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ABSTRACT  
Thanks to the welcome introduction and support of an official SASPy module over the past 
couple of years, it is now a trivial task to incorporate SAS® into new workflows by 
leveraging the simple yet presentationally elegant Jupyter Notebook coding and publication 
environment, along with the broader Python data science ecosystem that comes with it. This 
paper and presentation begins with an overview of Jupyter Notebooks for the uninitiated, 
then proceeds to explain the essential concepts in SASPy that enable communicating 
seamlessly with a SAS session from Python code. Included along the way is an examination 
of Python DataFrames and their practical relationship to SAS data sets, as well as the 
unique advantages offered by bringing your SAS work into the Notebook workspace and into 
productive unity with the broad appeal of Python's syntax. 

INTRODUCTION  
The past several years have seen the introduction of a number of new pathways for 
integrating SAS® technologies and platforms with other languages and tools that are familiar 
to open-source data scientists, particularly with respect to the programming language 
Python. Yet given the growing array of new libraries and components that are now 
potentially relevant to the SAS analyst who wishes to integrate with Python (Jupyter, 
SASPy, SWAT, Pipefitter), it is perfectly forgivable to find oneself unclear as to the 
possibilities available, or uncertain of the practical starting points. This paper aims to 
provide an introduction to the first line of integrations that are likely to have the broadest 
immediate audience and benefit. These are, primarily, Jupyter notebooks and SASPy, which 
together offer a complete foundation from which to begin taking advantage of many new 
patterns that Python integration can bring to SAS developers of any level. 

This paper begins with a brief overview of the new platforms (Jupyter Notebook) and 
packages or modules (SAS Kernel for Jupyter, SASPy) that represent the primary entry 
points with which one needs to be familiar. Along the way, a simple briefing on the utility of 
Python and the distinct benefits of Jupyter will be provided for those to whom these remain 
foreign terms. After the walkthrough of these technologies, a few additional, practical 
benefits to the connection between Python and SAS will follow in the concluding remarks, as 
well as a nudge towards further libraries that make up the current landscape of SAS and 
Python. 

BACKGROUND: PYTHON AND JUPYTER NOTEBOOKS 
While they share a background foundation, the two primary tools to which this paper will 
draw attention (SASPy for writing Python code to interact with SAS, and Jupyter Notebook 
as a programming interface) are not strictly coextensive. In fact, you might only decide to 
directly utilize one or the other. A bit of clarity on the nature of Python and the purpose of 
Jupyter Notebook is therefore in order. 
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PYTHON 
A lengthy introduction to the Python language would be beyond the scope of this paper, yet 
a sense of its present position within data science will prove useful to the content that 
follows. Of the many prominent programming languages that are widely employed in 
communities of scientific or statistical computing and research, Python’s distinct 
contributions may best be characterized in terms of its clarity of syntax, its broad utility for 
general purpose computing or application development alongside data work, and its well-
developed pathways to efficient mathematical computation (the latter particularly by way of 
several popular packages like NumPy and Pandas).  

A notable area in which Python continues to find favor is machine learning and neural 
networks. To understand why that is the case, it bears recognizing that many of the popular 
tools for this area of functionality are not strictly implemented in Python code alone; often 
they merely take advantage of the clean syntax of the language in order to open an 
accessible interface to a framework that runs in lower-level code. The package Tensorflow, 
to take a prominent example, allows for Python to create computational graphs for machine 
learning that are ultimately executed using highly efficient low-level code written for 
optimization on GPUs or distributed systems. This pattern, in which Python acts as a 
developer-focused interface to code that will be executed at a lower level, is also the 
manner in which one will use a tool like SASPy to execute work in a local or remote SAS 
environment. To employ Python as a bridging language is therefore well in line with its other 
major uses in data science. 

JUPYTER NOTEBOOKS 
Jupyter Notebook (formerly known as iPython Notebook) offers an integrated environment 
for interactive programming, which simply means that the user can write and execute code 
within a single interface, as well as display many kinds of output directly inline with blocks 
of code. In this way, the coding, execution, and final report occupy a single cohesive 
“notebook” that can be distributed for others to view or to download and execute in their 
local environment. Jupyter is web-based in the sense that its user-facing application runs 
within a standard web browser, yet its most typical usage is entirely local to a single 
machine, which it orchestrates by creating a background process on your workstation that 
communicates with the web front-end via a local port. (Shared deployments for running the 
background process on a remote server do however exist, and further information on these 
developments can be found at the Jupyter Project homepage, linked below under 
Recommended Reading.)  

While the Jupyter project grew out of Python and uses it under the hood, its notebooks can 
use a number of different languages, including R, Scala, Java, and even Base SAS®. In 
order to use additional languages you must install a “kernel” that executes your code in 
another process, with Python acting as a bridge. Most kernels additionally provide syntax 
highlighting or other editing features like inline documentation and auto-completion. 
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Figure 1 displays a typical notebook, with a few blocks of code and output. 

 
Figure 1: A minimal Jupyter notebook running Python 

The title header in this example was written into the notebook using Markdown (a popular 
markup language for writing rich text), a feature incorporated directly into Jupyter 
notebooks (along with LaTeX support) that can easily be further leveraged for writing well-
presented documentation alongside code blocks. Often this may be used for writing a paper-
length treatment of a technique, with code examples and output interspersed throughout a 
body of lengthier prose sections. The title is followed in the screenshot by a couple blocks of 
code (in Python, in this case) and an output block, which displays the results of the prior 
cell. Interactive visualizations are also possible within the notebook. 

A notebook can be quickly published to the web on platforms like Github as a single, self-
contained file, which will display the code and output in a static form for online reading; 
interested parties can then download the notebook file for execution or further development 
on their local machine. As a consequence of this built-in capability to serve both as a 
complete coding environment and as a medium for teaching or sharing knowledge, Jupyter 
notebooks are popular in a number of online communities working with data science. 

INTEGRATIONS: SASPY AND SAS KERNEL FOR JUPYTER 
With an understanding of the role of Python and Jupyter Notebook in hand, the next step is 
to examine the two primary integrations by which you will be interacting with these tools. 
The SAS kernel for Jupyter makes it possible to write and execute SAS programs within a 
Jupyter Notebook, gaining in effect a new interface for SAS programming while requiring no 
alteration in code. SASPy, on the other hand, enables you to write Python code that 
effectively controls a SAS session, opening up the capabilities of SAS to be controlled 
entirely via code written in Python, and automatically handling conversion between Python 
and SAS data structures. 
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SAS KERNEL FOR JUPYTER  
SAS kernel for Jupyter is a Python package developed by the SAS Institute that enables SAS 
to be used as a kernel for Jupyter notebooks. It works by connecting the Jupyter 
environment to an interactive SAS session. Note that this package does not contain a SAS 
installation, and depends upon having a licensed and installed SAS instance available. 
However, it can be configured to connect to SAS in several ways:  

• A local instance of SAS running on the same machine; 

• A remote instance of SAS running on Unix that is accessible by SSH; 

• SAS® Viya by way of the Compute Service. 

Attaching the SAS kernel to a Jupyter notebook means that the entire present notebook 
(which corresponds to a single program or script) will accept only SAS code blocks; this 
contrasts with the option to write code that alternates between uses SAS and Python, which 
the SASPy package addresses (see the section following this one).  

Some SAS users may have first encountered the SAS kernel for Jupyter within SAS® 
University Edition, where it fits the educational goal of the learning edition by providing a 
more familiar interface to those who are likely to have already seen notebook-like interfaces 
in other data science contexts. Writing and coding within a notebook that is using the SAS 
kernel should likewise be a painless adjustment for existing users of the Base SAS 
programming language, with the primary change being that the log and output are both 
displayed inline between code blocks. See Figure 2 for a simple example.  

 
Figure 2: A minimal Jupyter notebook using the SAS kernel 
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The notebook in this screenshot follows the same flow as the Python notebook shown 
earlier, yet with ordinary SAS code written in the code blocks, and both the output and the 
log from a connected SAS session showing up after each section of code. This connected 
sequence of the log, output, and code illustrates the principal difference between using the 
SAS Windows application for developing code and using the Jupyter Notebook: here, all 
your work is executed and displayed inline (along with any accompanying write-up, if 
desired), so that the resulting page that is produced can act as a total report of the project’s 
code, log, and output—and is distributable as a single file, or can be published to the web in 
a format that perfectly contains a snapshot of your work.  

The ability to run SAS as a kernel within a Jupyter notebook opens up many of the key 
advantages of the notebook platform, particularly if sharing code and publishing to the web 
is desired for educational purposes. However, one achieves an even wider range of potential 
integrations by using the SASPy package directly to facilitate systematic communication and 
data sharing between the Python language and SAS. 

SASPY 
SASPy is a Python package that provides part of the underlying communication between 
Jupyter and SAS when using the SAS kernel; however, it can also be used directly (within 
Python code apart from the Jupyter environment, or within Jupyter notebooks that are 
written in Python), and has significant capabilities beyond the essential function of relaying 
SAS code and output.  

At its core, SASPy is capable of creating a SAS session and sending code to it for execution, 
as well as returning the output (logs and other output) to the controlling Python script. Yet 
it is also a powerful generator of SAS code, which means that it offers methods, objects, 
and syntax for use directly in idiomatic Python that it can then automatically convert to the 
appropriate SAS language statements for execution. In most cases, SAS procedures or 
steps are mapped directly to Python methods as a one-to-one equivalent.   

To understand where SASPy fits between Python and SAS, consider Figure 3.   

 
Figure 3: From Python Code to SAS and Back  

The red arrows show how a Python method (“hpsplit”) called on a dataset reference 
(“mydata”) is understood by SASPy, which generates and sends corresponding SAS code 
(HPSPLIT Procedure) to a controlled SAS session, and then acts as a middleman to receive 
both the log and main listing output for reflection to the user.  

SASPy achieves this integration atop shared dataset references which act as interfaces 
between the two environments. On the Python side, this works by way of the popular 
Python package Pandas, which offers a useful data and matrix abstraction called a 
DataFrame. A DataFrame can be created in Python and sent to SAS, after which Python 
retains a reference to the remote dataset for calling methods on it; additionally, you can 
retreive any dataset in the SAS session as a local DataFrame on the Python side.  
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The quickest way to gain an understanding of the typical workflows enabled by SASPy is to 
illustrate, in a trivial example, the full round-trip that a dataset can take between the 
Python language (with data stored in a Pandas DataFrame) and SAS (manipulating a 
corresponding data set stored in an active SAS session). Note that the lines below beginning 
with a hash (“#”) are comments:  

# initial library imports: SASPy and Pandas 
 
import pandas 
import saspy 
 
# connect to a SAS session 
# 'my_server' here references a connection name specified in 
# the local SASPy configuration; see SASPy documentation 
 
sas = saspy.SASsession(cfgname='my_server')  
 
# let’s say that python generates or loads some data;  
# here, it loads data from a local csv using Pandas  
 
my_dataset = pandas.read_csv("./my_local_data.csv") 
 
# now `my_dataset` references a pandas DataFrame local to Python; 
# we can send it to a SAS session using one step 
 
# df2d stands for dataframe2sasdata 
my_sas_dataset = sas.df2sd(my_dataset)  
 
# `my_sas_dataset` now references a data set stored in the SAS session; 
# yet we can manipulate or explore it using Python methods. 
# Here, a simple sort is applied, which will execute in SAS 
 
my_sas_dataset.sort('group') 
 
# and now we can pull the altered data set back into a local DataFrame 
# for further use in Python 
 
# sd2df stands for sasdata2dataframe 
my_sorted_set = sas.sd2df(my_sas_dataset.table) 

 

A couple additional notes on the code above will sharpen attention to the fundamental 
elements: 

1. The paired methods df2sd and sd2df are the principle means by which a data set 
may be transferred between SAS and Python. On each destination, the data types, 
column names, and other basic elements will be retained; some additional metadata 
unique to SAS data sets may however be dropped on the Python side. 

2. When a data set is located on the SAS side, the Python variable (my_sas_dataset 
above) acts as a reference with various attached methods. Here, when Python code 
invokes the sort method on this reference, SASPy tells the SAS session to run the 
corresponding procedure on the linked data set (in this case, the SORT procedure).   

The above code need not be run within Jupyter, although combining SASPy with Jupyter 
grants convenient display capabilities, allowing for tables or visualizations to be output 
immediately, as the brief notebook excerpt in Figure 4 illustrates by invoking a histogram. 
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Figure 4: A Histogram within Jupyter 

Both of the example methods invoked thus far (the sort method for invoking PROC SORT, 
and the hist method for invoking the SGPLOT procedure) are relatively trivial, yet SASPy 
includes support for a sizeable range of procedures, particularly in data modeling. Many of 
the more sophisticated methods for modeling or machine learning depend upon having a 
valid license for the appropriate product, and will warn the user if the corresponding product 
and procedures are unavailable in the connected SAS instance.  

In the case of the more complex procedures available through its API, the ability to learn 
the specific SAS code that SASPy generates is enormously helpful both for debugging your 
work and for instructing Python users in deeper knowledge of SAS syntax. By invoking the 
teach_me_SAS method on your session, you can tell SASPy not to execute the code and 
instead to merely print it: 

# switch into teaching mode 
 
sas.teach_me_SAS(True) 
 
# now display the code for our histogram  
 
sas_frame.hist('d', title="a simple histogram") 

 

The above usage outputs the SAS code that would have been generated and sent to your 
SAS session: 

proc sgplot data=WORK._df; 
   histogram d / scale=count;   
   title "a simple histogram";   
   density d;  
run; 
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This capability exposes the underlying communication between Python and SAS and allows 
for users to more easily transition mentally between the simpler commands of the SASPy 
API and the more complete SAS statements used. However, it also underscores the reality 
that the integration between SASPy and SAS is entirely handled by offering a clean set of 
commands and methods in the former that can invoke code in the latter; a very different 
style of interaction between Python and SAS is offered by the following packages, which 
may play a crucial role for those who which to leverage the power of Viya in the future. 
These are included for your reference, and to illustrate that a number of incremental 
possibilities exist as you begin to move forward with Python and SAS. 

ADDITIONAL PYTHON INTEGRATIONS: SWAT AND PIPERFITTER 

The SAS Scripting Wrapper for Analytics Transfer (SWAT) is not the central focus of this 
introductory paper on Jupyter, yet its placement in the current set of options for Python 
integration is worthy of consideration here. SWAT breaks from the architectural model given 
above in which Python acts as a generator of SAS code orchestrating its throughput to an 
ordinary SAS session; in contrast, SWAT represents a first-tier method for executing 
workflows of analysis actions in SAS® Cloud Analytic Services (CAS) in SAS® Viya. The 
syntax, however, once again builds atop integration with Pandas DataFrames, which means 
that general techniques and abstractions learned from using SASPy to integrate with Python 
will translate well; more will be said on this connection in the final considerations below. 

One final library connecting Python to SAS merits attention in that it integrates, at a higher 
workflow level, operations that might use either SASPy or SWAT. Pipefitter allows for the 
efficient implementation of pipelines of data transformations and analysis, passing a data 
set through a series of declared stages without needing to generate or manage many 
temporary data sets in between each task, eliminating much of the additional code and 
overhead in favor of a simple, understandable, and repeatable set of stacked steps. Once 
again, the existence of this library may not be immediately pertinent at the introductory 
level of using SASPy, yet its existence speaks to the long-term strategic advantages of 
adapting work to take advantages of these new paradigms. 

ADVANTAGES AND FURTHER CONSIDERATIONS 
Bridging SAS and Python has the immediately apparent advantage of bringing in a new set 
of tools in a second language and programming community that you can now more easily 
weave into your data manipulation or analyses. It also creates an excellent learning 
opportunity for those new to SAS and for easily publishing your work alongside the results 
in a single readable format online. 

There are further advantages to incorporating these new tools that are perhaps less 
immediately evident, yet equally significant. Tapping into Python also means opening up 
your hiring positions and internal operations to a new pool of potential data science 
colleagues, who may already be accustomed to languages like Python or R yet face an initial 
barrier or resistance when asked to adapt their knowledge entirely to a new platform. Given 
the concentration of certain research interests like machine learning in the Python 
community, this can represent a significant strategic advantage. Furthermore, the open-
source nature of SASPy (not only that its source code in Python is freely available, but that 
you can personally contribute to it, pending acceptance) can be a considerable motivating 
factor for certain professionals who may have an open-source background and enjoy helping 
to shape their own tools. The author of this paper has contributed significant functionality to 
SASPy that is now included in every release.  

The other major value proposition at stake concerns the future payoff of adopting Python 
integrations now in light of the positioning of SWAT (and secondary tools like Pipefitter) at 
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the cutting edge of the SAS product ecosystem. SWAT leverages similar syntax to SASPy 
and integrates with DataFrames in a homologous manner, which means that workflows you 
build today—even on a small scale with a single instance of SAS and SASPy in a Jupyter 
notebook—may prove to be excellent starting points towards later deploying powerful cloud-
based pipelines of analysis in Viya. The prospect of a single style of programming that 
retains its essential techniques from small, local experimentation to final production 
deployments on a powerfully distributed scale is well worth the time investment now.  

CONCLUSION 
SAS now offers an incremental set of integrations for Python, through which your work can 
progress in stages that will each offer immediate value. By adopting Jupyter notebooks 
merely as a new container for SAS development and work, you gain an excellent tool for 
sharing, learning, and publication. By integrating more tightly with Python libraries and 
syntax through leveraging SASPy directly, you can freely invoke methods and workflows 
bridging the advantages of the Python language and SAS products. Ultimately, the prospect 
that awaits is to further incorporate this work into higher order tools like Pipefitter, and to 
deploy cloud-based analytics by invoking SWAT under Viya. In this sense, the integration of 
Python and SAS ranges from a useful educational tool to a powerful part of your production 
suite of data processing and analysis. 

RECOMMENDED READING 
• Project Jupyter Home 

http://jupyter.org/ 

• SAS Software Github Page 
https://github.com/sassoftware 

• SAS Kernel for Jupyter Documentation 
https://sassoftware.github.io/sas_kernel/ 

• SASPy Documentation 
https://sassoftware.github.io/saspy/ 

• SAS Scripting Wrapper for Analytics Transfer (SWAT) Documentation 
https://sassoftware.github.io/python-swat/ 

• SAS Pipefitter Documentation 
https://sassoftware.github.io/python-pipefitter/ 

• SAS Viya Documentation 
http://support.sas.com/documentation/onlinedoc/viya/ 
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