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ABSTRACT  

From state-of-the-art research to routine analytics, the Jupyter Notebook offers an 

unprecedented reporting medium. Historically, tables, graphics, and other types of output 

had to be created separately and then integrated into a report piece by piece, amidst the 

drafting of text. The Jupyter Notebook interface enables you to create code cells and 

markdown cells in any arrangement. Markdown cells allow all typical formatting. Code cells 

can run code in the document. As a result, report creation happens naturally and in a 

completely reproducible way. Handing a colleague a Jupyter Notebook file to be re-run or 

revised is much easier and simpler for them than passing along, at a minimum, two files: 

one for the code and one for the text. Traditional reports become dynamic documents that 

include both text and living SAS® code that is run during document creation. With the SAS 

kernel for Jupyter, you have the power to create these computational narratives and much 

more! 

INTRODUCTION  

In the past, scientific research and statistical analyses took place almost exclusively within 

particular software packages like SAS, Python, R or some other domain-specific program. A 

single project usually included multiple scripts that compartmentalized tasks like data 

cleaning, data manipulation, data visualization, statistical analysis and interpretation. 

Whether these pieces were executed separately or within some main, delegating script, they 

all stood apart from the write-up or narrative that inevitably accompanies such projects. Of 

course the code throughout should be well documented/commented, but some of these 

descriptions and explanations often appeared in the write-up as well. Output and graphics 

needed to be copied or exported in some way in order to integrate them into the project 

write-up. In the end, the report reads well and looks nice, but to fully share your project 

with someone there were numerous files to consolidate and send: code scripts, image files, 

data files, the codebook for the data, and the project write-up itself. The whole ordeal 

almost required a separate file with instructions on how to navigate all of these project 

materials! 

As of September 1, 2016 the Journal of the American Statistical Association: Applications 

and Case Studies requires code and data as a minimum standard for reproducibility of 

statistical scientific research [1]. The concept and goal of reproducibility seems like it 

should have always been implicit in all analyses and research, but only in recent years has 

its explicit popularity exploded. Courses on sites like Coursera emphasize adhering to this 

principle, and now the American Statistical Association will tangibly require it as part of their 

publication process. This all means authors are now required to submit collections of 

materials similar to those described above: possibly multiple code scripts, data files, and the 

article itself. This process can seem like a hassle and might even increase the potential for 

errors and problems with more materials to keep track of. 

The Jupyter Notebook alleviates the obligation to navigate all of these files by allowing the 

code, output, graphics, codebook for the data, and narrative text to exist within the same 

file! With the code in the same file as the text, the possible redundancy between comments 

in the code and text in the write-up disappears. How does the Jupyter Notebook accomplish 

all of this? 
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The Jupyter Notebook is a web application that allows you to create and share documents 

that contain live code, equations, visualizations and explanatory text [2]. The notebook has 

support for over 40 programming languages, including SAS now. Notebooks are easily 

shared with others. Code within the notebook can produce rich output such as images, 

videos, LaTeX, and JavaScript. Interactive widgets can be used to manipulate and visualize 

data in real time. 

Wrapping all of these utilities into one cohesive tool revolutionizes the way we do data 

science and statistical computing/communication. The benefits of the Jupyter Notebook 

shone across arenas such as computing coursework, academic research, and numerous 

industries. 

WHERE TO BEGIN 

Learning a new tool can be daunting, especially one that accomplishes so much! Thankfully, 

Project Jupyter [2] makes it easy to install and use by following the instructions at: 

 

https://jupyter.org/install 

 

These instructions only get you started with the Jupyter software and Python (the language 

it was originally built for). In order to use SAS with Jupyter, you will need to install the SAS 

kernel for Jupyter. The experts at SAS have made this straightforward as well, by following 

the instructions at their GitHub page here: 

 

https://github.com/sassoftware/sas_kernel 

 

With these set up you will be on your way in no time at all! For a more accessible trial of the 

SAS-with-Jupyter environment, be sure to check out SAS University Edition. Users of SAS 

University Edition likely already know that Jupyter Notebooks (and now JupyterLab) have 

been an alternative to the SAS Studio interface for some time now. This alternative requires 

no extra effort! Figure shows the welcome screen for SAS University Edition, containing 

options to either start the SAS Studio interface or the JupyterLab interface. 

 

 

Figure 1. Homepage of SAS University Edition. Traditional button to start SAS 

Studio interface is accompanied by an option to start JupyterLab. 

 

https://jupyter.org/install
https://github.com/sassoftware/sas_kernel
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With your venue determined, it’s a small step to launch your first Jupyter Notebook and 

begin working with SAS in one of the most exciting new ways! 

JUPYTER NOTEBOOKS 

Brian Granger, one of the developers of Project Jupyter, often recounts [3]: 

“Computers are good at consuming, producing and processing data. Humans are good at 

consuming, producing and processing stories. For data to be useful to humans, we need 

tools for telling stories that involve code and data.” 

This impetus for the creation of Project Jupyter helps define Jupyter Notebooks as a vehicle 

for what we now call computational narratives. Communication of statistical investigations 

and analyses supersedes all else, but depends on data and code at its core. Without the 

story or context, data summarizations and visualizations can be dry and meaningless. The 

Jupyter Notebook accommodates and unifies all of these things within a single environment. 

A typical Jupyter Notebook consists of a series of cells, as many as you like. These cells can 

contain code or markdown text. The user is literally creating a living, dynamic document 

that appears as a typical write-up would but contains live code that you can run at any 

time. The cells can re-arranged at will and the code cells can be executed altogether or in 

any order you like.  

Though the Jupyter Notebook is a web application, it is easily installed and used on any 

personal machine. It can also be deployed on centralized servers for use by many different 

users either within an organization or a class of students. Jupyter Notebooks with SAS 

can now also be used from within SAS University Edition! (as mentioned in the 

previous section) 

 

Figure 2 shows the header of the “home” page once you have launched Jupyter from your 

own personal installation. Figure 3 shows the “home” page of JupyterLab, the interface now 

offered through SAS University Edition. 

 
 
 
 
 
 
 
 
 

 
 

Figure 2. Header of “home” page of Jupyter. The image is from within a Google 

Chrome browser, but other browsers would work fine. 
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Figure 3. Home screen of JupyterLab through SAS University Edition. File explorer 

on the left side panel. Notebook launcher on the right main panel. 

 
From here you can navigate throughout your computer or system as you would from within 

“My Computer” on a PC or even a terminal on Mac/Linux. In fact, the initial installation of 

Jupyter provides functionality for use as a simple text file editor, a terminal, or the notebook 

environment (the focus of this paper).  

 

 
Figure 4. The choice for new applications from within Jupyter (left) or JupyterLab 

(right). In JupyterLab, one can either use the “File” menu at the top or click the 

appropriate icon in the main panel. 

Figure 4 demonstrates how you might open a new text file, terminal, or notebook within 

Jupyter. Notice, to open a new notebook you must specify the kernel you would like to use 

for that notebook. That is, you must choose the base/major programming language that will 

be in use throughout that notebook. It is possible to use multiple languages within a single 

notebook, but I will not get into those details here. Based on the image in Figure 2, you can 

see I can make use of Julia, Python, R, or SAS from within a notebook. When working 

with Jupyter Notebooks within SAS University Edition you currently only have 

access to a text file editor, folder explorer, and notebooks using SAS or Python (no 

other languages are available). 
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To start a new notebook I need only click on the desired kernel. This will create a new 

notebook file within my current working directory. The file will then appear under the Files 

tab on your home page (or in the JupyterLab left panel). Because that notebook needs to be 

able to run code, upon creation it will also show up under the Running tab on your home 

page. Stopping or halting your notebook will not delete or remove it, but just stop the 

kernel so that your machine no longer spends valuable resources on it. So what does a 

notebook look like? 

Figure 5. A new Jupyter Notebook with a SAS kernel in Jupyter (top), or 

JupyterLab (bottom). 

Figure 5 depicts a freshly created Jupyter Notebook with a SAS kernel. Jupyter notebooks 

always display the type of kernel in the top right corner of the page. The name of the file 

(notebook), currently “Untitled”, can be changed by simply double-clicking it at the top.  

Jupyter notebooks are made up of a series of cells. The flexibility of these cells makes 

Jupyter the amazing tool that it is. The notebook starts with a single cell, displayed in Figure 

5 as the beige box in the middle with “In [ ]:” directly to the left of it. The thin gray box 

around this cell means that it is selected. The “In [ ]:” notation in addition to the word 

“Code” at the top of the screen indicate that this is a code cell. This means SAS code could 

be entered into this cell and run. The output would then appear in a cell directly beneath the 

cell in which the code was run, as seen in Figure 6. 
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Figure 6. Sample SAS output in a Jupyter Notebook. 

Code cells and SAS output cells seem easy enough to use and navigate, but where did the 

SAS log go? SAS wonderfully integrates two easy-to-use buttons for accessing the SAS log, 

as seen in Figure 7. Because code cells can be run individually or in groups or all at once, 

and because Jupyter Notebooks can become quite lengthy, one button accesses the log for 

the most recently executed cell while the other accesses the log for the entire notebook. 

 

The buttons displayed in Figure 7, for revealing the log, do not exist in the JupyterLab 

interface. From within JupyterLab, to view the log for SAS code that you have just run you 

should type %showLog or %showFullLog in the next cell and then run that cell. 
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Figure 7. Access to the SAS log in a Jupyter Notebook. The left button shows the 

SAS log for the last executed cell. The right button shows the complete SAS log for 

the entire notebook. 

Up to this point Jupyter has not provided anything Base SAS does not already provide, 

except that this notebook structure of a series of cells lends itself incredibly well to easily 

and conveniently running only certain pieces of code or portions of an analysis. 

 

 

 

 

 

 

Figure 8. Some of the options and flexibility for running parts of your notebook in 

Jupyter (left) or JupyterLab (right). 

Figure 8 hints at the flexibility Jupyter boasts when it comes to partially running your script 

or analysis. These pieces, or cells, are much more distinguishable than comment-separated 

portions of code within a single SAS script.  

Jupyter’s coup de grace over most, if not all, other tools of this nature is its flexibility in cell 

type. The cells of these notebooks are not restricted to code! 
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Figure 9. The menu for choosing cell type. 

With coding and markdown cells the Jupyter Notebook literally becomes a living, dynamic 

document! SAS code can be entered and run in one cell, produce output in the next, and be 

wrapped above and below with text telling the story of the analysis. Jupyter effectively 

makes the job of report writing seamless and painless.  

Notebooks are, indeed, easily shared but we are by no means confined to Jupyter for 

viewing things. 

  

Figure 10. Save types for Jupyter notebooks. 

The default extension of a Jupyter Notebook is .ipynb, after the IPython Notebook that 

preceded Project Jupyter. Figure 10 reveals the many well-used formats that Jupyter 

notebooks can be downloaded as in addition to .ipynb. Notably, Jupyter notebooks can be 

converted to HTML or PDF files, which are even more ubiquitous than notebook files…for 
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now. You can even download the code from your entire notebook as a traditional SAS script. 

Now it takes a relatively small amount of time to create a coherent, integrated document 

that is publication quality! 

 

Figure 11. A snippet from an example notebook on integration. 

Figure 11 displays a small portion of a dynamic document created using a Jupyter Notebook 

to discuss integration. While the example is a bit pedantic, it demonstrates nicely the full 

integration of markdown headings, a visualization, accompanying text including LaTeX math 

notation, and executed but suppressed code. 
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USING JUPYTER TO DO REPRODUCIBLE DATA SCIENCE 

Statistics and Data Science projects often involve an extensive and sometimes intense 

workflow that can start with data collection. Usually data must be cleaned in some way and 

then prepared for analysis. Summaries and visualizations supplement both the exploratory 

data analysis phase and the final analysis itself. This collection of commented scripts must 

inevitably get cleaned up after the project to make it more easily shared and readable to 

others. Even once the scripts are clean, the results of all that work are distinct from scripts; 

living in their own meticulously drafted report.  

 

The Jupyter Notebook simplifies all of this by assimilating the code, the documentation for 

said code, the output and graphics, and the project write-up into a single, unified document 

that ensures reproducibility by allowing live code to be run throughout the document. 

Granger, again, would say the Jupyter Notebook is “making computational reproducibility 

enjoyable and minimizing the ‘distance’ between a human user and their code/data through 

interactivity” [3]. 

The use of Jupyter Notebooks and support for them continues to grow exponentially to the 

point where they are becoming a standard environment to work in. Github now renders 

Jupyter Notebooks and is indexing notebook content, going so far as to track trending 

notebooks. The Binder project enables Github hosted notebooks to be run by anyone on the 

internet! 

Many online scientific publications now include their data and analysis via Jupyter 

Notebooks. O’Reilly media publishes books accompanied by Jupyter Notebooks. 

BuzzFeedNews publishes code and data for all data-backed articles they write, via Jupyter 

Notebooks. The LA Times is starting to do the same thing! 

While Project Jupyter is free to use, it’s gaining popularity in commercial products as well. 

Companies like IBM, Kaggle, Google Cloud Datalab, DataRobot, dataiku, and many more are 

building dashboards, platforms and other products based on Jupyter Notebooks. 

The academic uses for Jupyter are just as obvious as the industry-based ones! In parallel 

with the explosion of reproducibility as a standard for data science work is the increasing 

trend of tool plurality among data scientists. Whether it’s a variety of tools or just a small 

handful, more and more people who work with data do that work with multiple software 

packages: SAS, Python, R, Tableau, and many more. Jupyter’s compatibility with 

numerous languages, including SAS, Python, and R, is another huge benefit it 

boasts! 

USING JUPYTER TO REINFORCE SOFT SKILLS IN THE CLASSROOM 

Historically, writing reports and presentations involved cobbling together separately created 

code, output, and graphics throughout the text of your story or analysis; assignments in 

statistical computing courses involved the creation of a program or script to accomplish 

some set of tasks. 

To be fair, less than a year ago my own assignments for Cal Poly’s course in statistical 

computing with SAS involved such scripts which were then submitted to be run and checked 

by me or a grader. The work is tedious and inorganic. Students answer questions as 

comments in their code; or create a separate document for their answers within which they 

must now paste code or exported graphics. A non-trivial amount of time gets spent on the 

report construction, when in fact it should be spent on the programming or 

writing/interpretation or something more meaningful. Additionally, my assessment of their 

assignments becomes overly focused on the technical aspects when all they submit is their 

SAS script file. 
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To better respect both the students’ time as well as my own, there needs to be a single 

vehicle for the code, output, graphics, and text that go into a report or analysis. With such a 

tool students would get the training and skills in statistical computing and communication 

that they deserve and need for today’s employers. Jupyter provides the answer to this 

dilemma! 

Our STAT 330 (Statistical Computing with SAS) course introduces Statistics majors and 

minors to working in SAS and demands much from them in the way of data management, 

data manipulation, data visualization and statistical analysis. For most STAT 330 students 

this is their first programming course, but it is a statistical computing course. Since the 

focus remains data and statistics, interpretation and report writing are critical components 

of the course.  

Indeed, for students and others using SAS to perform statistical analyses or complete data 

science projects, the construction of the report remains a key component. I will no longer 

ask students to submit .sas files for course assignments. The ease with which students can 

construct dynamic documents, with embedded code and text, with Jupyter notebooks 

makes other assignment submission types obsolete. Code cells within a Jupyter Notebook 

should still be commented and documented, but the narrative of the report can exist in the 

distinct markdown cells. 

What’s more, planning the arrangement and flow of the document within a Jupyter 

Notebook need not happen on the fly. Students can experiment and code to their hearts 

content, annotating and documenting in whatever order and wherever they choose. Cells 

within the Jupyter Notebook can be re-arranged at any point in time!  

Making use of the Jupyter Notebook to write up statistical analyses with embedded SAS 

code will drastically improve the amount of time students spend communicating about data 

and statistics, the amount of feedback they get about said communication, and hence the 

overall quality of their soft skills. 

Besides being a wonderful submission vehicle for students, Jupyter Notebooks also provide 

a nice setting for lecture materials and textbooks themselves; and this is already 

happening! 

CONCLUSION 

While traditional report writing using exported graphics and output has gotten easier in 

recent years, it has been surpassed by Jupyter. Though not standard yet, Jupyter is used by 

numerous companies and organizations as a key tool for statistics and data science 

projects. This heavy use along with the ever-increasing demand of employers for people 

with both technical skills in statistics and programming, and soft skills in communication, 

necessitates the use of Jupyter as an educational resource and industry tool. 

Students’ and data scientists’ abilities to write clear reports and translate statistical analyses 

succinctly using numerical and graphical summaries need not be hamstrung by tedious 

document creation tasks anymore. These abilities are bound to improve with consistent use 

of the Jupyter Notebook for course assignments, academic publications, data journalism, 

data science projects in industry and everything in between to create living, dynamic 

documents!  
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