
1

Paper 3276-2019

Simple Techniques to Improve the Performance of your SAS®
Programs When Processing Large Data Sets

Steve Cavill, Infoclarity

ABSTRACT
Programs that process large data sets can consume lots of a programmer's time, while
waiting for jobs to complete. This paper presents simple techniques that all programmers
can use to speed up their programs, leaving time to get more work done (or maybe to play
more golf :). Techniques include subsetting, indexes, data set compression and in-memory
data.

INTRODUCTION
One of the greatest costs in computer programming is programmer time. This paper
presents simple techniques to save programmer time while developing code and running
production reports.

The topics are all part of Base SAS®. The content assumes a basic knowledge of SAS data
step processing. Topics covered are subsetting, indexes, data set compression, and in-
memory data.

MEASURING PERFORMANCE
The standard SAS log option (stimer) does not show a lot of detail. Use fullstimer to get the
most detail (output varies by operating system).

Windows output:

5 options nofullstimer;
6 data _null_;
7 do i = 1 to 10000000;
8 end;
9 run;
NOTE: DATA statement used (Total process time):
 real time 0.10 seconds
 cpu time 0.11 seconds

11 options fullstimer;
12 data _null_;
13 do i = 1 to 10000000;
14 end;
15 run;
NOTE: DATA statement used (Total process time):
 real time 0.10 seconds
 user cpu time 0.10 seconds
 system cpu time 0.00 seconds
 Memory 135k

2

Unix output:

73 options fullstimer;
74 data _null_;
75 do i= 5e6 to 1 by -1;output;end;
76 run;

NOTE: DATA statement used (Total process time):
 real time 0.05 seconds
 user cpu time 0.05 seconds
 system cpu time 0.00 seconds
 memory 470.65k
 OS Memory 29088.00k
 Timestamp 03/18/2019 02:39:36 AM
 Step Count 76 Switch Count 0
 Page Faults 0
 Page Reclaims 88
 Page Swaps 0
 Voluntary Context Switches 0
 Involuntary Context Switches 6
 Block Input Operations 0
 Block Output Operations 0

SUBSETTING
During code development and testing you can save a lot of time by processing a subset of
large data sets.

SUBSETTING OPTIONS
When reading a file or SAS data set, use options to reduce the amount of data to read. This
is particularly useful when testing. There are two options :

• Firstobs= <specifies the row number of the first observation to be read, defaults to 1>

• Obs= <specifies the last observation number to be read, defaults to last row>

These can be specified as global options, which will affect all following data sets (data step
and proc)

e.g.
Options firstobs=100 obs=150;
 *Note this will read 51 rows (150-100+1), not 150!

Or as data set or infile options:
data _null_;
SET xxx (firstobs=1000 obs=1100) ; * read 101 rows
Infile yyy firstobs=1000 obs=1100 ;
Run;

Proc xxx data=yyy(obs=1000);

data _null_;
set in (firstobs=1000000 obs=1001000);
run;
NOTE: 1001 observations were read from "WORK.in"

3

NOTE: The data step took :
 real time : 0.218
 user cpu time : 0.000
 system cpu time : 0.015

data _null_;
set in;
run;
NOTE: 100000000 observations were read from "WORK.in"
NOTE: The data step took :
 real time : 1:19.687
 user cpu time : 0:15.312
 system cpu time : 0:03.375

Output 1. Log output from obs= and firstobs=options

PROC SURVEYSELECT
When testing reports, using firstobs and obs can be problematic because the subset may
not be representative of the whole data set. For example, if the data contains 5 years of
data, but is sorted in date order, then a sequential chunk of data may only be from a few
months, so a monthly report will not look very complete.

In this case you can write a data step to take a subset, or take advantage of a simple
procedure called PROC SURVEYSELECT which takes random samples of data sets. PROC
SURVEYSELECT has many, many options for controlling the subset which I don’t show here.
Note also if you run the proc again, you will get a different sample, so be careful when
testing, as different samples will produce different output.

data test; /*create a sequential list of numbers */
 do i = 1 to 1000;
 output;
 end;

proc surveyselect data=test out=sample
 sampsize=10; /* pull out a random sample of 10 */
 run;

Sample looks like: *note still in sequential order;

 Obs i

 1 13
 2 116
 3 214
 4 234
 5 305
 6 401
 7 748
 8 753
 9 818
 10 989

Output 2. Example PROC SURVEYSELECT output.

4

INDEXES
Indexes can greatly improve run times of programs that process large data sets.

An index is a supplementary file that provides direct access to required portions of a data
set. It is analogous to the way an index works in a textbook. SAS data sets are stored on
disk in pages. The index contains the page number(s) where you can find a particular
observation, based on a key variable or variables.

Example of a data set with an index based on age

Data Set

Index

Page Obs Name Age

Age Page(obs)

1 1 Bill 49

9 3(7)

 2 Mary 22

12 2(6)

 3 Bob 49

17 2(4),3(9)

22 1(2)

2 4 Ian 17

45 2(5)

 5 Jane 45

49 1(1,3)

 6 Mia 12

77 3(8)

3 7 Alex 9

 8 Diana 77

 9 John 17

Table 1. Index example

HOW INDEXES MAKE DATA ACCESS FASTER
In the example above, accessing the data based on the index can make the access faster.
Note in a real example you would have thousands of pages, not just three. Using an index
with a data set with only three pages would not achieve much!

The following situations might use the index. I say might, because SAS uses an algorithm
to decide if using the index will make things faster. More on this later.

• Accessing a subset of observations

… where age=45…

• Access data in sorted order without pre-sorting (only for ascending order)

… by Age;

• When doing direct access in a data step

Set … key=age…;

• When doing an sql join on that column

… a left join b on a.i=b.i

5

How the index is used:
SAS reads the index first. It uses a “binary search” to access the data quickly. This is
similar to how you would use an index in a book. In simple terms this means start in the
middle of the index file, then choose the appropriate half of the file. Then repeat that
process by start in the middle of that half, then keep repeating till you find the appropriate
index entry.

Illustration of binary search using the sample data above (Table 1)

If the where clause is “where age=45”, the index search will start in the middle (age =22),
then check the middle of the bottom half (age=45). So, we only did 2 reads to find the
right place. This is faster than reading the index sequentially. Again, this effect would only
be noticeable in a much larger file.

Composite Index
An index can be based on more than one variable. SAS logically concatenates the variables
and creates the index on the concatenated value. E.g. Surname,Firstname.

CREATING AND USING AN INDEX
Syntax:

Proc datasets:

• Modify <table_name>;

• Index create <one_var>;

• Index create <composite_name> (<var1> <var2> <…>…);

• Index delete <index_name>;

Proc SQL;

• Create index <one_var> on <table_name>;

• Create index <composite_name> on <table_name>(<var1> ,<var2>, <…>,…);

• Drop index <index_name> from <table_name>;

Example:
data test;
do i = 1 to 10000;
 x=int(ranuni(0)*10000);
 y=100000-x;
 output;
 end;
 run;

Proc datasets lib=work;
 modify test;
 index create x;
 index create compexample=(x y);
 index delete x;
 quit;

Proc sql;

6

 drop index compexample from test;
 create index y on work.test ;
 create index everything on test(y,x);
quit;

SAS uses an algorithm to decide if using the index will make things faster. The algorithm
chooses the “best” index or no index. You can use options msglevel=i; to see the index
choice in the log. You can override the SAS choice if the algorithm seems to be choosing an
inappropriate index. Use this option with caution!

305 options msglevel=i;
306 data _null_;
307 set test; where y>9876;
308 run;
INFO: Index y selected for WHERE clause optimization
NOTE: 132 observations were read from "WORK.test"
NOTE: The data step took :
 real time : 0.015
 cpu time : 0.015

310 data _null_;
311 set test; where y>1;
 run;
<< no note >>
NOTE: 10000 observations were read from "WORK.test"
NOTE: The data step took :
 real time : 0.000
 cpu time : 0.000

Output 3. Msglevel=I

You can override the SAS choice if the algorithm seems to be choosing an inappropriate
index. Use this option with caution! SAS usually chooses the right index algorithm. The
“Best” index can change over time, so if you override the index choice you need to monitor
carefully.

Syntax:

• Data set options:

– IDXwhere= [YES|NO]

– IDXname= <index_name>

Examples:

390 data _null_;
391 set test(idxwhere=NO); where y>9876;
 run;
NOTE: The IDXNAME=NO option is in force so no index will be used
NOTE: 126 observations were read from "WORK.test“
393
394 data _null_;
395 set test(idxname=everything); where y>9876;
396 run;
NOTE: Index everything selected for WHERE clause optimization
NOTE: 126 observations were read from "WORK.test“

7

398 data _null_;
399 set test(idxwhere=yes); where y>1;
400 run;
NOTE: The IDXWHERE=YES option has caused an index to be selected
NOTE: Index y selected for WHERE clause optimization
NOTE: 10000 observations were read from "WORK.test“

Output 4. Overriding SAS index choice

WHEN INDEXES MIGHT MAKE THINGS WORSE
SAS keeps 20 “centiles” to estimate the data distribution in the data set. If the data is
unevenly distributed, or the centiles become out of date due to data updates, this can cause
the SAS index algorithm to choose the wrong index. You can see in the example below,
that using an index was slower than not using an index.

374 data _null_;
375 set test; where x=101;
376 run;
NOTE: Index x selected for WHERE clause optimization
NOTE: 175012 observations were read from "WORK.test"
NOTE: The data step took :
 real time : 1:15.578
 cpu time : 0:02.109
378 data _null_;
379 set test(idxwhere=no); where x=101;
380 run;
NOTE: The IDXNAME=NO option is in force so no index will be used
NOTE: 175012 observations were read from "WORK.test"
NOTE: The data step took :
 real time : 1:03.078
 cpu time : 0:02.593

Output 5. SAS might choose an inappropriate index

Using an index to avoid a sort may make a job slower overall, particularly if the data set is
accessed in the same sorted order multiple times. This is because the same page may be
loaded repeatedly. Looking at Table 1 again, there are 3 pages in the data set. Sorting and
reading sequentially would read 3 pages. Reading using the index could read the same
page multiple times – in this order 3,2,1,2,1,3. So the same page is read more than once.
Note that this is not a real example, and buffering of both data and index pages means that
this is only a problem in very large randomly distributed data sets.

Example: using index

53 data _null_;
54 set test;
55 by x;
56 run;
NOTE: 10000000 observations were read from "WORK.test"
NOTE: The data step took :
 real time : 10:42.890

8

Example: using sort

59 proc sort data=test force;
60 by x;
NOTE: Procedure sort step took :
 real time : 1:55.062
61 data _null_;
62 set test;
63 by x;
64 run;
NOTE: 10000000 observations were read from "WORK.test"
NOTE: The data step took :
 real time : 6.890

In the example above, sorting was much faster than using an index to retrieve the data in
sorted order. Sorting a very large data set requires a lot of disk space, so it comes to
testing in your environment if sorting or using an index is better.

COMPRESSION
Compression can make reading large data sets smaller by physically reducing the size of the
data file, thus reducing the amount of I/O to read the whole file. You have probably used
compressed files outside of SAS e.g. Zip compressed files.

Compressing and decompressing files takes extra CPU time but usually saves elapsed time
because I/O is typically much slower than CPU resources. Compression works by removing
repeated blanks and repeated numeric values (e.g. zeroes). Compression can be set either
as a global option or on individual data sets.

Syntax:
Options compress=yes|char|binary;
Data test(compress=yes|char|binary);

Char and binary are two different compression algorithms. Yes is the same as char. Char is
best for data sets that are mostly character or mixed types. Binary works well for heavily
numeric data sets. Options compress=yes is an acceptable default for most SAS jobs.

Compression example:

79 data test test_compress(compress=char) ;
80 retain num1-num20 999;
81 retain char1-char4 'blah blah' char5-char20 ' ';
82 do i = 1 to 1e6;
83 output;
84 end;
85 run;
NOTE: Data set "WORK.test" has 1000000 observation(s) and 41 variable(s)
NOTE: Data set "WORK.test_compress" has 1000000 observation(s) and 41
variable(s)
NOTE: Specifying compression for data set "WORK.test_compress" has
decreased its size from 90911
 to 43508 pages (a 53% reduction)

9

Comparing the physical file size on disk:

You can see below that reading the compressed version of the file is significantly faster.

92 data _null_;
93 set test;
NOTE: 1000000 observations were read from "WORK.test"
NOTE: The data step took :
 real time : 3:42.437
 cpu time : 0:02.078
94 data _null_;
95 set test_compress;
96 run;
NOTE: 1000000 observations were read from "WORK.test_compress"
NOTE: The data step took :
 real time : 1:25.562
 cpu time : 0:02.093

Check the SAS log carefully when using compression as it’s possible to make data sets
bigger! This is because the compression adds an overhead to the beginning of each
observation. If the data set is “skinny” i.e. has very few variables, this overhead can be
more than the space saving of compression.

120 data test_compchar(compress=yes);
121 do i = 1 to 1e5;
122 x=int(ranuni(0)*1e7);
123 output;
124 end;
125 run;
NOTE: Data set "WORK.test_compchar" has 100000 observation(s) and 2
variable(s)
NOTE: Specifying compression for data set "WORK.test_compchar" has
increased its size from 395 to 476 pages (a 21% increase)

IN-MEMORY DATA TECHNIQUES

SAS MEMORY OPTIONS
Some SAS global options can affect the amount of memory available to SAS processes.
Check the values of these options with

Proc options group=memory;

• Memsize=

– Memsize=Max will use all of the available memory, which is OK in a single
user environment but be careful in a shared server environment

– Can only be set at SAS startup

10

• Sumsize=

– Used by summary procedures like SUMMARY, MEANS, TABULATE

– Defaults to memsize

• Sortsize=

– Memory used by sort procedure, prior to disk utility files.

– Set to a subset of real memory on your machine, again mindful in a shared
server environment.

Note that these options are often locked by your SAS admin, but if they are set to
unreasonably small numbers, it’s worth changing them.

LOADING SAS DATA SETS INTO MEMORY
If a data set is read repeatedly in the same program, one of the simplest ways to speed up
the program is to load the data set into memory. That way it only gets read from disk once.
This uses the SASFILE statement.

Syntax:

SASFILE <data set name> open|load|close;

• load – loads the data set immediately

• open – delay loading until the data set is first used

• close – unload and free up the memory

Example:

Timestamp 03/20/2019 05:50:18 AM

 75 sasfile sgf.sort load;
 NOTE: The file SGF.SORT.DATA has been loaded into memory by the SASFILE
statement.

Timestamp 03/20/2019 05:51:43 AM

 78 data _null_;
 79 set sgf.sort;
 80 run;

 NOTE: There were 5000000 observations read from the data set SGF.SORT.
 NOTE: DATA statement used (Total process time):
 real time 1.89 seconds
 cpu time 0.76 seconds

 81 sasfile sgf.sort close;
 NOTE: The file SGF.SORT.DATA has been closed by the SASFILE statement.
 82 data _null_;
 83 set sgf.sort;
 84 run;

11

 NOTE: There were 5000000 observations read from the data set SGF.SORT.
 NOTE: DATA statement used (Total process time):
 real time 1:00.60
 cpu time 44.56 seconds

 85
 86
 87
 88 OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
 100

You can see from the above log that reading the SAS data set from memory the first data
step took under 2 seconds and reading from disk the second data step took a full minute.
The data set in question is about 1GB in size. Note however at the top it took about a
minute and a half to load the data set into memory using the SASFILE statement. SASFILE
does not write timestamps to the log, I included a data _null_ step to write the timestamp,
those statements are edited out of the log above.

Obviously, this only works if the data set fits into memory. And it saves time only if the
large data set is read more than once. Note that most operating systems have a file cache
in memory, which serves a similar purpose, but it’s not controllable by users and is shared
among all open files.

TABLE LOOKUP TECHNIQUES
What is a table lookup? Table lookup typically refers to a data structure where one or more
tables containing detail data (the “fact” table) need to lookup “dimension” tables that define
some of the facts in more detail. Here’s a generic schematic diagram:

Facts

Dimension 1 Dimension 2

Dimension 3

Dimension 4
Dimension 5

12

EXAMPLE:

In the example above the trades tables is a list of stock trades, across multiple exchanges
and stocks. The trades table contains details of the trades, include the codes for the stocks
and exchanges. To produce a report, we want to “lookup” the code and return the
description. E.g. for the exchange code ASX we want the description Australian Stock
Exchange. A typical method to achieve this is a data step merge or SQL join. If there are
many lookup tables, data step is complicated requiring multiple sort/merge steps, and SQL
requires joining all the tables, which again can get complicated and slow.

I will present two alternatives to data step merge and sql join:

• Formats as lookup tables

• Hash tables

FORMATS AS LOOKUP TABLES
Traditionally, formats are used to enhance output. However, in essence they are ways to
recode codes into formatted values, which is what we are trying to achieve with our lookup
tables.

There are two steps in the process:

1. Create a format from a data set

2. Use the lookup table in a data step or where clause

This allows us to avoid data step sort/merge and sql join, which can greatly reduce
execution time. As formats can be used in analysis procs, formats also allow automatic
aggregation of data without any recoding.

The format is loaded into memory when it is required, which is why it is very fast. However,
that means the format(s) must fit in available virtual memory. This is not usually a problem
for typical lookup tables.

trades

Buy/sell code
B=Buy
S=Sell

Instrument Symbol
TLS=Telstra
WOW=Woolworths
.

Exchange details
ASX: Sydney, Australia
NYSE: New York, USA
.

13

You can create the formats with source code:
Proc format;
Value $Buysell
 ‘B’ =‘Buy’
 ‘S’ =‘Sell’
 other =‘Unknown Code’
;

This method works for very small tables, but is unwieldy for large tables and also requires
source code changes if the lookup tables are updated. A better solution is to load the
format directly from the lookup table, using the cntlin= option of the FORMAT procedure.

Syntax:
Proc format cntlin=xxx;

The cntlin data set contains (at least) these three columns

• Start (and end if it is a range)

• Label

• Fmtname

– Fmtname is the name of the format

– Standard SAS name rules, but must not end in a digit

– $ symbol denotes a character format

– $fmtname -> character, fmtname -> numeric

There are many more possible columns, mainly for numeric formats. Check the
documentation for all the possibilities. In our example we need a column HLO with the
value ‘O’ meaning other.

For our $buysell format, this is the data set we need:

You can use a data step or sql view to create the cntlin data set.

To lookup the format in a DATA STEP or SQL, use the PUT function, e.g.:
Put (‘B’,$buysell.) è ‘Buy’
Code=‘X’; Put (code,$buysell.) è ‘Unknown Code’
If Put (code,$buysell.) = ‘Sell’ then …;

14

Avoiding sort/merge with a format:

Sort/merge method:

81 /* merge requires an explicit sort */
82
proc sort data=trades;by symbol;run;
ERROR: An error occurred during sort : Error writing to data set
"WORK.trades" :
 No space left on device
NOTE: Procedure sort step took :
 real time : 39:22.890
 cpu time : 1:13.546
84 proc sort data=crsdata.prices;by symbol;
85 run;
86
87 data test;
88 merge trades crsdata.prices(keep=Symbol InstrumentName);
89 by symbol;
90 run;
NOTE: 7122000 observations were read from "WORK.trades"
NOTE: 1908 observations were read from "CRSDATA.prices"
NOTE: Data set "WORK.test" has 7122000 observation(s) and 22 variable(s)
NOTE: The data step took :
 real time : 13:05.781
 cpu time : 0:48.937

You can see the sort is very slow – I left the out of space error message to show that
sorting requires a lot of space – this is a common error. I then reran the sort (but left those
lines out of the log)

Format method:

/* format lookup requires no sorting and a single pass of each table. */
93 data cntlin; *could use a view here to make more dynamic ;
 retain fmtname '$symbolname';
96 set crsdata.prices(keep=Symbol InstrumentName);
97 rename Symbol=start;
98 rename InstrumentName=Label;

trades

Instrument Symbol
TLS=Telstra
WOW=Woolworths
.

15

101 proc format cntlin=cntlin;
 run;
NOTE: 1908 observations were read from "CRSDATA.prices"
NOTE: Data set "WORK.cntlin" has 1908 observation(s) and 3 variable(s)
NOTE: The data step took :
 real time : 0.546
 cpu time : 0.015
NOTE: Format $symbolname is already in the catalog and will be overwritten
NOTE: 1908 observations were read from "WORK.cntlin"
NOTE: Procedure format step took :
 real time : 4.000
 cpu time : 0.046

104 data test;
105 set trades;
106 InstrumentName=put(symbol,$symbolname.);
107 run;
NOTE: 7122000 observations were read from "WORK.trades"
NOTE: Data set "WORK.test" has 7122000 observation(s) and 22 variable(s)
NOTE: The data step took :
 real time : 11:02.515
 cpu time : 0:36.218

The format method is slightly faster than the merge but avoids the slow sort completely.

Avoiding slow sql join with a format

trades

Account Details
AccountID
PhoneNumber

Instrument Symbol
TLS=Telstra
WOW=Woolworths
.

Exchange details
ASX: Sydney, Australia
NYSE: New York, USA
.

Contract details
ContractRef
Employee

16

SQL join method:

proc sql _method;
create table testsql as
Select distinct
 facts.*
 ,symbols.InstrumentName
 ,con.EmployeeName
 ,ex.Country
 ,ac.TelephoneNumber
 from crsdata.trades as facts
 ,crsdata.customers as ac
 ,crsdata.exchanges as ex
 ,crsdata.prices as symbols
 ,crsdata.Contracts as Con
 where
 facts.accountid=ac.accountid
 and facts.ContractRef=Con.ContractRef
 and facts.symbol=symbols.symbol
 and facts.exchange=ex.exchange
 ;
Sqxsort
 sqxuniq
 sqxhsh
 sqxhsh
 sqxhsh
 sqxhsh
 sqxsrc (CRSDATA.trades)
 sqxsrc (CRSDATA.exchanges)
 sqxsrc (CRSDATA.customers)
 sqxsrc (CRSDATA.Contracts)
 sqxsrc (CRSDATA.prices)

NOTE: Data set "WORK.testsql" has 111863 observation(s) and 24 variable(s)
NOTE: Procedure sql step took :
 real time : 1:25.015
 user cpu time : 0:05.156
 system cpu time : 0:11.359

The _method option of the SQL procedure shows details in the log of the execution method
of sql.

Format method:

data testformats;
 set crsdata.trades;
 InstrumentName
 =put(symbol,$symbolname.);
 EmployeeName
 =put(ContractRef,$ConEmployeeName.);
 Country
 =put(exchange,$exchangecountry.);
 TelephoneNumber
 =put(AccountID,$ACTelephoneNumber.);
run;

17

NOTE: Data set "WORK.testformats" has 109519 observation(s) and 24
variable(s)
NOTE: The data step took :
 real time : 11.406
 user cpu time : 1.796
 system cpu time : 1.156

The format method uses significantly less execution time and CPU time. As a personal
opinion, I think it’s easier to read as well. J

Formats in analysis procedures
Although not technically a “lookup”, the ability to use lookup tables as formats in procedures
can save time by avoiding the recoding altogether

/*Use format to create analysis variable*/
data cntlin;
set crsdata.customers
 (keep=AccountID PostCode);
start=AccountID;
label=Postcode;
fmtname='$ACPostCode';
proc format cntlin=cntlin;run;

Use DATA step to recode the lookup variable:

data trades_postcode;
 set crsdata.trades;
 Postcode=put(AccountID,$ACPostcode.);
run;
proc freq data=trades_postcode;
tables postcode;
run;

Compared with simply using the format in the FREQ procedure. This avoids a pass of the
data to do the recoding:

proc freq data=crsdata.trades
 order=formatted;
tables AccountID;
Format AccountID $ACPostCode.;
run;

HASH TABLES
Hash tables are quite similar in concept to using formats as lookup tables. The syntax is
somewhat more complicated, but they overcome a significant shortcoming of formats. A
format can only have one lookup code and one return value. A hash table can have multiple
codes in the lookup (referred to as composite keys) and return multiple values.

The advantages are similar – they are stored in memory so very fast. Unlike a format
though they can only be used in a DATA step, not a procedure or SQL.

Hash tables have a wide range of uses out of the scope of this paper. I will not explain the
syntax in detail. I encourage you to read some of the many excellent papers on hash tables

18

in the SAS Global Forum online proceedings. This paper looks at hash tables as lookup
tables in comparison to formats.

As mentioned, the major advantage of hash tables over formats is that hash tables support
multiple keys and multiple return values. For example, our stock trades example has a
table of high and low prices for stocks by month. This is not suitable for a format, but is
suitable for a hash table

The lookup table looks like this:

 Keys(s) Data

Symbol QuoteMonth Opening Price Closing Price

TLS Sep 2010 2.50 2.60

TLS Oct 2010 2.55 2.45

WOW Sep 2010 26.55 27.00

WOW Oct 2010 27.50 28.55

Hash table syntax to create the hash table

• Uses object and dot notation

– Declare hash <objectname> ();

– <objectname>.definekey();

– <objectname>.definedata();

– <objectname>.definedone();

Example

• Using our prices tables, Find the value of a portfolio for a series of dates.

Create the hash table (in a data step)
length Exchange $3
 Symbol $6
 QuoteMonth open close 8
 ;
 declare hash stockprices (dataset:'crsdata.prices');
 stockprices.definekey('Exchange','Symbol','QuoteMonth');
 stockprices.definedata(‘open',‘close');
 stockprices.definedone();

Hash table syntax to create the hash table

• <objname>.find()

– use defined key variables

19

• <objname>.find(key:xxx,key:yyy)

– Can use different key variables

– Cannot use different data variables

• Finds the row in the hash that matches the key(s)

• Returns the data values to the PDV in the data vars

data portfolios errors;
keep investor symbol holding quotemonth value open close;
length Exchange $3 Symbol $6 <-------------------------------(3)
 QuoteMonth open close 8
 ;
if _n_=1 then do; <---(1)
 declare hash stockprices (dataset:'crsdata.prices');
 stockprices.definekey('Exchange','Symbol','QuoteMonth');
 stockprices.definedata(‘open',‘close');
 stockprices.definedone();
end;
Exchange='ASX'; Year=2007; /* hardcoded in this example */
set crsdata.investors;
do month=7 to 12;
 QuoteMonth=mdy(month,1,year);
 rc=stockprices.find();<---------------------------------------(2)
if rc=0 then output portfolios;
 else output errors;
end;
Run;

Some notes on the code above:

(1) The hash table is created at run time (not execution time), so it is imperative to add
this “if _n_ =1” code, so the hash table is only created once. It’s not an error to not
do so, but would be very inefficient.

(2) We take the symbols in our investors file and lookup the stock prices for that symbol
for July to December 2007. It’s important to check the return code from the find. A
non-zero return code means the lookup code was not found (in our example meaning
no prices for the specified exchange, symbol and month). If you DON’T check the
return code you can produce incorrect results.

(3) We need to create the hash table variables in the PDV before we try to create the
hash table or we will get an error. Using a length statement works, but gets pretty
tedious if there’s lots of variables, as we need to know the length of all the variables.
We can use this code instead of the length statement to create the variables by
reading the header of the lookup table, but not actually reading any data:
 if _n_=0 then set crsdata.prices; /* define the vars in the PDV, */

 /* but never actually read the dataset */
n is never zero, so that statement compiles (and creates the variables in the PDV)
but never executes

20

Comparison of hash and formats as lookup tables:

Format Hash

Available in Data Step Yes Yes

Available in Proc Step Yes No

Size limit Available memory Available memory

Key columns/Data Columns Single/single Many/many

Can load from SAS data set Yes Yes

Duplicate Keys No Yes

CONCLUSION
Improving run times for SAS programs that process large data sets can significantly
improve programmer productivity. With large data sets, the major contributor to slow run
times is disk I/O. Reducing I/O usually will improve run time.

Two methods of reducing I/O presented in this paper are:

• Reducing the actual amount of data that is read, by using data sub setting
techniques and indexes.

• Making use of memory to improve run time. Current day computers typically have
large memory capacity, so this paper demonstrated techniques to load data into
memory because access to data in memory is orders of magnitude faster than
accessing data on disk

None of the techniques are a “magic bullet”. Users need to individually test techniques to
identify which techniques provide the best solution to each individual performance problem.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Steve Cavill
Infoclarity
Ph: +61 425 333 233
steve.cavill@infoclarity.com.au

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

