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ABSTRACT  

The new tmCooccur action in SAS® Viya® 3.4 detects significant co-occurrences of terms in 

sentences. It can identify patterns and nuances such as the following: 1) the same word 

used with different meanings (for example, “They met along the bank of a river” versus 

“They made a deposit in a bank”); 2) verbs used as regular verbs versus verb-particle 

combinations (for example, “shut the heck up” versus “shut the door please”); and 3) less 

common uses of negation, such as statements like “He liked the show very much”  versus 

“He liked the show not at all”. This paper describes how the results of the tmCooccur action 

can be used to generate word embeddings on the basis of local information (in a manner 

similar to GloVe and Word2Vec), and also how it can be used to create virtual terms that 

represent the most significant term co-occurrences.  These new composite terms can then 

be used to create better topic, concept, and category definitions. Doing so can generate 

significant gains in lift for predictive modeling on some real-world data. Finally, this paper 

describes how to use the tmCooccur action with other types of transactional data, including 

IOT (Internet of Things) and genomic data.  

INTRODUCTION 

The term “word embedding” is the current buzzword in text analytics.  A word embedding is 

a mapping of each word into a multi-dimensional space. Good word embeddings place 

similar words near one another in that space. 

All word embeddings are based on the Distributional Hypothesis popularized by Firth (Firth 

1957), namely that “a word is characterized by the company it keeps”.  Essentially, the 

embeddings for two words would be closest to each other when all other words in context 

with those words are the same. Traditionally, in SAS® Text Miner, this context has been 

taken to be the entire document in which a word appears.    

In this paper, a new approach to word embeddings is presented that serves as a 

compromise between the strengths of the traditional SAS approach with the SVD and newer 

approaches that use shorter contexts than the entire document.  

 

SAS TEXT MINER EMBEDDINGS WITH THE SVD 

Word embeddings have been an integral part of SAS Text Miner from its inception through 

the Singular Value Decomposition (SVD) of the term-by-document matrix -- each cell in that 

matrix represents a weighted count of the number of times each word occurs in each 

document.  This matrix is sparse and not very useful for any type of modeling on its own.  

Based on a user-specified “dimensionality” D, the SVD factors this original matrix into a 

matrix that contains D columns for each of the M terms that contain its points (or 

projection) into the D-dimensional space, and a second matrix that contains the projection 

of each document into that same space.   
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There is much that can be done once you have this joint “word embedding” and “document 

embedding”.  You can rotate the dimensions of the space to align with strong directions and 

call the resulting axes “topics” -- which provides interpretability to each of the dimensions.  

Or you can take the document embeddings, after suitably normalizing them, and feed them 

into any clustering or predictive modeling algorithm as predictor variables.   Using these 

techniques within the flexible SAS® Enterprise MinerTM interface has been incredibly useful for 

our users over the years.   

RECENT WORD EMBEDDING ALGORITHMS 

More recently, techniques such as Word2Vec  (Mikolov et al. 2013) and GloVe (Pennington et 

al. 2014) have been developed, which rely on a shorter context than an entire document, 

generally a sliding window of words, such that the context of a given word is only the three 

or five words immediately preceding it and the same number of words after it.  The 

resulting embeddings, when built on very large corpora (such as Wikipedia), show 

significantly better results on semantic and syntactic word analogy tasks and word similarity 

tasks than embeddings like the term-by-document SVD decomposition with the entire 

document as context.  

All the embedding techniques discussed so far create a single embedding for a given word 

(that is, surface text possibly combined with the part of speech tag).  However, words can 

have multiple meanings (polysemy) depending on context -- for example, the noun “bank” 

can be either a lending institution or the point at which a river meets the land.  For 

semantic models, this is problematic.  Thus, in the last year, models that provide different 

embeddings for a given word depending on context , such as BERT (Devlin et al. 2018) and 

ELMO (Peters et al. 2018), have been developed.  These models are undoubtedly better at 

whole sentence interpretation; since each word does not have a static representation, 

however, they are not as useful for the semantic interpretation of single words.    

LEVERAGING COOCCURRENCE 

In response to the success of these models for syntactic and semantic individual word tasks, 

the tmCooccur action has been developed, which was initially released in SAS® Viya® 3.3.  

This action computes word cooccurrence statistics in such a way that the results can be 

factorized using the tmSvd action into a word embedding in a manner similar to the way 

GloVe and Word2Vec work, except that it can use a sentence context rather than a sliding 

word context.   For natural language, a sentence context might be a better source for 

semantic interpretation, whereas a sliding word context that doesn’t cross sentence 

boundaries is better for syntactic information.  Alternatively, we could use the cooccurrence 

information directly to form virtual terms, or meaningful term combinations.   Any of this 

information, whether to create word embeddings or virtual terms, can be further used to do 

document-level inference for topics, text categorization, and so on.   Finally, text is just one 

form of sparse, transaction-type data.  Theoretically, any of these same techniques can be 

applied to any type of transactional data for inference and understanding.  The following 

sections detail each of these ideas.  

   

EMBEDDINGS WITH THE TMCOOCCUR ACTION 

This section discusses how, in SAS Viya, you can use the tmCooccur action to do word 

embeddings.  Note that this action is inherently parallel and should scale nicely to even very 

large grids and/or nodes with many processors.   

THE TMCOOCCUR ACTION 
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The tmCooccur action is part of the textUtil (Text Utilities) action set.   You can find the 

documentation for the action in the SAS Viya 3.4 user’s guide here: 

https://go.documentation.sas.com/?docsetId=casvtapg&docsetTarget=cas-textutil-

tmcooccur.htm&docsetVersion=8.3&locale=en.    

The action first requires you to parse a document collection using any of our parsing 

approaches to compute an offset table, identifying the position in each document a term 

appears, and a terms table to index the terms with unique identifiers.  Based on this input, 

it computes the number of times each term cooccurs with each other term and an 

_Association column that identifies how strongly the terms are connected.  The following 

code is an example call for the data set airlinefeedbackcat, which contains airline feedback 

comments scraped from a public website: 

 

%let sourceloc=\\tmdev\tmine\data\; 

libname tm "&sourceloc"; 

 

/* Move documents from SAS table to CAS table */ 

data sascas1.airlinefeedbackcat; 

    set tm.airlinefeedbackcat; 

    id=_n_; 

    run; 

 

/* Parse documents using tmMine action */ 

proc cas; 

loadactionset 'textMining'; run; 

action tmMine; 

  param 

    docid="id" 

    documents={ name="airlinefeedbackcat"} 

    text="text" 

    nounGroups=True 

    quittagging=true 

    entities="none" 

    offset={name="offset", replace=True} 

    terms={name="terms", replace=True} 

    parseConfig={ name="config",replace=True} 

    reduce=8 

    stemming=True 

    legacyNames=true 

; 

quit; 

 

/* Run tmCooccur action*/ 

proc cas; 

 loadactionset "textUtil"; 

 action tmCooccur result=cooccur_res/ 

    offset={name="offset", caslib="CASUSERHDFS"} 

    terms={name="terms", caslib="CASUSERHDFS"} 

    cooccurrence={name="cooccur", replace=True} 

    cooccurrenceOffset={name="cooccur_pos", replace=True}  

    maxDist=25 

    minCount=1  

    ordered=False  

    smoothing=5  

    xmax=100 
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    frequencyExponent=.6  

    distanceExponent=.5  

    useParentId=True ; 

 run; 

quit; 

 

 

Note the process here:  First you parse the data, which, depending on options, can 

optionally include multi-word phrases such as noun groups or entities (such as person 

name, location, and so on).  In addition, if tagging is used, words used as different parts of 

speech are treated distinctly.  Neither of these capabilities are generally present in 

Word2Vec or GloVe.   

Then you take the offset table, which contains every term in every document that is parsed, 

in order, and the term table and feed those to the tmCooccur action.   The action identifies 

how often each term pair occurs and calculates an association measure based on frequency 

of cooccurrence compared to expected frequency of cooccurrence.  

The parameters used in the example for the tmCooccur action are reasonable choices that 

our testing found to be generally effective for generating embeddings:   

• maxDist=25:  This specifies that any word pairs that occur more than 25 

words apart in the same sentence will not be treated as a cooccurrence.  This 

is important when sentence boundaries might be missing in some documents.  

Also, if you want to model more syntactic relationships (we are focused in this 

paper on semantic relationships primarily), you might want to make it very 

small, just a few words.  In addition, restricting this distance to a value of 3 

or 5 will make the results even more similar to GloVe.  

• Ordered=false:  The tmCooccur action can create statistics for when the first 

term (or row term) comes earlier in the sentence than the second term (or 

column term).  In that case, set Ordered=true. (See virtual terms later for an 

example where we do set it that way.)  But for purposes of the word 

embeddings themselves, particularly when you are not using the full term-by-

term matrix, set the value to false. 

• Mincount=1: The value of 1 indicates every pair of terms is considered since 

they cooccur at least once.   If you have a large collection to analyze, you 

might want to set the mincount to a higher value.     

• useParentID=true: When the value is set to true, all term variations are 

equivalent to their stems and any synonyms in a synonym list are considered.  

Setting this value to false will make the  result  closer to GloVe, which doesn’t 

do stemming.  

• Smoothing=5: This setting specifies the alpha smoothing parameter for 

additive smoothing applied to the counts of the cooccurrences of each term 

pair (see https://en.wikipedia.org/wiki/Additive_smoothing).  If no smoothing 

is done (smoothing=0), then complete cooccurrence of two rare terms is 

considered equivalent to complete cooccurrence of two common terms in the 

correlation calculation, which is unrealistic.  

• distanceExponent=.5: This enables you to weight term cooccurrences more 

strongly when the two words are close together in the sentence than when 

they are far apart.  This value of .5 indicates that terms should be down 

weighted based on the square root of the number of words between them.  

https://en.wikipedia.org/wiki/Additive_smoothing
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• frequencyExponent=.6: This value indicates how much the term correlation is 

weighted by the frequency of that cooccurrence to give the association value.  

Generally, the best results occur when the frequency is raised to an exponent 

of about .6 or so (very close to the value that GloVe used).  Using a 

frequency exponent greater than 0 guarantees that the most common term 

cooccurrences have the largest effect on the SVD factorization.   

• Xmax=100:  Words that are very common frequently cooccur even though 

their cooccurrences aren’t that relevant.  This setting controls the maximum 

frequency that will be raised to that frequency exponent -- any cooccurrence 

frequencies in excess of this value will be weighted as if it was that value.   

 

These choices worked well for the data we looked at (as described later); of course, your 

data can differ, and you might want to try some different values to see what works well for 

you.  The nice thing is that the action is quite flexible, with the ability to parameterize it in 

many ways -- and you might find some useful combinations that we never thought of! 

 

CREATING EMBEDDINGS 

Term embeddings are created by applying the SVD to the sparse term-by-term matrix of 

associations calculated by tmCooccur. In the code here, the tmSvd action performs the 

matrix factorization and projects the associations into a lower dimensional space of term 

rows (docpro) and term columns (wordpro).  The tmSvd action can rotate these projections 

into topics, in the same way it does when a term-by-document matrix is fed in.  In this 

example case, we are doing a projection onto 200 dimensions and also rotating the results 

to create topics:    

 

 

/* Now create word embeddings using tmSvd action for the term by term matrix 

created by tmCooccur action */ 

proc cas; 

loadactionset 'textMining'; 

action tmSvd; 

param config="config"  

 parent={name="cooccur",where="_Freq2_>=20" }  

 termid="_Termid1_"  

 docid="_Termid2_" 

       count="_Association_"  

 terms= "terms"  

 timing=True  

 rowPivot=0.7  

 k=200  

 norm="ALL"  

 wordpro={name="word_a",replace=True} 

   docpro={name="docpro_a",replace=True}  

 topics={name="topic_a",replace=True} 

 numLabels=7  

 topicDecision=False  

 u={name="svd_a",replace=True} 

 scoreConfig={name="scoreconfig",replace=True}  

 legacyNames=True ; 

quit; 
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Note that one issue crops up: When the SVD is calculated on the term-by-document matrix, 

the wordpro table corresponds to the word projections and the docpro table corresponds to 

the document projections or the context in which those words occur.  But when we do a 

term-by-term matrix, they are both term projections. Fortunately, in the options for 

tmCooccur we provided earlier, this matrix is symmetric and both output matrices will be 

the same (in that case, essentially it would be equivalent to a sparse principal component 

analysis).  However, there is another issue -- the rare term combinations found in the term-

by-term matrix will dominate the projections, rendering the results less useful.   

To address both issues, specify that you want only the term columns that occur frequently 

by setting a threshold on the frequency. In the previous code, you can see this in the 

WHERE clause applied to the parent table where a threshold of 20 is used, so the action is 

looking at the relationships of every one of the terms with only the most common ones.  

The parameters to the tmCooccur action determine how the measure of association is 

calculated.  In general, it is based on a normalized pointwise mutual information score; the 

result can be considered as a correlation between the terms.  That correlation is then 

optionally weighted by frequency.   In fact, with certain parameter choices, the factorization 

of our association measure would be functionally equivalent to GloVe, if GloVe were able to 

use sentence context instead of sliding windows.  GloVe does a weighted bilinear log 

regression to calculate the embeddings, as can be seen in Pennington et al. (2014), that is 

functionally equivalent to an SVD without weighting.  What we do is weight the results 

before doing a straight SVD calculation, which should have a similar result to doing a 

weighted bilinear log regression. 

 

EVALUATING EMBEDDINGS ON WORD SIMILARITY TASKS 

 

The first question that was addressed was how useful, for semantic interpretation, are the 

word embeddings generated by this process.  To answer this, we downloaded the Billion 

Word Corpus (http://www.statmt.org/lm-benchmark) and generated word embeddings 

using the process described in the last section.  One of the nice things about the Billion 

Word Corpus is that all sentences in the English source data are shuffled randomly, with 

each sentence on a separate line.  We also generated word embeddings using the standard 

SVD approach that SAS® Text Analytics has supported from the beginning, treating each 

sentence as a separate document.   

Finally, we used the gensim Python package to generate embeddings using Word2Vec’s 

skip-gram algorithm on the same Billion Word Corpus (again treating each sentence as a 

separate document to put it in its best light), and compared all three embeddings, in 

Python, using the same word similarity tasks as described in the original Mikolov paper.  

The result is represented as a correlation: The skip-gram embeddings got the best results 

with a Pearson correlation of .58, the tmCooccur term-by-term embeddings got just slightly 

below that with a correlation of .56, but the SVD of the term-by-document matrix got by far 

the worst result with a correlation of .38.   

So why did skip-gram get a better result on this task than the tmCooccur generated 

embeddings?  Well, for one thing, the difference is so small it might be just chance.  But it 

might be a real, though slight, difference, in which case we think there are two things to 

consider:  

http://www.statmt.org/lm-benchmark/
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1. Looking at the word similarity task shows that some of the word similarity is based 

on syntactic considerations (for example, same part of speech), which would bias 

them in favor of a technique that uses shorter windows, such as skip-gram, than the 

entire sentence, which is going to focus on semantic relationships. 

2. By treating each sentence as a separate document, we are essentially giving a boost 

to skip-gram, which typically does not look at sentence boundaries.  Here, all word 

relationships are not considered unless they are within the same sentence, whereas 

typically skip-gram is not smart enough to know that.   

EVALUATING DOCUMENT-LEVEL ENCODINGS 

Although the word embeddings themselves are useful for understanding how words relate to 

each other, for most purposes you are interested in what a document itself is about -- 

whether it is topic analysis, text categorization, or sentiment analysis.  So, the question 

naturally arises: How can you use these word embeddings to generate document 

embeddings?   

For the standard SAS Text Miner embeddings, which come from an SVD of the term-by-

document matrix, the answer is simple.  The SVD itself comes out with the document 

embeddings as one of its factors.  Underneath the matrix algebra, each document’s 

embedding is composed as a weighted sum of the term embeddings that are included in 

that document.   

In neither of the other cases is the answer quite so simple -- and in fact, if the document 

embeddings are composed as simple sums of the term embeddings, the results don’t work 

well.   The trick is that in the SAS Text Miner models, the input to the factorization down 

weights common terms and up weights rare terms.   But in the other models, better results 

are obtained by having the factorization affected posit ively by higher frequency 

cooccurrences.   In general, it appears that rare terms are better for indicating document 

similarity, whereas term embeddings themselves seem to benefit from looking at the most 

common co-occurrences.   

The solution, for both skip-gram embeddings and embeddings based on the term-by-term 

matrix, is to do the weighting after the term embeddings are calculated -- essentially each 

term is weighted by its inverse document frequency (idf) weighting applied to each 

embedding dimension.  Then the results are fed to the tmScore action to calculate 

document projections.   

Three data sets that had natural text categories already applied were used to evaluate the 

embeddings:  

1. the airline feedback data set obtained by scraping a website containing airline 

reviews (the categorical variable was the category of the feedback obtained) 

2. the 20 Newsgroup data set that has long been a staple of text categorization 

research  

3. the NHTSA vehicle complaint data set from the first quarter of 2008 (the categorical 

variable was the component of the car that was being commented about)   

For each data set, an autotuning neural network (autotune.tuneNeuralNet CAS action) with 

10-fold cross validation was used to get an overall accuracy number.  In all cases, 200 

embedding dimensions were used.  

The results are in  

Table 1. Accuracy by Model and Data Set 
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 Models-Accuracy 

data # docs 
# 

cats baseline 
T-by-D 

SVD 
skip-
gram 

Sentence 
T-by-T 

SVD 

Document 
T-by-T 

SVD 

Airline Feedback 6163 15 32.70% 80.5% 65.9% 73.8% 74.2% 

20 Newsgroups 19287 20 5.10% 74.1% 70.3% 76.6% 78.2% 

NHTSA 2008 38072 26 12.20% 73.6% 64.8% 73.1% 73.4% 

 

Table 1. Accuracy by Model and Data Set 

 

The table here includes the number of documents in each data set, the number of 

categories, and a baseline probability (in this case, the percentage of documents in the 

most common category).  The final four columns show the accuracy obtained using the 

following techniques: 

1. T-by-D SVD - A term-by-document SVD that is typically produced by SAS Text  Miner 

2. skip-gram – A skip-gram model based on a five-word context to both the left and 

right of a target word 

3. Sentence T-by-T SVD - A term-by-term SVD based on tmCooccur 

4. Document T-by-T SVD (the final column will be discussed momentarily)  

On the 20 Newsgroups data, a slightly better result was obtained for the term-by-term SVD 

approach that used the co-occurrence of terms in a sentence. For the other two data sets, 

the best result was for the standard term-by-document factorization.  In all three cases, the 

worst result was obtained from the skip-gram based embeddings.   

Perhaps by having a larger context, the term-by-document matrix has more information 

available to it.  One thing you can do is treat every document as if it were a single sentence 

by setting the sentence variable to a value of one for each observation. This allows the 

factorization to consider the whole document as the context.  In all cases, as seen in the 

final column, this resulted in a better result for accuracy on this data. 

There are likely three reasons the skip-gram model did not do well:   

1. It is considering a shorter context and thus has less information available to it . 

2. The short context means that embeddings generated from it are a mix of syntactic 

and semantic information, but the syntactic information is not useful for text 

categorization.  

3. It has no notion of sentence boundaries and went across boundaries when deciding 

what words influenced other words.  On the other hand, tmCooccur takes sentence 

boundaries into consideration. 

 

VIRTUAL TERMS 

Another thing that the tmCooccur action can do is to spot strongly cooccurring terms that 

can provide context to each other.   Consider the following examples of sentences: 
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• I go for a run of at least two miles every day.  

• The play has had a very successful run.   

• He gave the reigning chess champion quite a run for his money.  

• If you would just shut the heck up, we can deal with this issue.  

• Please shut the door on the way out.  

• I didn’t really like the movie very much. 

• I really like the movie a lot! 

 

In the first three sentences, three different senses of the noun “run” are used; in the fourth 

and fifth sentences, the verb particle form “shut up” versus the plain verb “shut” should be 

distinguished; and in the last two sentences, the use of the “not” term, “didn’t”, in one 

sentence and not in the other causes the sentiment to be polar opposite. 

 

In these cases, if you can identify those important word relationships, then you can treat 

each of these “pairs of words” as a single term.  Fortunately, the tmCooccur action gives 

you the means to do so.  A threshold association score is set, and word pairs that exceed 

that score are identified.   Then each such word pair forms a “virtual term”; that is, a virtual 

term is a word pair that has strong association and is denoted as “<term 1>…<term 2>” 

(for example, “run… mile” or “n’t…like”).  You can then treat them as ordinary terms and 

use them for rule building, word embeddings, topic analysis, document categorization, and 

so on.   

 

So, a natural question is, if you generate embeddings for virtual terms as well as regular 

terms, can that improve the categorization results reported earlier?  For each of the data 

sets discussed in the previous section, the tmCooccur action was run, this time setting 

Ordered=True (so that the term “run…mile” would mean that the word “run” preceded the 

word “mile” in the sentence). A virtual term association cutoff was identified so that the 

number of virtual terms would equal the number of actual terms.  Then term and document 

embeddings were generated using the standard TM technique (because the tmCooccur 

embeddings had not shown a clear advantage over the standard approach), and text 

categorization accuracy was computed.  The results are shown in Table 2 (note that the 

second column repeats the accuracy for the standard embedding approach from Table 1): 

 

Data Standard w/o virtual terms Standard w/virtual terms 

Airline Feedback 80.5% 92.4% 

20 Newsgroups 74.1% 74.2% 

NHTSA 2008 73.6% 73.4% 

 

Table 2. Categorization Accuracy 

 

Interestingly, the airline feedback data showed a huge advantage when including virtual 

terms, whereas, for at least this categorization, there was no real difference between the 

categorization for the other two tables.  We applied this technique to several other data sets 

and found a number of situations where including virtual terms (particularly for sentiment) 

was very useful. On the other hand, in some situations they do not appear to give any 

additional lift.  Even in cases where they did not add additional value in terms of accuracy, 

they did add descriptive value by including virtual terms in topic labels or by doing 

automatic rule generation and having the rules include virtual terms.   
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APPLYING EMBEDDINGS TO NONTEXTUAL DATA 

Although the techniques for word embeddings described in this paper are designed to 

analyze textual data, they are applicable to other types of sequential data. If you think of a 

sequence of words in a sentence as being an ordered, time-dependent transition from one 

word to the next, then other forms of time series data also satisfy this situation. Such 

examples include information about the location of people, vehicles, or robots at specific 

times of the day, state information of a complex system as it transitions through time, web 

click data that records a user’s path as she traverses a website, and transactional purchase 

data.  

THE AMERICAN TIME USE SURVEY 

The American Time Use Survey from the Bureau of Labor Statistics 

(https://www.bls.gov/tus/) has characteristics that provide a good example. In this survey, 

users provided information about the various activities they participate in throughout the 

day such as eating, household activities, working, and driving. Responses are tied to a given 

person on a given day and are ordered based on the time and duration that they occurred.  

In this data, there are over 100,000 daily records and a total of over 500 distinct activities 

recorded. 

By merging data files for individuals and activity names, you can see an example of the 

start of a user’s morning in Table 3.  

 

 

Table 3.  Morning Activities for One Individual 

Notice how the form mimics the term-by-document compressed frequency table for text. In 

this setting, an individual’s day of activities corresponds to the sentence and each activity 

corresponds to a word.  If you are interested in the cooccurrence of different activities that 

a person engages in, then you can use the tmCooccur action to evaluate the structure of 

these co-behaviors -- they function in the same way that the position of a word in a 

sentence does. 

ASSOCIATIONS AND EMBEDDINGS 

The tmCooccur action itself provides useful information about the transitions that occur 

overall in the day-to-day activities. When tmCooccur generates associations with this data, 

this correlation plot of the strongest correlations shows what activities tend to occur near 

one another when they do occur. 

In Figure 1, the six strongest associations are shown on the diagonals. The off diagonals 

indicate the association of the activities with the other activities in the plot. The sequential 

pattern of waiting for services before receiving them was picked up immediately in the 

association calculation. 

https://www.bls.gov/tus/
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Figure 1. Activities Showing the Strongest Associations 

The SVD technique described in this paper can be applied to the associations found from the 

tmCoccur action. Each activity receives a vector representation derived from the data set. 

With these embeddings, it is possible to place the terms in a k-dimensional space and check 

for similarity. Below are three activities and their nearest neighbors in that space.  The 

similarity in this case is based on the context of the individual’s day, and not necessarily 

functionally similar activities.  

 

 

Activity Nearest Activity 

Sleeplessness Using in-home health and care services 

Interior cleaning Laundry 

Email Computer use for leisure (exc. Games) 

 

Table 4.  Examples of Nearest Activities in the Embedding Space 

 

CONCLUSION 

So, as you have seen, context matters. In the case of word similarity tasks based on large 

corpora, Term cooccurrence embeddings derived from a sentence context can be more 

effective than those based on the entire document as context.  However, when using 

standard data sources and doing document categorization, using the entire document as 

context appears to win out.  This paradox could be explained by any combination of the 

following: 
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1. Sentence-based embeddings might need more data to form meaningful associations 

than document-based embeddings, based on their use of more information. 

2. We might not yet have found the best way to combine sentence-based embeddings 

to form a document-level embedding. 

3. A term-by-document matrix decomposition might just be superior in some way to a 

term-by-term matrix decomposition. 

4. Perhaps there is no natural way to combine word embeddings meaningfully to form a 

document-level representation. 

 

At any rate, virtual terms appear to be a useful way of disambiguating multiple meanings of 

terms and, even in some cases when it doesn’t increase categorization accuracy, can be 

useful for descriptive purposes.  Future work will entail trying alternative ways of combining 

term embeddings to form a useful document projection, as well as using context -sensitive 

embeddings like those provided by ELMO or BERT.  Finally, more work will be done to try to 

apply these techniques to other types of transactional data.  
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