
1

Paper 3262-2019

STEPPING UP YOUR SAS® GAME WITH JUPYTER NOTEBOOKS

Hunter Glanz, Statistics Department, California Polytechnic State University, San Luis Obispo,
California

ABSTRACT

From state-of-the-art research to routine analytics, the Jupyter Notebook offers an

unprecedented reporting medium. Historically, tables, graphics, and other types of output

had to be created separately and then integrated into a report piece by piece, amidst the

drafting of text. The Jupyter Notebook interface enables you to create code cells and

markdown cells in any arrangement. Markdown cells allow all typical formatting. Code cells

can run code in the document. As a result, report creation happens naturally and in a

completely reproducible way. Handing a colleague a Jupyter Notebook file to be re-run or

revised is much easier and simpler for them than passing along, at a minimum, two files:

one for the code and one for the text. Traditional reports become dynamic documents that

include both text and living SAS® code that is run during document creation. With the SAS

kernel for Jupyter, you have the power to create these computational narratives and much

more!

INTRODUCTION

In the past, scientific research and statistical analyses took place almost exclusively within

particular software packages like SAS, Python, R or some other domain-specific program. A

single project usually included multiple scripts that compartmentalized tasks like data

cleaning, data manipulation, data visualization, statistical analysis and interpretation.

Whether these pieces were executed separately or within some main, delegating script, they

all stood apart from the write-up or narrative that inevitably accompanies such projects. Of

course the code throughout should be well documented/commented, but some of these

descriptions and explanations often appeared in the write-up as well. Output and graphics

needed to be copied or exported in some way in order to integrate them into the project

write-up. In the end, the report reads well and looks nice, but to fully share your project

with someone there were numerous files to consolidate and send: code scripts, image files,

data files, the codebook for the data, and the project write-up itself. The whole ordeal

almost required a separate file with instructions on how to navigate all of these project

materials!

As of September 1, 2016 the Journal of the American Statistical Association: Applications

and Case Studies requires code and data as a minimum standard for reproducibility of

statistical scientific research [1]. The concept and goal of reproducibility seems like it

should have always been implicit in all analyses and research, but only in recent years has

its explicit popularity exploded. Courses on sites like Coursera emphasize adhering to this

principle, and now the American Statistical Association will tangibly require it as part of their

publication process. This all means authors are now required to submit collections of

materials similar to those described above: possibly multiple code scripts, data files, and the

article itself. This process can seem like a hassle and might even increase the potential for

errors and problems with more materials to keep track of.

The Jupyter Notebook alleviates the obligation to navigate all of these files by allowing the

code, output, graphics, codebook for the data, and narrative text to exist within the same

file! With the code in the same file as the text, the possible redundancy between comments

in the code and text in the write-up disappears. How does the Jupyter Notebook accomplish

all of this?

2

The Jupyter Notebook is a web application that allows you to create and share documents

that contain live code, equations, visualizations and explanatory text [2]. The notebook has

support for over 40 programming languages, including SAS now. Notebooks are easily

shared with others. Code within the notebook can produce rich output such as images,

videos, LaTeX, and JavaScript. Interactive widgets can be used to manipulate and visualize

data in real time.

Wrapping all of these utilities into one cohesive tool revolutionizes the way we do data

science and statistical computing/communication. The benefits of the Jupyter Notebook

shone across arenas such as computing coursework, academic research, and numerous

industries.

WHERE TO BEGIN

Learning a new tool can be daunting, especially one that accomplishes so much! Thankfully,

Project Jupyter [2] makes it easy to install and use by following the instructions at:

https://jupyter.org/install

These instructions only get you started with the Jupyter software and Python (the language

it was originally built for). In order to use SAS with Jupyter, you will need to install the SAS

kernel for Jupyter. The experts at SAS have made this straightforward as well, by following

the instructions at their GitHub page here:

https://github.com/sassoftware/sas_kernel

With these set up you will be on your way in no time at all! For a more accessible trial of the

SAS-with-Jupyter environment, be sure to check out SAS University Edition. Users of SAS

University Edition likely already know that Jupyter Notebooks (and now JupyterLab) have

been an alternative to the SAS Studio interface for some time now. This alternative requires

no extra effort! Figure shows the welcome screen for SAS University Edition, containing

options to either start the SAS Studio interface or the JupyterLab interface.

Figure 1. Homepage of SAS University Edition. Traditional button to start SAS

Studio interface is accompanied by an option to start JupyterLab.

https://jupyter.org/install
https://github.com/sassoftware/sas_kernel

3

With your venue determined, it’s a small step to launch your first Jupyter Notebook and

begin working with SAS in one of the most exciting new ways!

JUPYTER NOTEBOOKS

Brian Granger, one of the developers of Project Jupyter, often recounts [3]:

“Computers are good at consuming, producing and processing data. Humans are good at

consuming, producing and processing stories. For data to be useful to humans, we need

tools for telling stories that involve code and data.”

This impetus for the creation of Project Jupyter helps define Jupyter Notebooks as a vehicle

for what we now call computational narratives. Communication of statistical investigations

and analyses supersedes all else, but depends on data and code at its core. Without the

story or context, data summarizations and visualizations can be dry and meaningless. The

Jupyter Notebook accommodates and unifies all of these things within a single environment.

A typical Jupyter Notebook consists of a series of cells, as many as you like. These cells can

contain code or markdown text. The user is literally creating a living, dynamic document

that appears as a typical write-up would but contains live code that you can run at any

time. The cells can re-arranged at will and the code cells can be executed altogether or in

any order you like.

Though the Jupyter Notebook is a web application, it is easily installed and used on any

personal machine. It can also be deployed on centralized servers for use by many different

users either within an organization or a class of students. Jupyter Notebooks with SAS

can now also be used from within SAS University Edition! (as mentioned in the

previous section)

Figure 2 shows the header of the “home” page once you have launched Jupyter from your

own personal installation. Figure 3 shows the “home” page of JupyterLab, the interface now

offered through SAS University Edition.

Figure 2. Header of “home” page of Jupyter. The image is from within a Google

Chrome browser, but other browsers would work fine.

4

Figure 3. Home screen of JupyterLab through SAS University Edition. File explorer

on the left side panel. Notebook launcher on the right main panel.

From here you can navigate throughout your computer or system as you would from within

“My Computer” on a PC or even a terminal on Mac/Linux. In fact, the initial installation of

Jupyter provides functionality for use as a simple text file editor, a terminal, or the notebook

environment (the focus of this paper).

Figure 4. The choice for new applications from within Jupyter (left) or JupyterLab

(right). In JupyterLab, one can either use the “File” menu at the top or click the

appropriate icon in the main panel.

Figure 4 demonstrates how you might open a new text file, terminal, or notebook within

Jupyter. Notice, to open a new notebook you must specify the kernel you would like to use

for that notebook. That is, you must choose the base/major programming language that will

be in use throughout that notebook. It is possible to use multiple languages within a single

notebook, but I will not get into those details here. Based on the image in Figure 2, you can

see I can make use of Julia, Python, R, or SAS from within a notebook. When working

with Jupyter Notebooks within SAS University Edition you currently only have

access to a text file editor, folder explorer, and notebooks using SAS or Python (no

other languages are available).

5

To start a new notebook I need only click on the desired kernel. This will create a new

notebook file within my current working directory. The file will then appear under the Files

tab on your home page (or in the JupyterLab left panel). Because that notebook needs to be

able to run code, upon creation it will also show up under the Running tab on your home

page. Stopping or halting your notebook will not delete or remove it, but just stop the

kernel so that your machine no longer spends valuable resources on it. So what does a

notebook look like?

Figure 5. A new Jupyter Notebook with a SAS kernel in Jupyter (top), or

JupyterLab (bottom).

Figure 5 depicts a freshly created Jupyter Notebook with a SAS kernel. Jupyter notebooks

always display the type of kernel in the top right corner of the page. The name of the file

(notebook), currently “Untitled”, can be changed by simply double-clicking it at the top.

Jupyter notebooks are made up of a series of cells. The flexibility of these cells makes

Jupyter the amazing tool that it is. The notebook starts with a single cell, displayed in Figure

5 as the beige box in the middle with “In []:” directly to the left of it. The thin gray box

around this cell means that it is selected. The “In []:” notation in addition to the word

“Code” at the top of the screen indicate that this is a code cell. This means SAS code could

be entered into this cell and run. The output would then appear in a cell directly beneath the

cell in which the code was run, as seen in Figure 6.

6

Figure 6. Sample SAS output in a Jupyter Notebook.

Code cells and SAS output cells seem easy enough to use and navigate, but where did the

SAS log go? SAS wonderfully integrates two easy-to-use buttons for accessing the SAS log,

as seen in Figure 7. Because code cells can be run individually or in groups or all at once,

and because Jupyter Notebooks can become quite lengthy, one button accesses the log for

the most recently executed cell while the other accesses the log for the entire notebook.

The buttons displayed in Figure 7, for revealing the log, do not exist in the JupyterLab

interface. From within JupyterLab, to view the log for SAS code that you have just run you

should type %showLog or %showFullLog in the next cell and then run that cell.

7

Figure 7. Access to the SAS log in a Jupyter Notebook. The left button shows the

SAS log for the last executed cell. The right button shows the complete SAS log for

the entire notebook.

Up to this point Jupyter has not provided anything Base SAS does not already provide,

except that this notebook structure of a series of cells lends itself incredibly well to easily

and conveniently running only certain pieces of code or portions of an analysis.

Figure 8. Some of the options and flexibility for running parts of your notebook in

Jupyter (left) or JupyterLab (right).

Figure 8 hints at the flexibility Jupyter boasts when it comes to partially running your script

or analysis. These pieces, or cells, are much more distinguishable than comment-separated

portions of code within a single SAS script.

Jupyter’s coup de grace over most, if not all, other tools of this nature is its flexibility in cell

type. The cells of these notebooks are not restricted to code!

8

Figure 9. The menu for choosing cell type.

With coding and markdown cells the Jupyter Notebook literally becomes a living, dynamic

document! SAS code can be entered and run in one cell, produce output in the next, and be

wrapped above and below with text telling the story of the analysis. Jupyter effectively

makes the job of report writing seamless and painless.

Notebooks are, indeed, easily shared but we are by no means confined to Jupyter for

viewing things.

Figure 10. Save types for Jupyter notebooks.

The default extension of a Jupyter Notebook is .ipynb, after the IPython Notebook that

preceded Project Jupyter. Figure 10 reveals the many well-used formats that Jupyter

notebooks can be downloaded as in addition to .ipynb. Notably, Jupyter notebooks can be

converted to HTML or PDF files, which are even more ubiquitous than notebook files…for

9

now. You can even download the code from your entire notebook as a traditional SAS script.

Now it takes a relatively small amount of time to create a coherent, integrated document

that is publication quality!

Figure 11. A snippet from an example notebook on integration.

Figure 11 displays a small portion of a dynamic document created using a Jupyter Notebook

to discuss integration. While the example is a bit pedantic, it demonstrates nicely the full

integration of markdown headings, a visualization, accompanying text including LaTeX math

notation, and executed but suppressed code.

10

USING JUPYTER TO DO REPRODUCIBLE DATA SCIENCE

Statistics and Data Science projects often involve an extensive and sometimes intense

workflow that can start with data collection. Usually data must be cleaned in some way and

then prepared for analysis. Summaries and visualizations supplement both the exploratory

data analysis phase and the final analysis itself. This collection of commented scripts must

inevitably get cleaned up after the project to make it more easily shared and readable to

others. Even once the scripts are clean, the results of all that work are distinct from scripts;

living in their own meticulously drafted report.

The Jupyter Notebook simplifies all of this by assimilating the code, the documentation for

said code, the output and graphics, and the project write-up into a single, unified document

that ensures reproducibility by allowing live code to be run throughout the document.

Granger, again, would say the Jupyter Notebook is “making computational reproducibility

enjoyable and minimizing the ‘distance’ between a human user and their code/data through

interactivity” [3].

The use of Jupyter Notebooks and support for them continues to grow exponentially to the

point where they are becoming a standard environment to work in. Github now renders

Jupyter Notebooks and is indexing notebook content, going so far as to track trending

notebooks. The Binder project enables Github hosted notebooks to be run by anyone on the

internet!

Many online scientific publications now include their data and analysis via Jupyter

Notebooks. O’Reilly media publishes books accompanied by Jupyter Notebooks.

BuzzFeedNews publishes code and data for all data-backed articles they write, via Jupyter

Notebooks. The LA Times is starting to do the same thing!

While Project Jupyter is free to use, it’s gaining popularity in commercial products as well.

Companies like IBM, Kaggle, Google Cloud Datalab, DataRobot, dataiku, and many more are

building dashboards, platforms and other products based on Jupyter Notebooks.

The academic uses for Jupyter are just as obvious as the industry-based ones! In parallel

with the explosion of reproducibility as a standard for data science work is the increasing

trend of tool plurality among data scientists. Whether it’s a variety of tools or just a small

handful, more and more people who work with data do that work with multiple software

packages: SAS, Python, R, Tableau, and many more. Jupyter’s compatibility with

numerous languages, including SAS, Python, and R, is another huge benefit it

boasts!

USING JUPYTER TO REINFORCE SOFT SKILLS IN THE CLASSROOM

Historically, writing reports and presentations involved cobbling together separately created

code, output, and graphics throughout the text of your story or analysis; assignments in

statistical computing courses involved the creation of a program or script to accomplish

some set of tasks.

To be fair, less than a year ago my own assignments for Cal Poly’s course in statistical

computing with SAS involved such scripts which were then submitted to be run and checked

by me or a grader. The work is tedious and inorganic. Students answer questions as

comments in their code; or create a separate document for their answers within which they

must now paste code or exported graphics. A non-trivial amount of time gets spent on the

report construction, when in fact it should be spent on the programming or

writing/interpretation or something more meaningful. Additionally, my assessment of their

assignments becomes overly focused on the technical aspects when all they submit is their

SAS script file.

11

To better respect both the students’ time as well as my own, there needs to be a single

vehicle for the code, output, graphics, and text that go into a report or analysis. With such a

tool students would get the training and skills in statistical computing and communication

that they deserve and need for today’s employers. Jupyter provides the answer to this

dilemma!

Our STAT 330 (Statistical Computing with SAS) course introduces Statistics majors and

minors to working in SAS and demands much from them in the way of data management,

data manipulation, data visualization and statistical analysis. For most STAT 330 students

this is their first programming course, but it is a statistical computing course. Since the

focus remains data and statistics, interpretation and report writing are critical components

of the course.

Indeed, for students and others using SAS to perform statistical analyses or complete data

science projects, the construction of the report remains a key component. I will no longer

ask students to submit .sas files for course assignments. The ease with which students can

construct dynamic documents, with embedded code and text, with Jupyter notebooks

makes other assignment submission types obsolete. Code cells within a Jupyter Notebook

should still be commented and documented, but the narrative of the report can exist in the

distinct markdown cells.

What’s more, planning the arrangement and flow of the document within a Jupyter

Notebook need not happen on the fly. Students can experiment and code to their hearts

content, annotating and documenting in whatever order and wherever they choose. Cells

within the Jupyter Notebook can be re-arranged at any point in time!

Making use of the Jupyter Notebook to write up statistical analyses with embedded SAS

code will drastically improve the amount of time students spend communicating about data

and statistics, the amount of feedback they get about said communication, and hence the

overall quality of their soft skills.

Besides being a wonderful submission vehicle for students, Jupyter Notebooks also provide

a nice setting for lecture materials and textbooks themselves; and this is already

happening!

CONCLUSION

While traditional report writing using exported graphics and output has gotten easier in

recent years, it has been surpassed by Jupyter. Though not standard yet, Jupyter is used by

numerous companies and organizations as a key tool for statistics and data science

projects. This heavy use along with the ever-increasing demand of employers for people

with both technical skills in statistics and programming, and soft skills in communication,

necessitates the use of Jupyter as an educational resource and industry tool.

Students’ and data scientists’ abilities to write clear reports and translate statistical analyses

succinctly using numerical and graphical summaries need not be hamstrung by tedious

document creation tasks anymore. These abilities are bound to improve with consistent use

of the Jupyter Notebook for course assignments, academic publications, data journalism,

data science projects in industry and everything in between to create living, dynamic

documents!

REFERENCES

1. Fuentes, Montse. July 1, 2016. “Reproducible Research in JASA.” AMSTAT NEWS.

2. “Jupyter.” July 21, 2016. Available at http://jupyter.org.

http://jupyter.org/

12

3. Granger, Brian. “Jupyter Talks”. March 1, 2017. Available at

<https://github.com/ellisonbg/jupyter-talks>

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Hunter Glanz

Enterprise: Statistics Department, California Polytechnic State University

Address: 1 Grand Avenue

City, State ZIP: San Luis Obispo, CA 93407

Work Phone: 805-756-2792

E-mail: hglanz@calpoly.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

mailto:hglanz@calpoly.edu

