
1

Paper SAS3232-2019

The ABCs of PROC HTTP

Joseph Henry, SAS Institute Inc., Cary, NC

ABSTRACT

Hypertext Transfer Protocol (HTTP) is the foundation of data communication for the World
Wide Web, which has grown tremendously over the past generation. Many applications now
exist entirely on the web, using web services that use HTTP for communication. HTTP is not
just for browsers since most web services provide an HTTP REST API as a means for the
client to access data. Analysts frequently find themselves in a situation where they need to

communicate with a web service or application from within a SAS® environment, which is
where the HTTP procedure comes in. PROC HTTP makes it possible to communicate with
most services, coupling your SAS® system with the web. Like the web, PROC HTTP
continues to evolve, gaining features and functionality with every new release of SAS®.
This paper will dive into the capabilities found in PROC HTTP allowing you to get the most

out of this magnificent procedure.

INTRODUCTION

PROC HTTP is a powerful SAS procedure for creating HTTP requests. HTTP is the underlying
protocol used by the World Wide Web, but it is not just for accessing websites anymore.
Web-based applications are quickly replacing desktop applications, and HTTP is used for the
communication between client and server. PROC HTTP can be used to create simple web
requests or communicate with complex web applications and you just need to know how.
This paper goes into detail about the features, capabilities, and limitations of PROC HTTP,

and which release of SAS® those are associated with. Many of the examples presented will
be using the webserver httpbin.org, which is a free HTTP request and response testing

service.

GETTING STARTED

The simplest thing to do with PROC HTTP is to read an HTTP resource into a file:

filename out TEMP;

filename hdrs TEMP;

proc http

 url="http://httpbin.org/get"

 method="GET"

 out=out

 headerout=hdrs;

 run;

This code simply performs an HTTP GET request to the URL and writes the response body to
the out fileref and any response headers to the hdrs file. This syntax is valid in SAS® 9.4

and above, but a lot has changed since SAS® 9.4 release in July 2013.

2

BROWSER LIKE DEFAULTS

Starting with SAS 9.4m3, certain intuitive defaults are set for requests.

If no method is set AND there is no input given, such as not uploading any data, the default request
method will be a GET (in SAS 9.3 – 9.4m2 the default was always POST).
If a URL scheme is not specified, http:// will be automatically appended, meaning that unless you
specifically need https, you do not need to enter the scheme, making PROC HTTP behave more like how
a web browser behaves.

Given this, the code above could be rewritten as such:

filename out TEMP;

filename hdrs TEMP;

proc http

 url="httpbin.org/get"

 out=out

 headerout=hdrs;

 run;

HTTP RESPONSE

Each HTTP request has a subsequent HTTP response. The headers that are received in the
response contains information about the response. In the above code, the headers are

written to the fileref hdrs and result in the following:

< HTTP/1.1 200 OK
< Content-Type: application/json
< Content-Length: 194
< Connection: keep-alive

The first line of the response header is called the Status-Line and consists of the protocol

version followed by a status code and a phrase describing the status code. The status code
is important because it can let you know if your request succeeded or not. Prior to SAS®

9.4m5, the way you extract the status code from the headers would be:

data _null_;

 infile hdrs scanover truncover;

 input @'HTTP/1.1' code 4. message $255.;

 call symputx('status_code',code,'g');

 call symputx('status_message',trim(message),'g');

run;

After this code has executed, the macro variables status_code and status_message

would contain 200 and OK respectively.

SAS 9.4m5 simplifies this tremendously by automatically storing the status code and status
phrase in the macro variables SYS_PROCHTTP_STATUS_CODE and
SYS_PROCHTTP_STATUS_PHRASE respectively. This eliminates the need to run a DATA

step to extract the status code and phrase. You can then use something like what is shown

below to check for errors:

%if &SYS_PROCHTTP_STATUS_CODE. ne 200 %then %do;

 %put ERROR: Expected 200, but received &SYS_PROCHTTP_STATUS_CODE.;

 %abort;

%end;

3

HTTP REQUEST HEADERS

It is often necessary to add one or more headers to the request. Prior to SAS 9.4m3, the

code would have been submitted as following:

filename headers TEMP;

data _null_;

 file headers;

 put "X-Header-Name: value of the header";

 put "X-Header-Name2: Another value";

run;

proc http

 method="GET"

 url="http://httpbin.org/headers"

 headerin=headers;

run;

HTTP headers consist of a field name followed by a colon (:), an optional white space, and
the field value. Using the code above, each line in the output f ile must be an acceptable

HTTP header, or errors occur.

SAS 9.4m3 added an easy way add headers to the request with the HEADERS statement.
The HEADERS statement takes string pairs, which are sent on the request as HTTP
headers. This eliminates the need for an extra DATA step as well as an additional input file.

An example of using the headers statement is shown below:

proc http

 url="httpbin.org/headers";

 headers "Accept"="application/json";

 run;

The resulting output is the following:

GET /headers HTTP/1.1
User-Agent: SAS/9
Host: httpbin.org
Connection: Keep-Alive
Accept: application/json

The headers statement also allows you to override any of the default headers that PROC
HTTP sends. Prior to this, the only default header that could be overridden was "Content-

Type" and had to be done using the option CT.

If you specify a value of "Content-Type" in the headers statement, that header will override

the value of the CT option.

UPLOADING DATA

You can use PROC HTTP to send data as well. This is typically done using a POST or PUT

request like:

proc http url="http://httpbin.org/post"

 method="POST"

 in=input;

run;

This code sends the data contained in the fileref input to the URL using an HTTP POST
request. If the content-type is not specified for a POST request, the default Content-Type

will be application/x-www-form-urlencoded.

4

The behavior will be almost identical for a PUT versus a POST except that in 9.4m3 and
later, the default Content-Type for a PUT is application/octet-stream instead of

application/x-www-form-urlencoded as it is in prior versions.

If you wish to construct the input data on the fly, you can use a datastep like:

filename input TEMP;

data _null_;

file input recfm=f lrecl=1;

put "some data";

run;

If doing this, it is normally advisable to use a fixed record format as well as a record length

of 1 as shown above to avoid any extraneous new line characters or padding.

In view 9.4m3 and later, the IN option also takes a quoted string, which means simple

input like this can be sent like:

proc http url="http://httpbin.org/post"

 in="some data";

run;

HTTP COOKIES

HTTP cookies are small pieces of data that a server sends to the client to store. These
cookies can be sent back with future requests and normally are used to identify if the
request is coming from the same client. This can be used to allow the web server to

remember a certain client state, such as, whether you have been logged in or not.

Cookies are stored and sent with PROC HTTP since 9.4m3, meaning that cookies received in
one call to PROC HTTP will be sent on the next call to PROC HTTP, if the cookie is valid for

the endpoint. Normally this just works, and you never even have to think about it, but there

could be a situation where you want to turn off cookies.

Global Option

If you set the macro variable PROCHTTP_NOCOOKIES to a value other than "", cookies

will not be stored or sent.

%let PROCHTTP_NOCOOKIES=1;

PROC Argument

You can also control cookies at the proc level by using the following options:

1.) NO_COOKIES – This prevents cookies on this proc call from being processed.

2.) CLEAR_COOKIES – This option clears any stored cookies before a call is made.

3.) CLEAR_CACHE – This option clears both stored cookies and stored connections.

PERSISTENT CONNECTIONS

Persistent connections or HTTP keep-alive is a way to send and receive multiple
requests/responses using the same connection. This is used extensively in web-browsers as
it can reduce latency tremendously by not constantly needing to create new connections
and reduces the overhead of TLS handshakes. As of SAS 9.4m3, PROC HTTP uses persistent

connections. Connections are kept alive by default, but if you need to, there are various

ways to disable or close a connection:

1.) To force a connection to close after a response, you can add a header as follows:

5

proc http

 ...

 headers "Connection"="close";

 ...

2.) To completely disable saving a persistent connection, you can use the option

NO_CONN_CACHE as follows:

proc http

 NO_CONN_CACHE

 ...

3.) To clear all persistent connections, use the option CLEAR_CONN_CACHE or

CLEAR_CACHE as follows:

proc http

 CLEAR_CONN_CACHE

 ...

AUTHENTICATION

Since SAS 9.4, PROC HTTP has supported 3 types of HTTP Authentication: BASIC, NTLM,

and Negotiate (Kerberos).

BASIC

BASIC authentication is (as the name suggests) very basic. The user name and password
are sent in an Authorization header encoded in Base64. For all intents and purposes, this

means that the password is being sent across the wire in clear text. BASIC authentication is

not secure unless HTTPS is being used.

NEGOTIATE

HTTP Negotiate is an authentication extension that is used commonly to provide single sign-
on capability to web requests. This is normally used in PROC HTTP when a password is not

provided, since it will use the current user’s identity for authentication. Since a password
does not need to be specified in the SAS code, and the password is never actually
transmitted across the wire, HTTP Negotiate is a much more secure form of authentication

than BASIC.

NTLM

NTLM is an authentication protocol used on Microsoft systems. NTLM is not normally directly
used, but instead selected during the Negotiate process described above. If the web server
specifically asks for NTLM authentication, PROC HTTP will directly use it, but only on

Microsoft systems.

OAUTH

OAuth is a standard for token-based authentication and authorization used in web requests.
Unlike the authentication methods listed, OAuth does not require the client to have any

form of the user’s credentials, but instead uses a token that was acquired on the user’s
behalf. This is a very simplistic definition of OAuth, but the most important part is that
OAuth does not require the client to possess a password and is used extensively in web

applications throughout the internet.

6

AUTHENTICATION OPTIONS

Prior to SAS 9.4m3, the authentication options were:

• WEBUSERNAME – Used to set the user name when using BASIC authentication. Can
also be used in Negotiate or NTLM if the system allows delegation of a user’s
credentials to someone other than the current user. This option was aliased to simply

USERNAME in SAS 9.4m5.

proc http ...

 WEBUSERNAME="user" ...

• WEBPASSWORD – Used to set the password when using BASIC authentication. Can
also be used in Negotiate or NTLM if the system allows delegation of a user’s
credentials to someone other than the current user. The value for this option can be
encoded via PROC PWENCODE. This option was aliased to simply PASSWORD in

SAS 9.4m5.

proc http ...

 WEBPASSWORD="pwd" ...

• HTTP_TOKENAUTH – Used in conjunction with a metadata server to generate a one-
time password for use with a SAS Mid-tier.

proc http HTTP_TOKENAUTH ...

• WEBAUTHDOMAIN – A user name and password are retrieved from the metadata
server for the specified authentication domain.

proc http WEBAUTHDOMAIN="authdom" ...

Prior to SAS 9.4m3, BASIC authentication was the default HTTP authentication that was
used if the WEBUSERNAME and WEBPASSWORD arguments were set. If those
arguments were set, the request would contain the Authentication header with the encoded
user name and password. The more secure Negotiate or NTLM would only be used if the

server subsequently responded with a 401 requesting one of NTLM or Negotiate.

In SAS 9.4m3 BASIC authentication is no longer the default authentication mechanism, and

(by default) will only be used after receiving a 401 request. This is safer, because by default

authentication will not be tried unless the server requests it.

New options were also added allowing more control over authentication, which are:
AUTH_BASIC, AUTH_NTLM, and AUTH_NEGOTIATE. These options can be used
separately or together to tell PROC HTTP what type of authentication it is able to perform.

For example:

proc http

 url="www.secured-site.com"

 WEBUSERNAME="user"

 WEBPASSWORD="pass"

 AUTH_BASIC

 AUTH_NEGOTIATE;

run;

7

This code will send a request to www.secured-site.com and if it receives a 401 response
that contains the WWW-Authenticate header with a value of BASIC or Negotiate, then one

of those 2 authentication mechanism will be chosen based on priority in order of:

• Negotiate

• NTLM

• BASIC.

If, however the response is a 401, but contains a WWW-Authenticate header with a value of
NTLM, then communication will be terminated, and the 401 response will be delivered to the

client.

If only 1 authentication option is specified such as:

proc http

 url="www.secured-site.com"

 WEBUSERNAME="user"

 WEBPASSWORD="pass"

 AUTH_BASIC;

run;

Then that form of authentication will be used on the first request, thus preventing a server

round trip.

If none of the authentication options are specified, then the proc will behave as if

AUTH_BASIC, AUTH_NEGOTATE, and AUTH_NTLM are set.

SAS 9.4m5 also introduced the option OAUTH_BEARER, which is used to send the typical
OAuth header of Authorization: Bearer <token>. An example of sending an OAuth

bearer token would look as follows:

%let token=abcdefghijklmnop;

proc http

 url="httpbin.org/bearer"

 OAUTH_BEARER="&token.";

run;

The output generated is as follows:

> GET /bearer HTTP/1.1
> User-Agent: SAS/9
> Host: httpbin.org
> Accept: */*
> Authorization: Bearer abcdefghijklmnop
> Connection: Keep-Alive

The value can also be a fileref that contains the token:

filename token "path/to/token.dat";

proc http

 url="httpbin.org/bearer";

 OAUTH_BEARER=token;

run;

Prior to SAS 9.4m5, to send this type of request, you would need to manually generate the

header:

proc http

http://www.secured-site.com/

8

 url="httpbin.org/bearer";

 headers

 "Authorization"="Bearer &token.";

run;

If SAS in running in a Viya® environment, then a value of SAS_SERVICES can be

specified:

proc http

 url="http:\\viya-webservice.mydomain.com";

 OAUTH_BEARER=SAS_SERVICES;

run;

This will either use a token that has already been retrieved by the session or retrieve one

for you.

DEBUGGING

It is useful to be able to debug a PROC HTTP statement and there are a few ways you can

do that.

VERBOSE OPTION

The verbose option was the original way to view more detailed information about a specific

PROC HTTP step. When this option is added to the PROC statement such as:

proc http url="httpbin.org/post"

 in="input"

 VERBOSE;

run;

certain proc inputs will be echoed to the SASLOG. The input fields that will be printed are:

• METHOD

• URL

• PROXYHOST

• PROXYPORT

• CT

• IN

• OUT

• HEADERIN

• HEADEROUT

• PROXYUSERNAME

• WEBUSERNAME

• WEBAUTHDOMAIN

9

This information can be helpful is some situations, but since it only really echoes values that
are visible in the PROC statement, this is not useful in debugging the actual HTTP

request/response.

DEBUG STATEMENT

The DEBUG statement was added in 9.4m5 to allow a detailed view of the HTTP
request/response. This can be quite useful when you need to know exactly what is being

sent/received to/from the server.

Debug Level

The easiest way to use the debug statement is with the LEVEL argument:

proc http url="httpbin.org/post"

 in="somedata";

 DEBUG LEVEL=3;

run;

There are 3 levels of debugging information for which an example of level 3 is shown:

> POST /post HTTP/1.1
> User-Agent: SAS/9
> Host: httpbin.org
> Accept: */*
> Connection: Keep-Alive
> Content-Length: 8
> Content-Type: application/x-www-form-urlencoded
>
> 000000000DAD91A0: 73 6F 6D 65 64 61 74 61 somedata
< HTTP/1.1 200 OK
< Connection: keep-alive
< Server: gunicorn/19.9.0
< Date: Mon, 28 Jan 2019 19:26:22 GMT
< Content-Type: application/json
< Content-Length: 379
< Access-Control-Allow-Origin: *
< Access-Control-Allow-Credentials: true
< Via: 1.1 vegur
<
< 000000000DAD9296: 7B 0A 20 20 22 61 72 67 73 22 3A 20 7B 7D 2C 20 {. "args": {},
< 000000000DAD92A6: 0A 20 20 22 64 61 74 61 22 3A 20 22 22 2C 20 0A . "data": "", .
< 000000000DAD92B6: 20 20 22 66 69 6C 65 73 22 3A 20 7B 7D 2C 20 0A "files": {}, .
< 000000000DAD92C6: 20 20 22 66 6F 72 6D 22 3A 20 7B 0A 20 20 20 20 "form": {.
< 000000000DAD92D6: 22 73 6F 6D 65 64 61 74 61 22 3A 20 22 22 0A 20 "somedata": "".
< 000000000DAD92E6: 20 7D 2C 20 0A 20 20 22 68 65 61 64 65 72 73 22 }, . "headers"
< 000000000DAD92F6: 3A 20 7B 0A 20 20 20 20 22 41 63 63 65 70 74 22 : {. "Accept"
< 000000000DAD9306: 3A 20 22 2A 2F 2A 22 2C 20 0A 20 20 20 20 22 43 : "*/*", . "C
< 000000000DAD9316: 6F 6E 6E 65 63 74 69 6F 6E 22 3A 20 22 63 6C 6F onnection": "clo
< 000000000DAD9326: 73 65 22 2C 20 0A 20 20 20 20 22 43 6F 6E 74 65 se", . "Conte
< 000000000DAD9336: 6E 74 2D 4C 65 6E 67 74 68 22 3A 20 22 38 22 2C nt-Length": "8",
< 000000000DAD9346: 20 0A 20 20 20 20 22 43 6F 6E 74 65 6E 74 2D 54 . "Content-T
< 000000000DAD9356: 79 70 65 22 3A 20 22 61 70 70 6C 69 63 61 74 69 ype": "applicati
< 000000000DAD9366: 6F 6E 2F 78 2D 77 77 77 2D 66 6F 72 6D 2D 75 72 on/x-www-form-ur
< 000000000DAD9376: 6C 65 6E 63 6F 64 65 64 22 2C 20 0A 20 20 20 20 lencoded", .
< 000000000DAD9386: 22 48 6F 73 74 22 3A 20 22 68 74 74 70 62 69 6E "Host": "httpbin
< 000000000DAD9396: 2E 6F 72 67 22 2C 20 0A 20 20 20 20 22 55 73 65 .org", . "Use
< 000000000DAD93A6: 72 2D 41 67 65 6E 74 22 3A 20 22 53 41 53 2F 39 r-Agent": "SAS/9
< 000000000DAD93B6: 22 0A 20 20 7D 2C 20 0A 20 20 22 6A 73 6F 6E 22 ". }, . "json"
< 000000000DAD93C6: 3A 20 6E 75 6C 6C 2C 20 0A 20 20 22 6F 72 69 67 : null, . "orig
< 000000000DAD93D6: 69 6E 22 3A 20 22 31 34 39 2E 31 37 33 2E 38 2E in": "149.173.8.
< 000000000DAD93E6: 32 36 22 2C 20 0A 20 20 22 75 72 6C 22 3A 20 22 26", . "url": "
< 000000000DAD93F6: 68 74 74 70 3A 2F 2F 68 74 74 70 62 69 6E 2E 6F http://httpbin.o
< 000000000DAD9406: 72 67 2F 70 6F 73 74 22 0A 7D 0A rg/post".}.

10

• Debug level 1 will print the request and response headers. All input is prefixed by a

> and all output is prefixed by a <

• Debug level 2 will print everything from level 1 and will also print the request body.

• Debug level 3 will print everything from level 2 as well as the response body.

NOTE: In 9.4m5 the use of debug levels 2 and 3 would always print the request/response
bodies in plain text, which is unsafe if the content were binary. This was changed in 9.4m6

where request/response bodies are always printed in binary dump format.

11

Debug Parameters

In 9.4m6, more options were added to the debug statement that allow you to more finely

control what information gets printed out.

• OUTPUT_TEXT – Since 9.4m6, the default format for request or response bodies is a
binary dump. If you know that the input and output is plain text, you can use this

option to print the data as text instead. Only use this option if you know for certain
that the data will not contain any non-printable character or else the system could

become unstable. An example of a debug text response is:

<
< { "args": {}, "data": "", "files": {}, "form": { "somedata": "" },
"headers": { "Accept": "*/*", "Connection": "close", "Content-Length": "8",
"Content-Type": "application/x-www-form-urlencoded", "Host": "httpbin.org",
"User-Agent": "SAS/9" }, "json": null, "origin": "149.173.8.26", "url":
"http://httpbin.org/post"}

• REQUEST_BODY – If this option is specified the request body will be printed.

• RESPONSE_BODY – If this option is specified the response body will be printed.

• REQUEST_HEADERS – If this option is specified the requests headers will be printed.

• RESPONSE_HEADERS – If this option is specified the responses headers will be

printed.

• NO_RESPONSE_BODY – Turns off printing of the responses body

• NO_REQUEST_BODY – Turns off printing of the requests body

• NO_REQUEST_HEADERS – Turns off printing of the requests headers

• NO_RESPONSE_HEADERS – Turns off printing of the responses headers

• OFF – Completely disables all debugging output

Level can be combined with any of the other options, allowing you to easily create your own

debug level that meets your needs:

proc http url="httpbin.org/post"

 in="somedata";

 DEBUG LEVEL=3 NO_REQUEST_HEADERS NO_REQUEST_BODY RESPONSE_BODY;

run;

which produces the following output:

12

< HTTP/1.1 200 OK
< Connection: keep-alive
< Server: gunicorn/19.9.0
< Date: Mon, 28 Jan 2019 19:55:01 GMT
< Content-Type: application/json
< Content-Length: 379
< Access-Control-Allow-Origin: *
< Access-Control-Allow-Credentials: true
< Via: 1.1 vegur
<
< 000000000DAE93F6: 7B 0A 20 20 22 61 72 67 73 22 3A 20 7B 7D 2C 20 {. "args": {},
< 000000000DAE9406: 0A 20 20 22 64 61 74 61 22 3A 20 22 22 2C 20 0A . "data": "", .
< 000000000DAE9416: 20 20 22 66 69 6C 65 73 22 3A 20 7B 7D 2C 20 0A "files": {}, .
< 000000000DAE9426: 20 20 22 66 6F 72 6D 22 3A 20 7B 0A 20 20 20 20 "form": {.
< 000000000DAE9436: 22 73 6F 6D 65 64 61 74 61 22 3A 20 22 22 0A 20 "somedata": "".
< 000000000DAE9446: 20 7D 2C 20 0A 20 20 22 68 65 61 64 65 72 73 22 }, . "headers"
< 000000000DAE9456: 3A 20 7B 0A 20 20 20 20 22 41 63 63 65 70 74 22 : {. "Accept"
< 000000000DAE9466: 3A 20 22 2A 2F 2A 22 2C 20 0A 20 20 20 20 22 43 : "*/*", . "C
< 000000000DAE9476: 6F 6E 6E 65 63 74 69 6F 6E 22 3A 20 22 63 6C 6F onnection": "clo
< 000000000DAE9486: 73 65 22 2C 20 0A 20 20 20 20 22 43 6F 6E 74 65 se", . "Conte
< 000000000DAE9496: 6E 74 2D 4C 65 6E 67 74 68 22 3A 20 22 38 22 2C nt-Length": "8",
< 000000000DAE94A6: 20 0A 20 20 20 20 22 43 6F 6E 74 65 6E 74 2D 54 . "Content-T
< 000000000DAE94B6: 79 70 65 22 3A 20 22 61 70 70 6C 69 63 61 74 69 ype": "applicati
< 000000000DAE94C6: 6F 6E 2F 78 2D 77 77 77 2D 66 6F 72 6D 2D 75 72 on/x-www-form-ur
< 000000000DAE94D6: 6C 65 6E 63 6F 64 65 64 22 2C 20 0A 20 20 20 20 lencoded", .
< 000000000DAE94E6: 22 48 6F 73 74 22 3A 20 22 68 74 74 70 62 69 6E "Host": "httpbin
< 000000000DAE94F6: 2E 6F 72 67 22 2C 20 0A 20 20 20 20 22 55 73 65 .org", . "Use
< 000000000DAE9506: 72 2D 41 67 65 6E 74 22 3A 20 22 53 41 53 2F 39 r-Agent": "SAS/9
< 000000000DAE9516: 22 0A 20 20 7D 2C 20 0A 20 20 22 6A 73 6F 6E 22 ". }, . "json"
< 000000000DAE9526: 3A 20 6E 75 6C 6C 2C 20 0A 20 20 22 6F 72 69 67 : null, . "orig
< 000000000DAE9536: 69 6E 22 3A 20 22 31 34 39 2E 31 37 33 2E 38 2E in": "149.173.8.
< 000000000DAE9546: 32 36 22 2C 20 0A 20 20 22 75 72 6C 22 3A 20 22 26", . "url": "
< 000000000DAE9556: 68 74 74 70 3A 2F 2F 68 74 74 70 62 69 6E 2E 6F http://httpbin.o
< 000000000DAE9566: 72 67 2F 70 6F 73 74 22 0A 7D 0A rg/post".}.

URL REDIRECTION

URL redirection is a common technique on the World Wide Web for letting a resource be
accessible by more than one address. When you open a URL and get back a 300-level
response code, this typically means that the resource that you are looking for is available at
a different URL, which will be given in the Location header in the response. This happens
all the time in web browsers when you navigate to a .net address, but the real site is a .com

or you request an HTTP address, but the site only accepts HTTPS. You typically don’t even
notice that this is happening in a browser because it happens automatically. PROC HTTP

also has automatic handling of URL redirection.

The simplest case is where you issue a GET request to a URL and a redirect is returned like
if you opened http://www.sas.com you would get redirected to https://www.sas.com. You

can see this with the code below:

proc http

 url="http://www.sas.com";

 debug level=2;

run;

This produces the following output:

http://www.sas.com/
https://www.sas.com/

13

> GET / HTTP/1.1
> User-Agent: SAS/9
> Host: www.sas.com
> Accept: */*
> Connection: Keep-Alive
>
< HTTP/1.1 301 Moved Permanently
< Date: Wed, 06 Feb 2019 20:10:09 GMT
< Server: Apache
< Location: https://www.sas.com/
< Content-Length: 228
< Keep-Alive: timeout=15, max=100
< Connection: Keep-Alive
< Content-Type: text/html; charset=iso-8859-1

> GET / HTTP/1.1
> User-Agent: SAS/9
> Host: www.sas.com
> Accept: */*
> Connection: Keep-Alive

Notice how the initial response was a 301 stating that the location that you were requesting
has been permanently moved and any further requests should go ahead and use the URL
that is in the Location header. PROC HTTP then issues another request automatically to the

target URL.

NOFOLLOWLOC

Most of the time, letting proc HTTP automatically follow redirects is completely fine, but on
the rare occasion that you do NOT want PROC HTTP to follow a redirect, you prevent it from

happening by using the NOFOLLOWLOC option that was introduced in version 9.4m5:

proc http

 url="http://www.sas.com"

 NOFOLLOWLOC;

run;

FOLLOWLOC

In contrast to the NOFOLLOW options, there is also a FOLLOWLOC option. You might be
thinking “If following a redirect is the default, why would I need an option to follow a

redirect?”. The reason is that following of a redirect is only automatic with a GET request.
The reason for this is partially historical and partially for security purposes, but if you know

that you need to follow a redirect on a POST or PUT, then you can use this option:

proc http url="httpbin.org/redirect-to?url=/post"

 method="POST"

 FOLLOWLOC

 in="some data";

 run;

This request will initially get back a 300-level response, but since FOLLOWLOC is set, will

POST the data again to the redirected location.

HEADEROUT_OVERWRITE

While automatic following of redirects is convenient, it can sometimes lead to confusion if
you are analyzing the response headers that are written with the HEADEROUT argument.

Take the following code for example:

14

filename headers TEMP;

proc http url="httpbin.org/redirect-to?url=get"

 HEADEROUT=headers;

run;

data _null_;

infile headers;

input;

put _infile_;

run;

The code sends a request that gets redirected once, which is followed, and then gets a
successful response. The response headers are written to the headers fileref and then

echoed to the SASLOG.

The potential problem is that the HEADEROUT fileref will contain the headers of the initial

request as well as the subsequent request(s). In this case the HEADEROUT fileref would be

as follows:

HTTP/1.1 302 FOUND
Connection: keep-alive
Content-Type: text/html; charset=utf-8
Content-Length: 0
Location: get

HTTP/1.1 200 OK
Connection: keep-alive
Content-Type: application/json
Content-Length: 207

If you want to process the response headers, the header block that you most likely want to
process is at the END of the file, which means you would have to write code to find the start

of the last header block before processing.

This can be avoided by using the option HEADEROUT_OVERWRITE, which instead of
appending to the HEADEROUT fileref, will overwrite it. With this option, the HEADEROUT
fileref will always contain the last response headers that were received, making processing

simpler.

REDIRECT LIMIT

PROC HTTP will follow redirects up to a certain limit. As of 9.4m6, that limit is set at 5 and is

not configurable.

SSLPARMS

PROC HTTP automatically handles HTTPS, but sometimes a user needs to not only be able
to handle server certificates but be able to handle client side certificates as well. This is
accomplished by setting some SAS options that are specified in
https://go.documentation.sas.com/?docsetId=secref&docsetTarget=n0bmaslhpevq8gn1l614

jmbd63wi.htm&docsetVersion=9.4&locale=en.

To have PROC HTTP send a client certificate, you would need to set the following SAS
options on UNIX systems: SSLPKCS12LOC and SSLPKCS12PASS or SSLCERTLOC,
SSLPVTKEYLOC, and SSLPVTKEYPASS. On Windows systems you would need to set:

SSLCERTSUBJ or SSLCERTISS and SSLCERTSERIAL.

15

An example of this would be:

options SSLCERTISS="BadSSL Client Root Certificate Authority";

options SSLCERTSERIAL="00f0bb28c1637ec957";

proc http

 url="https://client.badssl.com/";

 debug level=1;

run;

Although this code works perfectly fine, any further requests (not just using proc HTTP) will

also send this client certificate, since the options are global. Starting with 9.4m6, PROC
HTTP has the ability to set SSL option locally, so they only effect the current PROC HTTP
statement. This is done by using the SSLPARMS statement. The above code can be

rewritten as such:

proc http

 url="https://client.badssl.com/";

 SSLPARMS

 SSLCERTISS="BadSSL Client Root Certificate Authority"

 SSLCERTSERIAL="00f0bb28c1637ec957";

 debug level=1;

run;

This code does the exact same thing, except the global SSL options and environment

variables are left untouched.

The SSLPARMS statement can take any off the options or environment variables that start

with SSL listed in the “Encryption in SAS 9.4” documentation.

MISCELLANEOUS

TIMEOUT

If for some reason the webserver that you are trying to access stops responding on the

connection or while processing the request or response, PROC HTTP will continue to wait.

In 9.4m5, the TIMEOUT option was added so that the user can set a maximum amount of
time that PROC HTTP is allowed to run. TIMEOUT should take a positive integer as a value,
which represents the maximum number of seconds to wait before the proc is terminated. An

example of using the TIMEOUT option is:

proc http url="httpbin.org/drip?numbytes=10&duration=5&delay=5"

 TIMEOUT=9;

run;

The following log is produced::

ERROR: HTTP Operation Timed Out.

NOTE: PROCEDURE HTTP used (Total process time):

 real time 9.00 seconds

 cpu time 0.00 seconds

NOTE: The SAS System stopped processing this step because of errors.

EXPECT 100-CONTINUE

When uploading data, there is a chance that the server will need to respond to you before it
can accept the data. An example of this is if you need to authenticate. When this happens,

you send a request to the server, which includes the header and body, the server responds

16

with a 401, and the request is resent with the necessary credentials and the body. In a

situation like this, the body ends up being sent over the network more than once.

To combat this problem, HTTP1.1 introduced the Expect: 100-continue header. When this
header is sent, the body is not uploaded immediately after the header, but instead waits on

the server to send a response:

HTTP/1.1 100 Continue

If the 100 continue response is received, the body will be uploaded. This is typically only
helpful if the request body is large and the probability for the server to reject the initial

upload is high.

To use the 100 Continue mechanism in PROC HTTP, you can use the option

EXPECT_100_CONTINUE. An example of using this option in PROC HTTP is:

proc http

 URL="httpbin.org/put"

 METHOD="PUT"

 IN="data"

 EXPECT_100_CONTINUE;

run;

The 100 continue will only be sent on a PUT or POST.

If an Expect 100-Continue header is sent and the server does not respond within 5 seconds,

the body will be sent anyway. This time-out is not configurable.

CONCLUSION

PROC HTTP is a powerful and versatile SAS Procedure allowing you to access pretty much
everything the web has to offer. PROC HTTP will continue to be updated, making tasks
easier and more intuitive. Hopefully this paper has presented most of what this procedure is

capable of and has equipped to you to take advantage of said capabilities.

REFERENCES

Fielding, Roy, and Reschke, Julian. "Hypertext Transfer Protocol (HTTP/1.1): Message

Syntax and Routing". RFC7230. June 2014. https://tools.ietf.org/html/rfc7230.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Joseph Henry

100 SAS Campus Drive
Cary, NC 27513
SAS Institute, Inc.
Joseph.Henry@sas.com

http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

https://tools.ietf.org/html/rfc7230
mailto:Joseph.Henry@sas.com

	Abstract
	Introduction
	getting started
	Browser like Defaults
	http response
	HTTP Request Headers
	Uploading data
	HTTP Cookies
	Global Option
	PROC Argument

	persistent connections

	Authentication
	BASIC
	Negotiate
	NTLM
	OAUTH
	Authentication options

	Debugging
	verbose option
	Debug statement
	Debug Level
	Debug Parameters

	URL redirection
	NOFOLLOWLOC
	Followloc
	Headerout_overwrite
	redirect limit

	SSLparms
	miscellaneous
	timeout
	expect 100-continue

	Conclusion
	References
	Contact Information

