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ABSTRACT  

Experience and good judgment are essential attributes of underwriters. Systematic analysis 

of the underwriting decision-making process was expected to increase the efficiency in 

developing these attributes in underwriters. However, this approach fell short of 

expectations. The industry still struggles with the pace at which knowledge and experience 

are delivered to the next generation of underwriters. The solution may lie in the 

development and deployment of artificial intelligence (AI) methods and algorithms in the 

automation of the underwriting decision-making process. This paper outlines the current 

state of the performance measurement of underwriting decision-making process through 

performance metrics (including a novel one). Further, this paper provides an in-depth 

description of artificial intelligence methods and algorithms that can be successfully used to 

automate underwriting decision-making process. The data from one of the leading insurance 

companies was used for the analysis and testing of proposed approaches.  

INTRODUCTION 

Traditionally, underwriting decisions were considered the result of the judgment, 

experience, and “gut feelings.” Apprenticeship was a customary way for a new or young 

underwriter to gain required experience.  However, it took a long time for senior 

underwriters to pass their expertise to a younger generation, who would then do the same 

for the next generation. 

One approach to improve underwriting training was to analyze in detail the steps in the 

underwriting decision-making process and creating guidelines. Thinking of underwriting as 

an application of the specific steps in the decision-making process clarified its nature but 

formed a rigid structure that lost the flexibility of experienced underwriters. Thus, the 

approach fell short of expectations. The industry still struggles with the pace of knowledge 

and experience delivery to next generation of underwriters.  

Also, insurers began to learn that experience is not necessarily the best or most efficient 

teacher—it is time-consuming and expensive, and subjective. Bad habits, as well as good 

habits, could be passed on through the apprentice system.  

The improvement of underwriting decision-making process can be made through the 

following three steps: 

1. Identification of the best underwriters using various relevant performance metrics 

2. Training AI algorithms utilizing the knowledge of the best performing underwriters, 

and 

3. Deployment of AI solution for automation of the underwriting decision-making 

process.  
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REVIEW OF UNDERWRITERS PERFORMANCE 

In this section, we analyze the performance of underwriters using several existing metrics, 

and a novel one proposed here. We briefly analyze the characteristics of these metrics and 

then apply them to the real-life data provided by a workers’ compensation insurer.  

METRICS OF UNDERWRITERS PERFORMANCE 

Different metrics can be used to evaluate underwriters’ performance, such as hit ratio, 

conversion rate, and time-to-deal. We also propose a novel metric that can measure 

underwriters’ performance dynamically. 

Hit Ratio 

Hit ratio (𝐻𝑖𝑡𝑅) metric presents an underwriter performance that depends on the number of 

assigned applications. This metric is calculated over some period, that is defined depending 

on the workload of underwriters, and an expected time to close the deal (bind an insurance 

application), or the expiration period for a quote.  

(1) 

𝐻𝑖𝑡𝑅𝑡𝑖 =  
𝐵𝑈𝑡𝑖  

𝐴𝑈𝑡𝑖

 

where: 

𝐻𝑖𝑡𝑅𝑡𝑖 – hit ratio of the underwriter 𝑖 during the period 𝑡 

𝐵𝑈𝑡𝑖 – number of bound applications (deals closed) by the underwriter 𝑖 during the time 

period 𝑡 

𝐴𝑈𝑡𝑖 – number of applications assigned to the underwriter 𝑖 during the period 𝑡 

Very often, underwriters reject applications out of hand, or after short evaluation against 

the insurer’s rules and policies. Such applications are considered of low quality. Hit Ratio 

metric uses the number of all applications assigned to the underwriter regardless of the 

applications of different quality. Thus, instead of the hit ratio, the conversion rate metric 

would be an adequate way of measuring underwriters’ performance. 

Conversion Rate 

Conversion rate metric (𝐶𝑅𝑡𝑖) presents an underwriter’s performance based on only those 

applications that were quoted by the underwriter. In other words, quoted applications are 

those that were not rejected by the insurer. This metric is calculated over a period defined 

by expected time to close the deal or the expiration time for a quote. 

(2) 

𝐶𝑅𝑡𝑖 =  
𝐵𝑈𝑡𝑖  

𝑄𝐴𝑈𝑡𝑖

 

where: 

𝐶𝑅𝑡𝑖 – conversion rate of the underwriter 𝑖 during the period 𝑡 

𝐵𝑈𝑡𝑖 – number of bound applications for the underwriter 𝑖 during the period 𝑡 

𝑄𝐴𝑈𝑡𝑖 – number of applications quoted by the underwriter 𝑖 during the period 𝑡 

This metric is usually calculated over an extended period because underwriters would want 

to wait for the outcome of all applications, including those that are still in the process of 

negotiation with customers/prospects. Thus, this metric, though providing an informative 
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backward-looking picture, can’t be used as an operational metric, for example, monthly. 

Another problem with this metric is that it is not taking into consideration the workload of 

the specific underwriter. As an example, the underwriter who bound 1 out of 5 quoted 

applications will have the same 𝐶𝑅𝑡𝑖 =
1

5
= 0.2 as a person who bound 10 out of 50 quoted 

applications 𝐶𝑅𝑡𝑖 =
10

50
= 0.2.  

We propose a new operational metric that addresses these issues. 

Dynamic Conversion Rate  

We propose a new operational metric called Dynamic Conversion Rate. Dynamic Conversion 

Rate measures conversion continuously, allowing for the monitoring of underwriters’ 

performance as well as managing optimal workload.  

Dynamic conversion rate metric (𝐷𝐶𝑅𝑚𝑖) presents a monthly underwriter’s performance 

based on information available in the applicable month. This metric considers an 

underwriter as a service provider that has incoming requests (quoted applications) and 

outgoing results (bound applications). In other words, each month an underwriter has 

several quoted applications that are in the queue to be finalized: to be bound or rejected by 

a customer/prospect. Because 𝐷𝐶𝑅𝑚𝑖 measures performance every month, underwriters with 

low workload are penalized for inactive months.  Dynamic conversion rate metric is 

calculated according to the following formulae: 

(3) 

𝐷𝐶𝑅𝑚𝑖 =  
𝑙𝑛(𝐵𝑈𝑚𝑖 + 1)

𝑙𝑛(𝑄𝑄𝐴𝑈𝑚𝑖 + 1)
 

where: 

𝐷𝐶𝑅𝑚𝑖 – dynamic conversion rate of the underwriter 𝑖 during the month 𝑚 

𝐵𝑈𝑡𝑖 – number of bound applications for the underwriter 𝑖 during the month 𝑚 

𝑄𝑄𝐴𝑈𝑡𝑖 – number of applications quoted by the underwriter 𝑖 and awaiting resolution (in the 

queue) during the month 𝑚 

Values of this metric lay between 0 and 1; 𝐷𝐶𝑅𝑚𝑖 equals 0 when there are no bound 

applications in a current month, and equals 1 when all quoted until now applications were 

bound in the current month. Thus, this metric presents an ongoing performance of 

underwriters, providing an operational measure that can be used for efficient management 

of the underwriting process. As well, 𝐷𝐶𝑅𝑚𝑖 metric takes into consideration the workload of 

an underwriter. Table 1 demonstrates the benefits of 𝐷𝐶𝑅𝑚𝑖 metric using the same example 

as we used above for 𝐶𝑅𝑡𝑖 conversion rate metric. 

 

Underwriter Quoted Applications 

(𝑸𝑸𝑨𝑼𝒕𝒊) 

Bound Applications 

(𝑩𝑼𝒕𝒊) 

𝑪𝑹𝒕𝒊 𝑫𝑪𝑹𝒎𝒊 

A 5 1 0.2 0.38685 

B 50 10 0.2 0.60987 

Table 1. Comparison of 𝑪𝑹𝒕𝒊  and 𝑫𝑪𝑹𝒎𝒊  Metrics 

As shown in Table 1, 𝐷𝐶𝑅𝑚𝑖 is higher for an underwriter B who has the same conversion rate 

𝐶𝑅𝑡𝑖 = 0.2 as underwriter A, but a larger number of quoted and bound applications.  
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Time-to-Deal 

Time-to-deal (𝑇𝑇𝐷) metric presents an underwriter’s efficiency in closing the deals. Time-to-

deal is calculated as a time interval in days between the date when the insurance 

application was assigned to an underwriter, and the date when the application was bound. 

𝑇𝑇𝐷 metric is censored by a quote expiration date. 𝑇𝑇𝐷 can be averaged over an extended 

period like 6 months or a year, but in this case, it is not operational and can’t be used for 

the successful management of underwriting process. We propose to use monthly time-to-

deal metric 𝑇𝑇𝐷𝑚𝑖, which is an average time-to-deal calculated for the underwriter 𝑖 during 

the month 𝑚.  

(4) 

𝑇𝑇𝐷𝑚𝑖 =
∑ 𝑇𝑇𝐷𝑚𝑗𝑖

𝑛
𝑗=1

𝑛
 

where: 

𝑇𝑇𝐷𝑚𝑖 – an average time-to-deal of the underwriter 𝑖 during the month 𝑚  

𝑇𝑇𝐷𝑚𝑗𝑖 – a time-to-deal of the bound application 𝑗 out of 𝑛 applications bound by the 

underwriter 𝑖 during the month 𝑚 . 

ANALYSIS OF UNDERWRITERS PERFORMANCE 

Using described above metrics, we analyze the performance of underwriters in Workers’ 

Compensation line of insurance. In our study, we use data related to new workers’ 

compensation applications for the period from May 01, 2013 until December 31, 2016 (44 

months).  

Data Description 

Data for workers’ compensation line of insurance include: 

• dates of applications submission, dates of quotes, and dates of policy binding if any;  

• parameters of insurance applications like industry, state, and number of employees; 

• underwriters to whom applications were assigned. 

Before the analysis, the data was “cleansed” and prepared in the following way: 

• Applications that required more than three months to be bound were removed from the 

study (less than 5% of all bound applications). Usually, quotes provided by this insurer 

expire after 90 days. 

• Underwriters with too small of sample size were excluded. 

Applications Flow 

Underwriters performance should be evaluated conditionally on insurance applications flow 

to the insurer, and on the process of assignment applications to underwriters. Thus, before 

estimating the dynamic conversion rate and time-to-deal per underwriter, we analyze 

applications flow and the process of applications assignment. 

Distribution of an average number of applications per month demonstrates seasonality with 

a somewhat increased number of applications in March and October, and with a significant 

drop in December (Figure 1). Identification of this seasonality in the submission process 

helps create a balanced workload for underwriters. 
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Figure 1. Average number of applications submitted monthly. 

 

Distribution of an average number of applications per weekday demonstrates a slightly 

lower number of applications on Mondays (Figure 2).  

The analysis indicates that the applications submission flow has some fluctuations among 

months and among weekdays which are easily manageable. 

 

Figure 2. Average number of applications submitted per day of week 

 

However, as we show in Figure 3, the workload of underwriters is far from being balanced. 

It makes an analysis of underwriters’ performance more complicated.  
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Figure 3. Average monthly applications assignment per underwriter. 

 

On the one hand, it would be reasonable to assign more applications to underwriters with 

better performance. However, on the other hand, it is possible that fewer applications allow 

the underwriters to analyze the situation more comprehensively, to have a more in-depth 

negotiation with a prospect – and as a result to show better performance. We will discuss 

these hypotheses further.  

Dynamic Conversion Rate per Underwriter 

We calculated dynamic conversion rate 𝐷𝐶𝑅𝑚𝑖 per underwriter over the observation period of 

44 months. For each underwriter, we calculated an average of her/his 𝐷𝐶𝑅𝑚𝑖 over 44 

months period. Best underwriters, with an average dynamic conversion rate above 0.12, 

comprise about 8% of all underwriters. As shown in Figure 4, top performers have a 

significantly higher dynamic conversion rate than the rest of the underwriters.  

We can now analyze the relations of the number of assigned applications to an underwriter 

with her/his performance measured by 𝐷𝐶𝑅𝑚𝑖. For the top performers, the average number 

of monthly assigned applications per underwriter is 13 (median is 12). For the rest of the 

underwriters, the average number of monthly assigned applications per underwriter is 10 

(median is 8). We performed a comparison of empirical distributions of numbers of monthly 

assigned applications per underwriter between the group of the top performers and the 

group of the rest of the underwriters using the Kolmogorov-Smirnov two-sample test. The 

asymptotic p-value for the Kolmogorov-Smirnov test is <.0001. This indicates that we 

should reject the null hypothesis that the distributions of numbers of monthly assigned 

applications per underwriter are the same for the 2 groups of underwriters. This 

demonstrates that, indeed, top underwriters (according to Dynamic Conversion Rate 

performance metric) assigned more applications than other underwriters, and regardless of 

increased workload, they still do substantially better than others. 
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Figure 4. Comparison of Dynamic Conversion Rates between 2 Groups  

 

Time-to-Deal per Underwriter 

We calculated 𝑇𝑇𝐷𝑚𝑖 per underwriter. Time-to-deal varies significantly, from 0 to 90 days 

(where 90 days is an expiration term of a quote), with average 32 days and median 29 

days. To compare time-to-deal of top performers vs. the rest of underwriters, we performed 

a comparison of empirical distributions of 𝑇𝑇𝐷𝑚𝑖 between these 2 groups using the 

Kolmogorov-Smirnov two-sample test. The asymptotic p-value for the Kolmogorov-Smirnov 

test is 0.1255. This indicates that we can’t reject the null hypothesis that the distributions 

are the same for the 2 groups of underwriters. Although 𝑇𝑇𝐷𝑚𝑖 can’t be used as a metric 

differentiating  top performers from the rest of the underwriters, this metric is useful as an 

operational metric for the purposes of ongoing monitoring and management of underwriters’ 

performance. This metric also can be used to build models to predict time-to deal. 

TRADITIONAL APPROACH TO KNOWLEDGE DELIVERY  

It is an ongoing effort for insurers to improve the quality and consistency of the 

underwriting process.  For years, sound underwriting decisions were considered the result of 

the judgment, experience, and “gut feelings.” The only way for a new or young underwriter 

to gain “judgment” was by working under the guidance of a successful senior underwriter 

and gradually gaining experience. (Randall, 1994). 

Traditional ways to validate performance include underwriting file reviews, or audits, in 

trying to improve quality and consistency. These audits attempt to determine the 

effectiveness of underwriters. The audit process usually consists of six steps, validating each 

phase in the underwriting decision process: 

1. Gather data on an applicant’s loss exposures and associated hazards. 

2. Evaluate the exposures and hazards. 
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3. Develop and test underwriting options. 

4. Select an underwriting option, including selecting the appropriate premium. 

5. Implement the underwriting decision. 

6. Monitor the loss exposures. 

This audit may find deficiencies in underwriting processes and provide a basis for additional 

coaching, improved documentation, and enhanced quality reviews. However, each step in 

this process is validated subjectively and qualitatively and is based on two assumptions. The 

first one is proper guidelines, which are usually updated infrequently and become obsolete 

with time. The second assumption is the existence of a matured management process, 

where the assignment of applications to underwriters is balanced, and identification of a 

problem and intervention to fix it are timely. 

Unfortunately, in today’s dynamic, large-scale and complex environment, these assumptions 

are often not valid. Also, the growing need for underwriters requires that training is 

streamlined, consistent and fast. Though thinking of underwriting as steps in the decision-

making process clarified its nature, it only led to static guidelines that didn’t include 

experience, sound judgment, and intuition of the top underwriters. 

From our analysis of underwriters’ performance, it is clear that a few underwriters perform 

significantly better than others, despite the guidelines and audits. More experienced and 

knowledgeable underwriters apply skills that can’t be captured by guidelines, and their 

expert knowledge allows them to intuitively analyze multiple factors and their combinations 

to produce a better decision. 

Artificial intelligence approaches based on machine learning algorithms can be used to 

model the decision-making process of the best underwriters, and then these models can be 

applied to ease and automate the underwriting decision-making process.  

ANATOMY OF ARTIFICIAL INTELLIGENCE SOLUTION 

The underwriting decision-making process includes the following components: 

• Underwriters, who are assigned to work on different applications, in our example – for 

workers compensation insurance 

• Insurance applications from various clients/prospects along with a description of 

different characteristics of the business, including business size, turnover, etc. 

• Insurance products for workers compensation that have different features, including 

premium size, conditions of insurance, etc.  

• Clients/prospects responses to underwriters quotes: accepting or rejecting of proposed 

insurance product 

To formalize the underwriting decision-making process, we start with creating the proper 

data structure. 

DATA STRUCTURE 

Let 𝑖 =  1 … 𝑛 denote underwriters, 𝑗 =  1 … 𝑚 denote applications, and 𝑘 =  1 … 𝑝 denote 

insurance products for workers compensation.  

Each application is described by a set of features (parameters), such as the number of 

employees in the company, ages of the employees, the industry code, US state, number of 

claims in the previous year, etc. These features are standardized and presented by a vector  

𝐴j  =  {𝑎j1, 𝑎j2, … 𝑎jM} ,  
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where M is the number of insurance application features (parameters or characteristics).  

Each insurance product is described by a set of features (parameters or characteristics), for 

example, the conditions covered by the policy, the deductible amount, premium amount, 

etc. Insurance product features presented by a vector 

 𝐵k  =  {𝑏k1, 𝑏k2, … 𝑏kP},  

where 𝑃 is the number of insurance product features. These features are standardized for all 

products, and if, for example, feature bk2 is not presented in the product 𝑘, then 𝑏k2 is 

assigned 0. 

Let 𝑌ijk denote an outcome of each quoted insurance application – 1 means bound, and 0 

means rejected. This structure allows capturing multiple quotes made by the same 

underwriter as a response to the same insurance application. 

For example, the data structure will look like in Table 2. 

Table 2. Example of Data Structure 

Underwriter 

𝒊 

Application 

𝒋 

Features of Application Product 

𝒌 

Features of Product Outcome 

𝒀𝒊𝒋𝒌 Number of 

employees 

𝒂𝒋𝟏 

% of 

employees 

under 21 

𝒂𝒋𝟐 

% of 

employees 

over 50 

𝒂𝒋𝟑 

… Claims in 

the last 

year 

𝒂𝒋𝐌 

Deductible 

amount 

𝒃𝒌𝟏 

… Premium 

amount 

𝒃𝒌𝑷 

… … … … … … … … … … … … 

10 100 30 5 3 … 0 1001 10,000 … 1,000 1 

10 105 100 2 10 … 5 1001 40,000 … 1,500 0 

10 105 100 2 10 … 5 1003 30,000 … 1,150 1 

… … … … … … … … … … … … 

13 201 70 6 11 … 3 1002 22,000 … 1,500 0 

13 202 47 4 9 … 1 1002 11,000 … 900 0 

… … … … … … … … … … … … 

 

CLASSIFICATION APPROACH 

In the broadest sense, we try to solve the problem of predicting whether or not the 

customer/prospect will accept the insurance product offered by an underwriter.  We need to 

find a fit between features (parameters or characteristics) of the insurance application and 

the features of the insurance product and its price. The real challenge is that data is very 

unbalanced: bound insurance applications comprise about 9% of the quoted applications.  

We approach the problem using the support-vector machine (SVM) -- a proven classification 

method that is also well-suited to our problem because it can directly minimize the 

classification error without requiring a statistical model. SVM can handle the massive feature 

space, and it is guaranteed to find a globally optimal separating hyperplane if it exists. Also, 

SVM models are built on the boundary cases, which allow them to handle missing data.  

An SVM classifier can separate data that is not easily separable in the original space (for 

example, 2-dimensional space) by mapping data into a higher dimensional (transformed) 

space.  

Simply saying, a non-linear classifier maps our data from the input space 𝑋 to a feature 

space 𝐹 using a non-linear function Φ: 𝑋 → 𝐹. In the space F the discriminant function is: 

  



10 

(5) 

𝑓(𝑥) = 𝑤𝑇Φ(𝑥) + 𝑏 

Kernel 

Kernel methods resolve the issue of mapping the data to a high dimensional feature-space. 

Suppose the weight vector can be expressed as a linear combination of the training 

examples: 

(6) 

𝑤 =  ∑ 𝛼𝑖𝑥𝑖

𝑛

𝑖=1

 

Then 

(7) 

𝑓(𝑥) =  ∑ 𝛼𝑖𝑥𝑖
𝑇𝑥

𝑛

𝑖=1

+ 𝑏 

 

In the feature space, 𝐹 this expression takes the form:  

(8) 

𝑓(𝑥) =  ∑ 𝛼𝑖Φ(𝑥𝑖)𝑇Φ(𝑥)

𝑛

𝑖=1

+ 𝑏 

The feature space 𝐹 may be high dimensional, making this transformation difficult, unless 

the kernel function is defined in the form that can be computed efficiently: 

(9) 

𝐾(𝑥, 𝑥′) =  Φ(𝑥)𝑇Φ(𝑥′) 

In terms of the kernel function, the discriminant function can be written as: 

(10) 

𝑓(𝑥) =  ∑ 𝛼𝑖𝐾(𝑥, 𝑥′)

𝑛

𝑖=1

+ 𝑏 

There are different kernel functions. For example, the polynomial kernel of degree d is 

defined as:  

(11) 

𝐾(𝑥, 𝑥′) = (𝑥𝑇𝑥′ + 1)𝑑 

The feature space for this kernel consists of all monomials up to degree d, for example:  

(12) 

𝑥1
𝑑1𝑥2

𝑑2 … 𝑥𝑚
𝑑𝑚 , 𝑤ℎ𝑒𝑟𝑒 ∑ 𝑑𝑖

𝑚

𝑖=1

≤ 𝑑 

The increasing degree of the polynomial 𝑑 leads to the increased flexibility of the classifier.  

The other widely used kernel is the Gaussian (radial basis function) kernel defined by:  
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(13) 

𝐾(𝑥, 𝑥′) = exp (−𝛾‖𝑥 − 𝑥′‖2) 

 

where 𝛾 > 0  is a parameter that controls the width of Gaussian. It plays a similar role as the 

degree of the polynomial kernel in controlling the flexibility of the resulting classifier. 

Margin 

The margin is the length of the normal vector to the hyperplane from the 2 closest cases 

called support vectors – in other words, it is the margin with which the two classes are 

separated. 

For a given hyperplane we denote by 𝑥+(𝑥−) the closest point to the hyperplane among the 

positive and negative cases. The norm (length) of a vector w is denoted by ‖𝑤‖ =  √𝑤𝑇𝑤 . 
From a geometric perspective, the margin of a hyperplane f with respect to a data set D can 

be defined as:  

(14) 

𝑚𝐷(𝑓) =  
1

2
𝑤̂𝑇(𝑥+ − 𝑥−) =

1

‖𝑤‖
 

where 𝑤̂ = 𝑤/‖𝑤‖  is a unit vector in the direction of w, assuming that 𝑥+ and 𝑥− are 

equidistant from the decision boundary.  

Optimization 

SVM uses a kernel function to find a hyperplane that maximizes the distance (margin) 

between 2 classes (in our case, rejected quotes vs. accepted quotes) while minimizing 

training error.  

The maximum margin classifier is the discriminant function that maximizes the geometric 

margin  
1

‖𝑤‖
 which is equivalent to minimizing ‖𝑤‖2 .  

The soft-margin optimization problem (Cortes et al., 1995) is formulated as follows: 

(15) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑜𝑛 𝑤, 𝑏:    
1

2
‖𝑤‖2 + 𝐶 ∑ 𝑒𝑖

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝑒𝑖 ,   𝑒𝑖 ≥ 0,   𝑖 = 1, … , 𝑛 

where: 

w – margin, 

b – the bias that translates the hyperplane away from the origin, 

𝑒𝑖 – slack variables that allow an example to be in the margin (0 ≤ 𝑒𝑖 ≤ 1, also called a 

margin error) or to be misclassified (𝑒𝑖 > 1). 

C – the constant that sets the relative importance of maximizing the margin and minimizing 

the amount of slack.  

Bias-variance tradeoff and SVM hyper-parameters 

The bias is an error caused by wrong assumptions in the learning algorithm. High bias 

means an underfitting between features and outputs. The variance is an error produced 
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from variations in sensitivity metric in response to small fluctuations in the training sets. 

High variance means overfitting between features and outputs.  

The bias-variance tradeoff is a central problem in supervised learning. In statistics and 

machine learning, the bias-variance tradeoff is the property of a set of predictive models, 

whereby models with lower bias in parameter estimation have a higher variance of the 

parameter estimates across samples and vice versa. The bias-variance problem is the 

conflict in trying to simultaneously minimize these two sources of error that prevent 

supervised learning algorithms like SVM from generalizing beyond their training sets. 

The quality of results produced by SVM depends on the following hyper-parameters:  

• The type of kernel (radial, polynomial, sigmoid, etc.) 

• the cost of misclassification (penalty) that is denoted as C in (15),  

• the parameters of the kernel, for example, 𝛾 in the cases of radial or sigmoid kernel 

transformations (13), or d in the case of the polynomial kernel (11)(12).  

Large C leads to low bias and high variance, while small C leads to high bias and low 

variance. Large d or 𝛾 lead to high bias and small variance, while small d or 𝛾 lead to 

low bias and high variance. For example, if 𝛾 is large (variance is small), it means that the 

SVM results do not have a wide influence and can’t be generalized beyond its training sets. 

Because SVM doesn’t model the data distribution, but instead directly minimizes the 

classification error, the output produced by SVM is a binary decision. Although a binary 

decision is sufficient for many problems, it is difficult to arrive at a meaningful bias-variance 

tradeoff.  This concern can be alleviated by applying penalized logistic regression to SVM 

output. The benefit of using penalized logistic regression to SVM output is making results 

more generalizable (for example, decrease overfitting). In classification, SVM along with 

penalized logistic regression create output probabilities of class membership rather than 

point estimates produced by SVM alone. Re-phrasing a classification problem as a 

probabilistic classification creates conditions for application of bias-variance decomposition 

that was originally formulated for least-squares regression.  

Building the classifier 

The proposed AI solution attempts to “learn” from the best underwriters. Thus in our study, 

we used only data related to the top performers comprising 8% of all underwriters. The data 

we worked with was structured to express all problems of similar nature by broadly 

including all features (characteristics or parameters) of the insurance application and the 

offered product and price, along with binary values Y (equivalent to acceptance or rejection 

of a quote by a prospect) as presented in Table 2.  

To avoid bias in our analysis, we created training and test data sets from the original data 

set using the “m-out-of-n” bootstrap method with replacement. This method replaced 

complicated and often inaccurate approximations of biases, variances, and other measures 

of uncertainty by computer simulations. In simple situations, the uncertainty of an estimate 

may be gauged by analytical calculation based on an assumed probability model for the 

available data. But in more complicated problems this approach can be tedious and difficult, 

and its results are potentially misleading if inappropriate assumptions or simplifications have 

been made. Applying the “m-out-of-n” bootstrap method with replacement, we select 2,000 

training data sets that have the same distribution of outcome (reject/accept of insurance 

quote) as the original data set of the top performers’ data. We also randomly select test 

data set.  
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Step 1 

As a first step, we create statistically designed full factorial experiment to find out optimal 

hyper-parameters of SVM: kernel transformation function (radial, polynomial, and sigmoid 

kernel types), the kernel hyper-parameter (d or 𝛾), and the algorithm hyper-parameter – C. 

For continues values of C, and d or 𝛾 hyper-parameters we aggregate their values in 

multiple groups. The SAS® FACTEX procedure can be used to create a full factorial 

experiment. For example, if we decide to create 6 groups of values for C and 𝛾 hyper-

parameters, our full factorial design consists of 3^1 * 6^2=108 combinations (runs).  

Step 2 

For each of combinations presented in our full factorial design we execute the SAS HPSVM 

procedure as following:  

%macro SVM (data=training_set, c=100, gamma=2, kernel = rbf,  

            input_app = num_emp pct_under_21 pct_over_50 claims,  

            input_prod = deduct premium output = output, target=outcome); 

 

    PROC HPSVM DATA = &data  

       C = &c /* the penalty value */  

       MAXITER=10000 /* the maximum number of iterations */ 

              

    INPUT &input_app &input_prod / LEVEL=INTERVAL ;  

    KERNEL &kernel  

    %if %trim(%left(&kernel)) = rbf or  

        %trim(%left(&kernel)) = sigmoid %then  

        %do ; 

          / k_par = &gamma ; 

        %end ; 

   OUTPUT &output ;  

   TARGET &target ;  

   run; 

%mend SVM ; 

 

As the final classifier, we select one that maximized sensitivity (the proportion of bound 

applications that were correctly classified) and specificity (the proportion of rejected quotes 

that were correctly classified) when applied to the training data sets.  

Step 3 

As a next step, to add a probabilistic element to the SVM results, we apply Firth’s penalized 

logistic regression to the outcome of the SVM algorithm. SVM produces complete separation 

data. Firth’s penalized likelihood approach is a method of addressing issues of separability. 

Firth’s method is available in the LOGISTIC procedure and only for binary logistic models. It 

replaces the usual score equation: 

(16) 

𝑔(𝛽𝑗) = ∑(𝑦𝑖 − 𝜋𝑖)𝑥𝑖𝑗

𝑛

𝑖=1

= 0  (𝑗 = 1, … , 𝑝) 

where p is the number of parameters in the model, with the modified score equation: 

(17) 

𝑔(𝛽𝑗) = ∑(𝑦𝑖 − 𝜋𝑖 + ℎ𝑖(0.5 − 𝜋𝑖))𝑥𝑖𝑗

𝑛

𝑖=1

= 0  (𝑗 = 1, … , 𝑝) 
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where ℎ𝑖 is the i-th diagonal elements of the hat matrix: 

(18) 

𝑊
1
2𝑋(𝑋′𝑊𝑋)−1𝑋′𝑊

1
2 

𝑊 = 𝑑𝑖𝑎𝑔{𝜋𝑖(1 − 𝜋𝑖)} 

 

The SVM_Decision data set presented in Output 1 below has 2 columns: Decision_Function 

column has SVM decision function values, and Outcome column has actual outcomes for 

each case (accepted offer is presented as 1 and rejected as 0).  

 

Decision_Function Outcome 

0.1 1 

0.5 1 

0.9 0 

-0.1 0 

… … 

Output 1. SVM_Decision Data Set 

 

The code below implements logistic regression with Firth’s correction for bias: 

PROC LOGISTIC data = SV_Decision ; 

  CLASS Label (Param=Ref Ref=’0’) ; 

  MODEL Label (event=’1’) = Decision_Function / CL FIRTH ; 

RUN ; 

 

Since the results of logistic regression are probabilities, we chose a cutoff or a threshold 

value to classify cases. The probabilities above this threshold value are classified as 1, and 

those below as 0. For the probabilities generated by the Firth penalized logistic regression, 

we search for such a threshold value that it further increases the sensitivity and the 

specificity of the results produced by SVM.  

We perform the analysis for each of the 2,000 training data sets. As a final classifier, we 

select an SVM classifier with adjustment based on Firth penalized logistic regression that, on 

average, produces higher sensitivity and specificity metrics.  

After applying different kernel types and various SVM hyper-parameters (according to the 

full factorial design of experiment described above), the best results occur with a radial 

kernel having a cost parameter 𝐶 ∈ [1000; 3000] and  𝛾 ∈ [0.2; 0.6]. The sensitivity of the 

classification results equals 0.987 on average, and the specificity equals 0.799 on average.  

Then, we identify a threshold that improved classification based on the results of the Firth 

penalized logistic regression. The threshold value of 0.76 used to classify the results of the 

Firth regression, improved specificity to the level of 0.847 on average at the cost of a minor 

loss in sensitivity – which became equal 0.973 on average.  
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“Contamination” of training data sets  

Now, we address the variance in sensitivity metric caused by small fluctuations in the 

training sets. To avoid high variance that causes overfitting between features and outputs, 

we perform “contamination” of training data sets. The “contamination” is performed by 

changing a small percentage of outcomes in the training data sets, planned according to the 

design of mixture experiments. In mixture experiments, we vary the proportions, as in our 

example – proportions of different outcomes. The details of the design of mixture 

experiments are out of the scope of this article; we only state that this approach allows 

performing controlled “contamination” of data. After the training data set is contaminated 

according to the design, we perform again Steps 1 - 3 where radial kernel having a cost 

parameter 𝐶 ∈ [1000; 3000] and  𝛾 ∈ [0.2; 0.6] is considered as a starting point of the process. 

As a result, a robust classifier is built. 

Applying the developed classifier to test data, we received the following results: specificity 

equals 0.859, and sensitivity equals 0.851. 

Experimental Results 

To test the efficiency of the solution, we used the following historical data:  

1. properties/features of insurance products and prices that were offered in regards to 

insurance applications; 

2. properties/features of insurance applications to which insurance products were offered ; 

3. data about acceptance or rejection of insurance products by clients.  

The data for the experiment was selected in such a way that all offers were rejected by 

clients. In other words, the conversion rate in this data sample was 0%. 

The goal of the experiment was to apply the developed AI solution to find what insurance 

products and prices would fit the insurance applications in the way they would be accepted 

by clients. Each insurance application in the sample data received one quote for an 

insurance product, in rare cases two quotes. In our experiment, however, each application 

was combined with all possible insurance products and their prices. An example of such a 

data is presented in Table 3 where: 

• gray-shadowed rows present the application and the product that was rejected by the 

customer, and 

• white rows present all other possible products that could be offered. 

This data was used as an input to our AI solution.  
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Application 

𝒋 

Features of Application Product 

𝒌 

Features of Product Classification 

outcome 

𝒀𝒊𝒋𝒌 
Number of 

employees 

𝒂𝒋𝟏 

% of 

employees 

under 21 

𝒂𝒋𝟐 

% of 

employees 

over 50 

𝒂𝒋𝟑 

… Claims in 

the last 

year 

𝒂𝒋𝐌 

Deductible 

amount 

𝒃𝒌𝟏 

… Premium 

amount 

𝒃𝒌𝑷 

… … … … … … … … … …  

201 70 6 11 … 3 1002 22,000 … 1,500 0 

201 70 6 11 … 3 1001 20,000 … 1,250 0 

201 70 6 11 … 3 1003 25,000 … 1,150 1 

201 70 6 11 … 3 1004 28,000 … 1,000 0 

202 47 4 9 … 1 1002 11,000 … 900 0 

202 47 4 9 … 1 1001 10,000 … 900 0 

202 47 4 9 … 1 1003 13,000 … 850 1 

202 47 4 9 … 1 1004 15,000 … 800 1 

… … … … … … … … … …  

Table 3. Example of Historical Applications Data with Different Product Offers 

 

The column entitled “Classification outcome 𝑌𝑖𝑗𝑘” of Table 3 contains results of applied AI 

solution. Value 1 in this column identifies products that with high probability would be 

accepted by the customer. Relevant quotes for insurance products and prices identified by 

the AI solution expected to lead to the conversion rate of 14.7%. In other words, the 

experiment identified the applications and the products that would most likely lead to 

binding of the applications. 

CONCLUSION 

Insurance industry still struggles with the pace of knowledge delivery from experienced 

underwriters to young ones. Disadvantages of currently used methods, based on 

apprenticeship, are subjectivity of underwriters’ decisions. Measurement of underwriters’ 

performance also suffers from lack of efficiency, as existing metrics are delayed and not 

operational. We analyzed underwriters’ performance metrics and proposed a novel one, 

Dynamic Conversion Rate, which allows measuring and monitoring the operational 

performance of underwriters (weekly, monthly, etc.) 

We proposed the automation of the underwriting decision-making process based on the SVM 

machine-learning method and its improvements. Overall, with the reasonably efficient 

classifier built by SVM, and improved with a threshold of Firth penalized logistic regression, 

we achieved satisfactory results regarding sensitivity and specificity metrics.  

We applied the proposed approach to real-life insurance applications and showed that if our 

AI solution was used in quoting of those insurance applications (in our experimental case -- 

workers compensation insurance), it would yield incremental improvement in application 

binding by 14.7%. 

As the next step in our research, we are looking to apply our AI solution to different 

insurance lines like financial lines, small businesses, etc. 
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