are parameters in the detection 

layer, and coordNumber is equal to 4, which is the number of values needed to represent a 

rectangle bounding box. Anchors are given directly here, which is pre-calculated using K-

means algorithm. DLPy provides a function helping you to calculate proper anchors from a 

given data set. 

s.addLayer( 

    model = modelName, 

    name = 'detection0', 

    layer = dict( 

        type = 'detection', 

        detectionModelType = "YOLOV2", 

        classNumber = 20, 

        gridNumber = 13, 

        predictionsPerGrid = 5, 

        anchors=(1.08,1.19,3.42,4.41,6.63,11.38,9.42,5.11,16.62,10.52), 

        coordType = "YOLO", 

        detectionThreshold = 0.3, 

        iouThreshold = 0.45, 

    ), 

  srcLayers = ['conv9']  

 ) 

Table 3 YOLO Detection Layer 

The Faster R-CNN Region Proposal and Object Detection 

The Faster R-CNN network architecture is a little bit more complicated. It consists of a CNN 

backbone network, followed by several parts: 

1. A Region Proposal Layer and two special convolutional layers preceding it, 

2. A Region Pooling Layer,  

3. Several layers of fully connected layers to generate data for the final FastRCNN layer 

4. the FastRCNN layer.  

The major code components are shown in Table 4 and Table 5. In Table 4, You can see how 

the rpn_score layer’s feature map depth (nFilters) is related with some parameters of 



8 

Region Proposal Layer. The variable OrigAnchorNum represents the number of anchors used 

in the Region Proposal Layer on each pixel on its input feature map. The actual anchors (in 

this example 3*3=9 anchors on each pixel) are generated according to these parameters: 

baseAnchorSize, anchorScale, anchorRatio in three steps: 

1. Generate a base square anchor with width and height equal to baseAnchorSize (in 

number of pixels in the original input image scale) and centered around the first 

pixel. 

2. Generate a number of anchors with different aspect ratios listed in anchorRatio, 

and with the same area as the base anchor. 

3. From each anchor obtained from step 2, generate a number of anchors by 

multiplying the anchor width and height with the value in the array anchorScale. 

4. Replicate the anchors generated from the steps 1-3 by shifting to each pixels in the 

feature map. 

  

#Create a CNN model, and add layers for the VGG16 backbone network  

#Assuming the last layer of the backbone network has the name 'conv5_3' 

…… 

modelName = ‘FasterRCNNModel’;   

Add_VGG16_FELayers(s, modelName, width=1000, height=496) 

……  

# Add two additional convolutional layers to extract features for the 

Region Proposal Layer 

 

nclasses = 2; # Region Proposal Layer only has 2 classes: 

object/background                          

anchorScaleV=[8,16,32];      # Anchor size multiples 

anchorRatioV=[0.5,1,2];      # Anchor aspect ratio 

OrigAnchorNum = len(anchorScaleV) * len(anchorRatioV) 

 

s.addLayer( 

    model= modelName, name= 'rpn_conv_3x3', 

    layer = dict(type='convolution',nFilters=512, width=3, 

                 height=3, stride=1, act ='relu'),         

srcLayers = ['conv5_3']) 

 

s.addLayer( 

   model=modelName, name='rpn_score', 

   layer=dict(type='convolution', 

              nFilters = (nclasses + 4) * OrigAnchorNum, 

              width=1, height=1, stride=1, act = 'identity'),        

   srcLayers = ['rpn_conv_3x3']) 

 

# Add the region proposal Layer    

s.addLayer( 

   model = modelName, 

   name = 'rois', 

   layer = dict( 

       type = 'REGIONPROPOSAL', 

       act = 'identity', 

       coordType='COCO', 

       baseAnchorSize = 16, 

       anchorNumToSample = 256,   

       anchorScale=anchorScaleV, 

       anchorRatio=anchorRatioV, 



9 

    ), 

    srcLayers = ['rpn_score'] 

) 

Table 4 The Region Proposal Layer and its Feature Extraction Layers 

In Table 5, the roipooling layer is added with two source layers: 

• the conv5_3 layer, which is the last layer of the backbone network,  

• the rois layer, which is the region proposal layer.  

The order of two source layer defines their usage here.  

After two additional fully connection (FC) layers, the output of cls_score layer is used to 

provide data to the final FastRCNN layer for classification of the object in the RoI, and the 

output of bbox_pred layer is used for object bounding box regression in the RoI. You can 

see how the output size n of the FC layers is related with the number of object categories. 

The last layer for this model is the FastRCNN layer, which has three source layers; they are 

in order the FC layer with classification data, and FC layer with bounding box regression 

data, and the Region Proposal layer. 

    classNum = 20; # Number of Object Categories in the Model 

s.addLayer(model=modelName, name='pool5', 

        layer = dict(type='roipooling', poolWidth=7, poolHeight=7), 

        srcLayers = ['conv5_3', 'rois']   

) 

s.addLayer(model=modelName, name='fc6', 

        layer = dict(type='fullconnect', n=4096, act='relu'), 

        srcLayers = ['pool5']) 

s.addLayer(modelName, name='fc7', 

        layer = dict(type='fullconnect', n=4096, act='relu'), 

        srcLayers = ['fc6']) 

s.addLayer(modelName, name='cls_score', 

        layer = dict(type='fullconnect', n=(classNum+1), act=’identity’), 

        srcLayers = ['fc7']) 

s.addLayer(modelName, name='bbox_pred', 

        layer = dict(type='fullconnect',  

              n=4*(classNum+1),  # The +1 is for the background category                   

              act='identity'), srcLayers = ['fc7']) 

s.addLayer( 

        model = modelName, 

        name = 'fastrcnn', 

        layer = dict(    

            type = 'fastrcnn', 

            nmsIouThreshold = 0.3, 

            detectionThreshold = 0.8 

        ), 

        srcLayers = ['cls_score', 'bbox_pred', 'rois'])                   

Table 5 The ROI (Region of Interest) Pooling Layers, and FastRCNN Layers   

TRAIN THE MODEL 

After you prepared the images, the labeled data, and defined the model DAG as shown in 

the previous sections, you can now start to train the object detector. Here we use a tiny 

YOLO detector to show the process. 



10 

You can use the action dlTrain to train the detector. In the example listed in Table 6, the 

model DAG is TinyYOLO, which we built before using actions buildModel and addLayer. 

The training process uses data from the CAS table trainSet. The actual images and labels 

are read from different columns in the table, and the column names are specified in 

the dataspecs field.  

This example uses pre-trained weights yolov2InitdWeights_tiny and continues to 

optimize on it. The final weights are saved in the CAS table yolov2TrainedWeights_tiny". 

The optimizer defines the algorithms used to search for the best solution while training the 

network. For details about the optimizer, you can refer to the SAS® Visual Data Mining and 

Machine Learning DOC. 

  

# Define the optimizer 

optimizer=dict(miniBatchSize=10, logLevel=3,debugLevel=2, maxEpochs=10, 

                algorithm=dict(method='momentum',# momentum=0.9, 

                                 clipGradMax=100, clipGradMin=-100, 

                                 learningRate=0.001, lrpolicy='step',           

                                 stepsize=20, gamma=0.9) 

                               ) 

  

 # Train the network 

 r = s.dlTrain(table=dict(name='trainSet'),   

            model = 'TinyYOLO', 

            nThreads=1, 

            gpu=1, 

            initWeights=dict(name = 'yolov2InitWeights_tiny'), 

            modelWeights=dict(name='yolov2TrainedWeights_tiny',                                 

                              replace=True), 

            dataspecs=[ 

                   dict(type='IMAGE', layer='data', data=inputVars), 

                   dict(type='OBJECTDETECTION', layer='detection0',    

                        data=targets) 

                   ], 

            optimizer=optimizer, 

            forceEqualPadding = True, 

            seed=13308 

         ) 

 

Table 6 Invoking dlTrain to Train the Model 

DataSpecs for the Detection Layer 

In the dlTrain action in Table 6, the dataSpecs field specifies the names of the columns 

where the data needed for the layer is stored.  

In the dataspecs statement, the variable targets and inputVars are two column name 

lists whose values are populated in Table 7. It is clearer if you look at the printed-out values 

of the variables in Table 8. 

# Define the inputVars and targets that needed in dataspec in dlTrain 

inputVars = [];  

inputVars.insert(0, '_image_'); 

targets = ['_nObjects_']; 

for i in range(0,10): 

    targets.append('_Object%d_'%i); 

    for sp in ["x", "y", "width", "height"]: 

        targets.append ('_Object%d_%s'%(i, sp)); 

http://support.sas.com/software/products/visual-data-mining-machine-learning/index.html#s1=2
http://support.sas.com/software/products/visual-data-mining-machine-learning/index.html#s1=2


11 

 

print ("targets") 

print (targets);  

print ("inputVars"); 

print (inputVars); 

 

Table 7 Code to Generate the Variables Used in Dataspec 

 

targets 

['_nObjects_', '_Object0_', '_Object0_x', '_Object0_y', '_Object0_width', 

'_Object0_height', '_Object1_', '_Object1_x', '_Object1_y', 

'_Object1_width', '_Object1_height', '_Object2_', '_Object2_x', 

'_Object2_y', '_Object2_width', '_Object2_height', '_Object3_', 

'_Object3_x', '_Object3_y', '_Object3_width', '_Object3_height', 

'_Object4_', '_Object4_x', '_Object4_y', '_Object4_width', 

'_Object4_height', '_Object5_', '_Object5_x', '_Object5_y', 

'_Object5_width', '_Object5_height', '_Object6_', '_Object6_x', 

'_Object6_y', '_Object6_width', '_Object6_height', '_Object7_', 

'_Object7_x', '_Object7_y', '_Object7_width', '_Object7_height', 

'_Object8_', '_Object8_x', '_Object8_y', '_Object8_width', 

'_Object8_height', '_Object9_', '_Object9_x', '_Object9_y', 

'_Object9_width', '_Object9_height', '_Object10_', '_Object10_x', 

'_Object10_y', '_Object10_width', '_Object10_height'] 

inputVars 

['_image_'] 

Table 8 Output of the Print Statement: Values of the Dataspec Variables  

Inside the dataSpecs statement in Table 6, the statement: 

dict(type='IMAGE', layer='data', data=inputVars) 

 

tells the training process that the input layer named data uses image data, and the name 

of the column containing the image is represented by the variable inputVars, which in this 

case means the image data needed is in the column _image_ in the input CAS table 

trainSet. 

The statement 

dict(type='OBJECTDETECTION', layer='detection0', data=targets) 

 

tells that the detection layer (with name detection0) uses data of type OBJECTDETECTION, 

which consists of a set of columns in the input table. 

Data type OBJECTDETECTION defines the meaning of each field in the list targets as 

following: 

• The number of labeled objects for each image is stored in a column whose name is 

given in the first string item in the list targets, in this example, in the column 

named _nObjects_;  

• Each labeled object in the image uses five columns, whose names are in five 

consecutive items in the list, for example, in the column with names _Object0_, 
_Object0_x, _Object0_y, _Object0_width, _Object0_height 

• The order, not the name, of the five consecutive items, determines the usage of the 

columns.  Specifically, the first item points to the column for the object category, 

and the 2-5 items, if in YOLO format, points to the columns for the x, y position, 



12 

and width and height of the object bounding box in order respectively. 

Monitoring the Training Process 

Table 9 shows some information you can see in the training process. The Fit Error currently 

is calculated as an average of the value 1-IOU (Intersection over Union) for all images; 

the IOU for each image is the average IOU for all the labeled object v.s. best matching 

prediction pairs in the image, regardless of whether the prediction is selected as one of the 

final detections or not. 

WARNING: Only 1 out of 2 available GPU devices are used. 

NOTE:  The Synchronous mode is enabled. 

NOTE:  The total number of parameters is 15861648. 

NOTE:  The approximate memory cost is 357.00 MB. 

NOTE:  Loading weights cost       0.00 (s). 

NOTE:  Initializing each layer cost       1.47 (s). 

NOTE:  The total number of threads on each worker is 1. 

NOTE:  The total minibatch size per thread on each worker is 10. 

NOTE:  The maximum minibatch size across all workers for the synchronous 

mode is 10. 

NOTE:  Epoch           Learning Rate     Loss    Fit Error      Time (s) 

NOTE:          0           0.001       44.367     0.7135         0.41 

NOTE:          1           0.001       16.287     0.6829         0.40 

NOTE:          2           0.001       10.311     0.6061         0.39 

NOTE:          3           0.001       7.0372      0.542         0.40 

NOTE:          4           0.001       6.2692     0.4923         0.39 

NOTE:          5           0.001       5.3297     0.4786         0.39 

NOTE:          6           0.001       5.1382     0.4639         0.40 

NOTE:          7           0.001       4.9569     0.4291         0.41 

NOTE:          8           0.001       4.5718     0.3865         0.40 

NOTE:          9           0.001       4.3239     0.3875         0.40 

NOTE:  The optimization reached the maximum number of epochs. 

NOTE:  The total time is       3.99 (s). 

Table 9 Monitoring the Training Process 

It is an art to train a deep neural network. For object detection network like this, you can 

use pretrained weights that are trained on general publicly available classification data set 

like IMAGENET, since they have a huge amount of data. After that, you can transfer the 

weights into the detection network, and train it with your specific data set. When training a 

new model, always start with a small sample of the data and try to overfit it. 

The L2 Norm of the pre-trained weights should be small, otherwise, it is an indication that 

the model lacks generalization capability. It is recommended to use L2 Norm and 

randomMutation to prevent overfitting. If L2 Norm is set, the value should decrease and be 

small during training. 

During the detection network training, it is usually a good practice to start with a small 

learning rate, and after a few epochs, increase the rate by 10~50 times.  

SCORE USING TRAINED WEIGHTS 

Scoring Using trained weights is similar with other deep learning tasks. In the following 

scripts, the scoring results are saved in the CAS table detections.  

s.dlscore(model='TinyYOLO',  

    initWeights='yolov2TrainedWeights_tiny',           

    table = 'scoringSet', 

    copyVars=['_path_', '_image_'],            



13 

    nThreads=10, 

    miniBatchSize=1, 

    casout={'name':'detections', 'replace':True} 

 ) 

 

You can use the extractDetectedObjects action to extract and display the detection 

results; the bounding box, the object category, and the scored values are all added onto the 

image. Figure 7 shows some examples of such annotated images. 

 

Figure 7 Score Results Displayed as Annotated Images 

SEMANTIC SEGMENTATION 

Except locating objects in images, analysis of the images at pixel level is useful and widely 

used to solve many real-world problems, especially in areas such as self-driving, biomedical 

diagnosis, and so on, as illustrated in Figure 8.  

 

Figure 8 Application of semantic segmentation includes biomedical 3-D image segmentation, self-
driving, super resolution, and so on. Images are from:  

https://arxiv.org/pdf/1803.08691.pdf,  

https://www.kaggle.com/c/cvpr-2018-autonomous-driving/overview 

https://paulvanderlaken.com/2017/11/23/super-resolution. 

 

https://arxiv.org/pdf/1803.08691.pdf
https://www.kaggle.com/c/cvpr-2018-autonomous-driving/overview


14 

Image semantic segmentation is one of the techniques to understand an image at pixel 

level. Specifically, it attempts to partition the image into semantically meaningful parts, and 

to classify each part into one of the pre-defined classes. That is, each pixel in the image is 

assigned to an object class as shown in Figure 9.  

 

Figure 9 An example of semantic segmentation. One of the four pre-defined labels is given to each 
pixel in the image to show the boundaries and shape of each object. Image is from 
https://www.analyticsvidhya.com/blog/2017/11/heart-sound-segmentation-deep-learning. 

There are many promising semantic segmentation models, including FCN [9], U-Net [10], 

SegNet [11], and DeepLab [12]. This paper focuses on U-Net model, which consists of an 

encoding path to capture context, and a symmetric decoding path that enables pixelwise 

prediction. This paper also introduces the semantic segmentation feature in SAS Deep 

Learning through a practical example. 

MODEL SPECIFICATION 

Fully connected (FC) layers connect every neuron in one layer to every neuron in another 

layer and are widely used in traditional neural networks to flatten the matrices and to 

classify the images. However, it fixes the dimension and throws away the spatial structure 

of the layers. Since for semantic segmentation the inference is at pixel level, it is crucial to 

maintain the dimensional structure, and naturally the FC layers are replaced by fully 

convolutional layers. 

Based on this idea, the U-Net model contains two parts: the down-sampling encoding part, 

including convolution layers and pooling layers, that gradually reduces the spatial dimension 

of the input images, and the up-sampling decoding part, including convolution layers and 

transpose convolution layers, the recovers the object details. In order to inherit localization 

information from the encoding process, concatenation layers are also used in the model, as 

shown in Figure 10. This model is named after its U-shape, as the encoding part and 

decoding part are symmetric. Starting from the bottleneck layer, which in this case is the 

8*8*1024 layer at the bottom of the U-shape, the up-sampling process is the reversed 

image of the down-sampling process, with pooling layers replaced by transpose convolution 

layers.  



15 

 

Figure 10 U-Net architecture. The input layer contains 256*256 color images. The resolution of 
bottleneck layer is 8*8. Each blue box is a feature map of denoted size. 

GROUND TRUTH FORMAT 

Both image and wide format data are supported in the segmentation model. If using the 

wide format, each column represents the value of one pixel of the input image. Specifically, 

the first column gives the class label of the top left pixel (0, 0), the second column 

represents the second pixel (0, 1). The column for the last pixel in the first row of the image 

is followed by that of the first pixel in the second row (1, 0) of the image. The last column 

gives the class of the bottom right pixel of the image. The values could be either numeric 

(0, 1, 2, …) or categorical (people, car, background, …). 

If using image type ground truth for pixel-wise classification, then the pixel values should be 

an integer no more than the number of classes. For example, if there are four different 

classes in the image, then each pixel of the ground truth should be a number in [0, 1, 2, 3].  

SOCCER PLAYER DATA SET 

The data set contains 170 256*256 color images and annotations as shown in Figure 11. 

They are divided into three parts: training (70%), validation (20%) and testing (10%). 

  

Figure 11 The data set contains 170 color images and annotations. Three classes are pre-defined: 
soccer player, ball, and background. 



16 

 

Image type ground truth is used for this data set as in Figure 12. Specifically, the data 

would contain two columns of images, _image_ and _labels_. The first is the input, which 

contains images of 256*256*3 taking values between [0, 255]. The second is the ground 

truth, which are 256*256*1 images taking values in [0, 1, 2], representing their three 

classes: soccer player, ball, and background. 

 

Figure 12 Columns in the data set. 

BUILDING MODEL DAG 

The model DAG is built using DLPy, an open-source, high-level Python package for deep 

learning. An example of the syntax is given below.  

Inputs = InputLayer(3, 256, 256, scale = 1.0 / 255,     

         random_mutation='random', name='InputLayer_1') 

conv1 = Conv2d(64, 3, act = 'identity', init=init)(inputs) 

bn1 = BN(act = 'relu')(conv1) 

conv1 = Conv2d(64, 3, act = 'identity', init=init)(bn1) 

bn1 = BN(act = 'relu')(conv1) 

pool1 = Pooling(2)(bn1) 

…… 

tconv7 = Transconvo(1024, 3, stride = 2, act='relu', padding = 1, 

output_size = (16, 16, 1024), init=init)(bn6)   

merge7 = Concat(src_layers = [bn5, tconv7]) 

conv7 = Conv2d(1024, 3, act = 'identity', init=init)(merge7) 

bn7 = BN(act = 'relu')(conv7) 

conv7 = Conv2d(1024, 3, act = 'identity', init=init)(bn7) 

bn7 = BN(act = 'relu')(conv7) 

…… 

conv12 = Conv2d(3, 3, act = ‘relu’, init=init)(bn11) 

seg1 = Segmentation(name='Segmentation_1', act=’softmax’,   

       error=’entropy’) 

Since the tensor dimension of the segmentation layer is entirely inherited from its source 

layer, the feature map size of its source layer should be equal to that of the ground truth, 

while the number of channels should be equal to the number of classes. In this case, the 

output size of layer conv12 is 256*256*3. The default activation function is softmax and 

the default error type is cross-entropy. 

TRAINING AND SCORING 

The model is trained using ADAM algorithm for 60 epochs, with mini-batch size = 10 and 

number of threads = 1. Sample code for training is as below. Part of the training process is 

shown in Figure 13. 

Inputs = InputLayer(3, 256, 256, scale = 1.0 / 255,     

         random_mutation='random', name='InputLayer_1') 

dataspecs=[dict(type='image', layer='InputLayer_1', data=['_image_']), 



17 

           dict(type='image', layer='Segmentation_1', data=['labels'])] 

optimizer = dict(miniBatchSize=10, regL2=0.0005, 

                 algorithm=dict(method="adam", lr=2e-4, lrPolicy='step',          

                                gamma=0.9, stepSize=10), 

                 maxEpochs=60, logLevel=2)  

s.dlTrain(model=model_name, table=train, validtable=valid, nthreads=1,  

          modelWeights = dict(name = 'seg_weights', replace = True), 

          dataspecs=dataspecs, 

          optimizer = optimizer) 

 

Figure 13 Part of the training process 

The loss error is the sum of cross-entropy of all pixels, while the fit error is the 

misclassification rate averaged on all pixels. Both errors are supposed to decrease during 

training process, as indicated in Figure 13. 

For segmentation models, dataspecs must be specified for input layers and segmentation 

layers to define the data types and columns. In this example, images are used for both 

input and segmentation layers. 

The following code is for scoring on the testing data. The testing output is also given below 

in Figure 14. For each image, the output table contains the pixel-wise prediction, along with 

the predicted probability. For example, the first pixel is assigned label 0 with probability 

higher than 0.99, as shown in columns _DL_PredName0_ and _DL_PredP0_. Visualization of 

the scoring results can be easily achieved based on the output tables. 

s.dlscore(modeltable=model_name, initweights='seg_weights', table=test, 

nthreads=1, casout=dict(name='output', replace=True)) 

 

 



18 

 

Figure 14 Scoring output on testing data. 

The scoring mis-classification rate on the testing data is 0.76%, which means out of 65,536 

pixels in each image, only less than 500 pixels are miss-labeled. Some of the scoring 

visualization results are given in Figure 15. 

 

Figure 15 Scoring results visualization. The raw images are shown in the first column, followed by 
ground truth annotation in the second column. The third column contains predictions. 



19 

CONCLUSION 

SAS has extended its deep learning toolkit to support object detection and semantic 

segmentation in its recent release. This new functionality is available through CAS action 

sets in SAS Visual Data Mining and Machine Learning, as well as in the DLPy open-source 

project. 

With the new extension, SAS deep learning empowers customers to build an end to end 

solutions to computer vision problems involving tasks of image classification, keypoint 

detection, object detection, and semantic segmentation.  

Specific examples demonstrate how some new layers, when combined with other deep 

learning, image processing action sets, enable customers to load, explore the data, build the 

model architecture, train the network, perform the inference, and visualize the results. 

Development efforts involving instance segmentation is in progress and will be available to 

customers in the future. 

REFERENCES 

 

[1]  J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," in IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017.  

[2]  W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C. Berg, "SSD: 

Single shot multibox detector," in Proceedings of the European Conference on Computer 

Vision , 2016.  

[3]  S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object 

Detection with Region Proposal Networks," IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 1 June 2017.  

[4]  T. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, "Focal Loss for Dense Object 

Detection," in IEEE International Conference on Computer Vision, Venice, 2017.  

[5]  J. Dai, Y. Li, K. He and J. Sun, "R-FCN: Object Detection via Region-based Fully 

Convolutional Networks," in Neural Information Processing Systems Conference, 2016.  

[6]  T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, "Feature Pyramid 

Networks for Object Detection," in The IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 2017.  

[7]  R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich Feature Hierarchies for Accurate 

Object Detection and Semantic Segmentation," in IEEE Conference on Computer Vision 

and Pattern Recognition, Columbus, OH, 2014.  

[8]  R. Girshick, "Fast R-CNN," in Proc. IEEE Int. Conf. Comput. Vis., 2015.  

[9]  J. E. S. a. T. D. Long, "Fully convolutional networks for semantic segmentation," In 

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. pp. 

3431-3440, 2015.  

[10]  O. P. F. a. T. B. Ronneberger, "U-net: Convolutional networks for biomedical image 

segmentation," International Conference on Medical image computing and computer-

assisted intervention, pp. pp. 234-241, 2015.  

[11]  V. K. A. &. C. R. Badrinarayanan, "Segnet: A deep convolutional encoder-decoder 

architecture for image segmentation," IEEE transactions on pattern analysis and machine 

intelligence, 39(12), 2481-2495., 2017.  



20 

[12]  L.-C. G. P. I. K. K. M. a. A. L. Y. Chen, "Deeplab: Semantic image segmentation with 

deep convolutional nets, atrous convolution, and fully connected crfs," IEEE transactions 

on pattern analysis and machine intelligence, 40(4), 834-848., 2018.  

[13]  V. a. F. V. Dumoulin, "A guide to convolution arithmetic for deep learning," arXiv preprint 

arXiv:1603.07285 (2016)..  

 

 
 

 

 

 

RECOMMENDED READING 

• SAS® Visual Data Mining and Machine Learning DOC, available at 

http://support.sas.com/software/products/visual-data-mining-machine-

learning/index.html#s1=2 

• DLPy - SAS Viya Deep Learning API for Python, available at 

https://github.com/sassoftware/python-dlpy 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the authors at: 

Xindian Long  

SAS Institute  

+1 919-531-2594  

Xindian.Long@sas.com  

 

Maggie Du  

SAS Institute  

+1 919-531-5291  

Maggie.Du@sas.com  

 

Xiangqian Hu  

SAS Institute 

+1 919-531-1423  

Xiangqian.Hu@sas.com  

 

 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.   

 

 

 

mailto:Xindian.Long@sas.com
tel:+1%20919-531-5291
mailto:Maggie.Du@sas.com
tel:+1%20919-531-1423
mailto:Xiangqian.Hu

	Abstract
	Introduction
	Object Detection
	YOLO
	Faster R-CNN
	BUILD Deep LEARNING MODELs
	Data Exploration and Preparation
	Images and Labels
	Data Format
	Visualize the Images and Labels

	BUILDing THE MODEL ARCHITECTURE
	The Backbone Network
	The YOLO Detection Layer
	The Faster R-CNN Region Proposal and Object Detection

	Train the Model
	Score Using Trained WeightS

	SEMANTIC SEGMENTATION
	model specification
	ground truth format
	Soccer player Data SET
	building model dag
	training and scoring

	Conclusion
	References
	Recommended Reading
	Contact Information

