
1

Paper 3215-2019

Deep Learning with SAS® and Python: A Comparative Study

Linh Le, Institute of Analytics and Data Science; Ying Xie, Department of
Information Technology;

Kennesaw State University

ABSTRACT

Deep learning has evolved into one of the most powerful techniques for analytics on both

structured and unstructured data. As a well-adopted analytics system, SAS® has also

integrated deep learning functionalities into its product family, such as SAS® Viya®, SAS®

Cloud Analytic Services, and SAS® Visual Data Mining and Machine Learning. In this paper,

we conduct an in-depth comparison between SAS and Python on their deep learning

modeling with different types of data, including structured, images, text, and sequential

data. We focus on using such deep learning frameworks in SAS environment, and highlight

the main differences between SAS and Python on programming styles on deep learning

along with each tool’s advantages and disadvantages.

INTRODUCTION

In recent years, deep learning has evolved into one of the most powerful techniques for

analytics on both structured and unstructured data. In general, a deep learning model

utilizes a high number of parameters structured by layers of neural networks to map the

data to a feature space on which a decision-making model is applied. This architecture of

stacking parameters by layers allows a deep network to transform data into high-level and

non-linear representations that boosts the quality of the decision-making process.

Moreover, both the network’s parameters and its decision-making model are trained with a

learning objective that is closely tied to the data and the given task which overall enhances

the capabilities of the network in solving complex problems. Finally, various types of

networks are designed for different types of data, for example, deep feed-forward network

(DNN) [1] for tabular data, convolutional neural networks (CNN) [2] for image data,

recurrent neural network (RNN) [3] for sequential data, etc. All these facts make deep

learning a powerful tool in analytics and artificial intelligence.

As a well-adopted analytical system, SAS® has also integrated deep learning functionalities

into its product family, such as SAS® Viya®, SAS® Cloud Analytic Services (CAS), and SAS®

Visual Data Mining and Machine Learning. The CAS environment has been developed to be

utilized in different programming languages like Lua, Python, and R. In a pure SAS

environment, deep learning can be done through the CAS language (CASL) that is available

through the CASUTIL and CAS procedure in SAS Viya. In this paper, we focus on using CASL

in SAS Viya for deep learning to showcase how a modeling task with deep learning can be

done purely in SAS. We then conduct an in-depth comparison between SAS and Python on

their deep learning modeling. Our comparison highlights the main differences between SAS

and Python on programming styles. While many Python packages are available for deep

learning, we mainly focus on TensorFlow [4] for high-level API, and Theano [5] for low-level

API. Since model performances largely depends on the training algorithms rather than the

platform or packages, we are not focusing on this criterion in this paper.

In the following sections, we first briefly introduce CASL, then we discuss different types of

deep learning models for a specific type of data, namely DNN for tabular data, CNN for

image data, and RNN for sequential data. We also provide example of how each network

can be built and trained in SAS as well as Python (detailed examples will be focusing on

SAS/CASL) and compare and their differences.

2

BASIC CAS LANGUAGE

The CAS Language is available through SAS Viya under the CAS and CASUTIL procedure. In

a SAS Studio environment that is connected to SAS Viya, the users can initiate a CAS

session simply with running:

 cas;

The user can also give the CAS session a name, for example:

 cas casauto;

begins a CAS session named “𝑐𝑎𝑠𝑎𝑢𝑡𝑜”. A successfully initiated session gives a message that

is showed in Figure 1.

Figure 1. Logs from a Successfully Initialized CAS Session

A simple way to load data into a CAS session is to create a CAS library (𝑐𝑎𝑠𝑙𝑖𝑏) reference

and use it to store data with a data step like a normal lib name. For example:

caslib _all_ assign;

libname inmem cas caslib=casuser;

data inmem.train;

 set dnntest.train;

data inmem.test;

 set dnntest.test;

In details, the piece of code above first makes all cas libraries available to the current SAS

session. It then creates a library reference named 𝑖𝑛𝑚𝑒𝑚 that links to the caslib 𝑐𝑎𝑠𝑢𝑠𝑒𝑟.

Then, two data steps are used to save the 𝑡𝑟𝑎𝑖𝑛 and 𝑡𝑒𝑠𝑡 datasets from the 𝑑𝑛𝑛𝑡𝑒𝑠𝑡 library to

the caslib 𝑐𝑎𝑠𝑢𝑠𝑒𝑟. Both library references and the datasets they contain can be seen in SAS

Studio, as showed in Figure 2.

Figure 2. Datasets in a CAS Library and its Library Reference

Further steps of conducting analyses are done through “actions” in the CAS procedure. In

short, an action is similar to a statement in other SAS procedures. CAS actions are divided

into action sets of based on their use cases. The general syntax is to call the CAS

procedure, then call the actions along with defining their required parameters. The following

snippet of codes:

3

proc cas;

 session casauto;

 table.tableInfo /

 caslib = "casuser";

 name = "train";

 run;

quit;

invokes the 𝑡𝑎𝑏𝑙𝑒𝐼𝑛𝑓𝑜 action from the action set 𝑡𝑎𝑏𝑙𝑒 in the CAS procedure. The parameters

of the action in this case set the target caslib location to 𝑐𝑎𝑠𝑢𝑠𝑒𝑟 and the target dataset to

𝑡𝑟𝑎𝑖𝑛. The result of this snippet can be seen in Figure 3.

Figure 3. Result of the 𝒕𝒂𝒃𝒍𝒆𝑰𝒏𝒇𝒐 Action

In the next sections, we review the theory if DNN, CNN, and RNN, then show how they can

be built in CASL as well as Python.

DEEP LEARNING IN CASL

DEEP FEED-FORWARD NETWORK

The simplest form of a deep network is a deep feed-forward network or a deep neural

network (DNN). Mathematically, let 𝐻𝑖 , 𝑊𝑖, and 𝑏𝑖 denote the output, the weight matrix, and

the bias vector of hidden layer 𝑖 respectively, then

𝐻𝑖 = 𝜎(𝑊𝑖 ∙ 𝐻𝑖 + 𝑏𝑖) (1)

with 𝜎(∙) being an activation function. The most commonly used activation functions are

sigmoid (𝜎(𝑥) =
1

1−exp(−𝑥)
), hyperbolic tangent (𝜎(𝑥) = tanh(𝑥)), or rectified linear function

(ReLU) (𝜎(𝑥) = max(0, 𝑥)). The input layer can be denoted as 𝐻0 = 𝑋(𝑗) with 𝑋(𝑗) being data

instance 𝑗, and its output is �̂� = 𝑠(𝑊𝑘 ∙ 𝐻𝑘 + 𝑏𝑘) with 𝑘 being the number of hidden layers, and

𝑠(∙) being an output function. 𝑠(∙) is selected based on the given task, for example, in a

multilabel classification problem 𝑠(∙) is often the SoftMax function which output a vector with

the 𝑖𝑡ℎ dimension being 𝑠𝑖(𝑥) =
exp(𝑥𝑖)

∑(exp(𝑥𝑗))
. In a regression problem, 𝑠(∙) is an identity function

(𝑠(𝑥) = 𝑥). Overall, the computation from a data instance 𝑋(𝑖) to its prediction 𝑌(𝑖) in a DNN of

𝑘 hidden layers can be represented as follows

𝐻0 = 𝑋(𝑖)

𝐻1 = 𝜎(𝑊0 ∙ 𝐻0 + 𝑏0)

𝐻2 = 𝜎(𝑊1 ∙ 𝐻1 + 𝑏1)
…

𝐻𝑘 = 𝜎(𝑊𝑘−1 ∙ 𝐻𝑘−1 + 𝑏𝑘−1)

𝑦(𝑖) = 𝑠(𝑊𝑘 ∙ 𝐻𝑘 + 𝑏𝑘)

(2)

DNNs are usually trained to minimize a predefined cost function 𝐿, varied by the tasks,

using gradient descent. Parameters in layer 𝑖 of the DNN are updated by

4

𝑊𝑖 ← 𝑊𝑖 − 𝛼 ∗
𝜕𝐿

𝜕𝑊𝑖

𝑏𝑖 ← 𝑏𝑖 − 𝛼 ∗
𝜕𝐿

𝜕𝑏𝑖

(3)

With 𝛼 being a selected learning rate (a positive scalar, normally smaller than 1). 𝐿 is

selected based on the given task, for example Binary Cross-Entropy or Negative Log-

Likelihood for classification, and Mean Squared Error for regression. In recent years, the

ReLU activation function is preferred over others since it solves the gradient vanishing

problem (gradients approach 0 when being passed to deeper layers with respect to the

output layer).

In CAS, a DNN is built layer by layer. In other words, the users first generate an empty

network where new layers are added sequentially. In general, the required parameters for

each layer are its type, input, output, number of hidden neurons, and activation function. In

CAS, the basic actions for building, training, and scoring a DNN are 𝑏𝑢𝑖𝑙𝑑𝑀𝑜𝑑𝑒𝑙, 𝑎𝑑𝑑𝐿𝑎𝑦𝑒𝑟,

𝑑𝑙𝑇𝑟𝑎𝑖𝑛, and 𝑑𝑙𝑆𝑐𝑜𝑟𝑒, which are available in the 𝑑𝑒𝑒𝑝𝐿𝑒𝑎𝑟𝑛 action set. Additionally, the

𝑚𝑜𝑑𝑒𝑙𝐼𝑛𝑓𝑜 action in the same action set can be used to obtain information about an existing

network. The code snippet below creates an empty DNN then adds an input layer, two

hidden layers, and one output layer to it:

proc cas;

 session casauto;

 deepLearn.buildModel /

 modelTable={name="DNN",

 replace=TRUE

 }

 type="DNN";

 run;

 deepLearn.addLayer /

 layer={type="INPUT"}

 modelTable={name="DNN"}

 name="data";

 run;

 deepLearn.addLayer /

 layer={type="FC"

 n=50

 act='relu'

 init='xavier'

 }

 modelTable={name="DNN"}

 name="dnn1"

 srcLayers={"data"};

 run;

 deepLearn.addLayer /

 layer={type="FC"

 n=50

 act='relu'

 init='xavier'

 }

 modelTable={name="DNN"}

 name="dnn2"

 srcLayers={"dnn1"};

 run;

 deepLearn.addLayer /

 layer={type="output"

 act='softmax'

5

 init='xavier'

 }

 modelTable={name="DNN"}

 name="outlayer"

 srcLayers={"dnn2"};

 run;

quit;

First, the 𝑏𝑢𝑖𝑙𝑑𝑀𝑜𝑑𝑒𝑙 action initialize an empty DNN and links it to a new CAS dataset named

𝐷𝑁𝑁. The 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 = 𝑇𝑅𝑈𝐸 argument specifies to overwrite the DNN dataset if it has already

existed, and the 𝑡𝑦𝑝𝑒 = 𝐷𝑁𝑁 specifies that the network is a deep feed-forward network.

Next, the 𝑎𝑑𝑑𝐿𝑎𝑦𝑒𝑟 action is used to add one input layer, two hidden layer, and one output

layer to the empty network. The 𝑙𝑎𝑦𝑒𝑟 = argument of 𝑎𝑑𝑑𝐿𝑎𝑦𝑒𝑟 specifies the adding layer’s

parameters such as layer type (in this case, we have 𝑖𝑛𝑝𝑢𝑡, 𝐹𝐶 – fully connected, and

𝑜𝑢𝑡𝑝𝑢𝑡), number of hidden neurons in the layer (𝑛 = 50), activation function (𝑎𝑐𝑡 = ’𝑟𝑒𝑙𝑢’), and

the weight initialization method (𝑖𝑛𝑖𝑡 = ’𝑥𝑎𝑣𝑖𝑒𝑟’). Three other important arguments of the

𝑎𝑑𝑑𝐿𝑎𝑦𝑒𝑟 action are 𝑚𝑜𝑑𝑒𝑙𝑇𝑎𝑏𝑙𝑒, 𝑛𝑎𝑚𝑒 and 𝑠𝑟𝑐𝐿𝑎𝑦𝑒𝑟𝑠 which defines the target network, the

name of the adding layer, and the layer that act as the input of the adding layer,

respectively. In this case, the names of the four layers are “𝑑𝑎𝑡𝑎”, “𝑑𝑛𝑛1”, “𝑑𝑛𝑛2”, and

“𝑜𝑢𝑡𝑙𝑎𝑦𝑒𝑟”; they are sequentially connected: 𝑑𝑎𝑡𝑎 → 𝑑𝑛𝑛1 → 𝑑𝑛𝑛2 → 𝑜𝑢𝑡𝑙𝑎𝑦𝑒𝑟. The results from

the 𝑏𝑢𝑖𝑙𝑑𝑀𝑜𝑑𝑒𝑙 and 𝑎𝑑𝑑𝐿𝑎𝑦𝑒𝑟 action are showed in Figure 4.

Figure 4. Results from Actions to Build a DNN

After adding layers to the network, the action 𝑚𝑜𝑑𝑒𝑙𝐼𝑛𝑓𝑜 can be used to show the network

architecture:

proc cas;

 session casauto;

 deepLearn.modelInfo /

 modelTable={name="DNN"};

 run;

quit;

The result of the 𝑚𝑜𝑑𝑒𝑙𝐼𝑛𝑓𝑜 action can be seen in Figure 5.

Figure 5. Result of the modelInfo Action

Finally, the network is trained and scored with the 𝑑𝑙𝑇𝑟𝑎𝑖𝑛 and 𝑑𝑙𝑆𝑐𝑜𝑟𝑒 actions. The code

snippet below trains the network using the Adam method [6] in 10 iterations (epochs) in the

𝑡𝑟𝑎𝑖𝑛 dataset then scores the trained network in the 𝑡𝑒𝑠𝑡 dataset.

6

proc cas;

 session casauto;

 deepLearn.dlTrain /

 inputs={"open","close","high","low","adjclose","volume"}

 modelTable={name="DNN"}

 modelWeights={name="DNNWeights",

 replace=TRUE

 }

 nThreads=1

 optimizer={algorithm={method="ADAM",

 lrPolicy='step',

 gamma=0.5,

 beta1=0.9,

 beta2=0.999,

 learningRate=0.1

 },

 maxEpochs=10,

 miniBatchSize=1

 }

 seed=54321

 table={caslib="casuser",name="train"}

 target="y"

 nominal="y";

 run;

 deepLearn.dlScore /

 initWeights={name="DNNWeights"}

 modelTable={name="DNN"}

 table={caslib="casuser",name="test"};

 run;

quit;

Important arguments of the 𝑑𝑙𝑇𝑟𝑎𝑖𝑛 action include the input variables (𝑖𝑛𝑝𝑢𝑡𝑠 =), the

network to train (𝑚𝑜𝑑𝑒𝑙𝑇𝑎𝑏𝑙𝑒 =), the dataset to store the trained weights (𝑚𝑜𝑑𝑒𝑙𝑊𝑒𝑖𝑔ℎ𝑡𝑠 =) –

which will be created during training, the training data (𝑡𝑎𝑏𝑙𝑒 =), and the target variable

(𝑡𝑎𝑟𝑔𝑒𝑡 =). In this case, the network is trained for a classification task, so we add the

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = argument. In the 𝑑𝑙𝑆𝑐𝑜𝑟𝑒 action, the users specify the weight table and network

table, and the target scoring data. The result of the two actions can be seen in Figure 6.

7

Figure 6. Results from the dlTrain and dlScore Actions

CONVOLUTIONAL NEURAL NETWORK

The CNN architecture uses a set of filters that are slide through the pixels of each input

image to generate feature maps, which allows features to be detected regardless of their

locations in the image. The feature maps output by a convolutional layer are usually further

subsampled to reduce their dimensionality and signify the major features in the maps. One

among the common sub-sampling methods used in CNN is Max-Pooling, which returns the

maximum value from a patch in the feature map. The convolutional/sub-sampling layer pair

can be repeated as needed. Their final outputs are then typically connected to regular

neural network layers then the output layer. Figure 7 illustrates a simple CNN of two

convolutional/subsampling layers, one fully connected layer, and one output layer. CNN can

be trained with gradient descent like a regular DNN.

Figure 7. An Example of a Complete Convolutional Neural Network1

Recent successful architectures of CNN include AlexNet [7], VGG Net[8], ResNet [9], Google

FaceNet [10], etc.

Building a CNN in CASL is similar to the process of building a regular DNN that is discussed

in the previous section. The users first generate an empty network with the 𝑚𝑜𝑑𝑒𝑙𝐵𝑢𝑖𝑙𝑑

action, then add layer to it with the 𝑎𝑑𝑑𝐿𝑎𝑦𝑒𝑟 action. There are two layer types used in a

CNN beside the 𝐹𝐶 as in DNN, which are 𝐶𝑂𝑁𝑉𝑂 (corresponding to the convolutional layer),

and 𝑃𝑂𝑂𝐿 (corresponding to the pooling layer). The code snippet below generates an empty

network, add one convolution/max-pooling layer pair and one fully connected layer to the

network, besides the regular input and output layer:

proc cas;

 session casauto;

 deepLearn.buildModel /

 modelTable={name="CNN",

 replace=TRUE

 }

 type="CNN";

 run;

1 . Image retrieved from http://deeplearning.net/tutorial/lenet.html

http://deeplearning.net/tutorial/lenet.html

8

 deepLearn.addLayer /

 layer={type="INPUT"

 nchannels=1

 width=23

 height=28

 }

 modelTable={name="CNN"}

 name="data";

 run;

 deepLearn.addLayer /

 layer={type="CONVO"

 nFilters=20

 width=5

 height=5

 stride=1

 }

 modelTable={name="CNN"}

 name="conv1"

 srcLayers={"data"};

 run;

 deepLearn.addLayer /

 layer={type="POOL"

 width=2

 height=2

 stride=2

 }

 modelTable={name="CNN"}

 name="pool1"

 srcLayers={"conv1"}

 replace=TRUE;

 run;

 deepLearn.addLayer /

 layer={type="FC"

 n=500

 }

 modelTable={name="CNN"}

 name="dense"

 srcLayers={"pool1"};

 run;

 deepLearn.addLayer /

 layer={type="output"

 act='softmax'

 init='xavier'

 }

 modelTable={name="DNN"}

 name="outlayer"

 srcLayers={"dense"};

 run;

quit;

As a CNN works with image data, its input layer has different arguments from the input

layer of a DNN in the 𝑎𝑑𝑑𝐿𝑎𝑦𝑒𝑟 action. More specifically, the users have to define the

number of channels of the input images (𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 =) (regular RGB images have three

channels; grayscale images have one channel), the image’s height (ℎ𝑒𝑖𝑔ℎ𝑡 =) and width

(𝑤𝑖𝑑𝑡ℎ =) in pixels. When adding layer of type 𝐶𝑂𝑁𝑉𝑂, the required arguments are number

of filters (𝑛𝐹𝑖𝑙𝑡𝑒𝑟𝑠 =), the filters’ size (ℎ𝑒𝑖𝑔ℎ𝑡 = and 𝑤𝑖𝑑𝑡ℎ =), and the number of pixels to

9

slide the filters in each step (𝑠𝑡𝑟𝑖𝑑𝑒 =). The 𝑃𝑂𝑂𝐿 layer has the same arguments as the

CONVO layers, except for number of filters.

Similar to a DNN, the built CNN can be viewed with the 𝑚𝑜𝑑𝑒𝑙𝐼𝑛𝑓𝑜 action, and trained and

scored with the 𝑑𝑙𝑇𝑟𝑎𝑖𝑛 and 𝑑𝑙𝑆𝑐𝑜𝑟𝑒 actions, respectively.

RECURRENT NEURAL NETWORK

Recurrent Neural Networks (RNN) are specifically designed to handle temporal information

in sequential data. Commonly used RNN types include vanilla RNN [11], Long Short-Term

Memory (LSTM) [12], and Gated Recurrent Unit (GRU) [13]. In vanilla RNN’s, the memory

state of the current time point is computed from both the current input and its previous

memory state. More formally, given a sequence 𝑋 = {𝑋0, 𝑋1, … , 𝑋𝑇}, the hidden state 𝑈𝑡 of 𝑋𝑡

(i.e. the state of 𝑋 at time 𝑡) outputted by the network can be expressed as

𝑈𝑡 = 𝜎(𝑊 ∙ 𝑋𝑡 + 𝑅 ∙ 𝑈𝑡−1 + 𝑏) (4)

where 𝑊 and 𝑅 are weight matrices of the network; 𝑏 is the bias vector of the network; and

𝜎(∙) is a selected activation function.

Since its memory state is updated with the current input at every time point, vanilla RNN is

typically unable to keep long-term memory. LSTM is an improved version of RNN with the

design goal of learning to capture both long-term and short-term memories. A LSTM block

uses gate functions, namely input gate, forget gate, and output gate, to control how much

its long-term memory would be updated at each time point. The outputted short-term

memory is then computed from the current input, the current long-term memory, and the

previous short-term memory.

Compared with vanilla RNN, LSTM introduces a mechanism to learn to capture task-relevant

long-term memory. However, the architecture of an LSTM block is relatively complex, which

may cause training of a LSTM-based model difficult and time consuming. GRU can be

viewed as an alternative to LSTM that can learn to capture task-relevant long-term

memories with a simplified architecture. A GRU block contains only two gates and does not

use long-term memory like in LST.

In CAS, building an RNN is relatively simple compared to a CNN. The 𝑎𝑑𝑑𝐿𝑎𝑦𝑒𝑟 action can be

used similarly as in building a DNN, except for the type of the recurrent layers. More

specifically, the users need to set 𝑡𝑦𝑝𝑒 = ’𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡’, and add an argument 𝑟𝑛𝑛𝑇𝑦𝑝𝑒 =<
’𝑟𝑛𝑛’, ’𝑔𝑟𝑢’, ’𝑙𝑠𝑡𝑚’ > to specify the RNN type. Below is the code snippet to generate an empty

RNN, then add an input layer, a GRU layer, and an output layer to it:

proc cas;

 session casauto;

 table.tableInfo /

 caslib = "casuser";

 name = "train";

 run;

quit;

proc cas;

 session casauto;

 deepLearn.buildModel /

 modelTable={name="GRU",

 replace=TRUE

 }

 type="RNN";

 run;

 deepLearn.addLayer /

 layer={type="INPUT"}

10

 modelTable={name="GRU"}

 name="data";

 run;

 deepLearn.addLayer /

 layer={type="recurrent"

 n=50

 act='tanh'

 init='xavier'

 rnnType='gru'

 }

 modelTable={name="GRU"}

 name="rnn1"

 srcLayers={"data"};

 run;

 deepLearn.addLayer /

 layer={type="output"

 act='softmax'

 init='xavier'

 }

 modelTable={name="GRU"}

 name="outlayer"

 srcLayers={"rnn1"};

 run;

quit;

Similar as DNN and CNN, the RNN can be trained with the 𝑑𝑙𝑇𝑟𝑎𝑖𝑛, and score with the

𝑑𝑙𝑆𝑐𝑜𝑟𝑒 actions.

DEEP LEARNING WITH PYTHON

HIGH-LEVEL API

There are numerous deep learning packages available in Python, for example, TensorFlow

[4], Theano [5], Keras [14], PyTorch [15], etc. The method of building a network by

defining and connecting layers in CASL can be considered a high-level method that is similar

to the high-level API in TensorFlow, Keras, or PyTorch. In this section, we focus on the high-

level API in TensorFlow/Keras.

To use an external package in Python, it must first be imported into the current session. For

example, the snippet below:

import tensorflow as tf

from tensorflow.keras import layers

import numpy as np

import pandas as pd

loads the packages TensorFlow, Numpy [16], and Pandas [17], into the session, and aliases

them as 𝑡𝑓, 𝑛𝑝,and 𝑝𝑑, respectively. In Python, aliasing a package allows user to call it

during the session without having to refer to the package’s full name. The 𝑙𝑎𝑦𝑒𝑟𝑠 module is

imported from 𝑡𝑒𝑛𝑠𝑜𝑟𝑓𝑙𝑜𝑤. 𝑘𝑒𝑟𝑎𝑠 without being given any alias.

Assuming the users have already had the data loaded in the correct format for TensorFlow

(training data and labels are 𝑡𝑟𝑎𝑖𝑛𝑋 and 𝑡𝑟𝑎𝑖𝑛𝑌, and testing data and labels are 𝑡𝑒𝑠𝑡𝑋 and

𝑡𝑒𝑠𝑡𝑌), the code snippet below generates a two hidden layer DNN with a SoftMax output

layer:

model = tf.keras.Sequential()

model.add(layers.Dense(50, activation='relu'))

11

model.add(layers.Dense(50, activation='relu'))

model.add(layers.Dense(2, activation='softmax'))

In line-by-line order, an empty model is first created as the 𝑚𝑜𝑑𝑒𝑙 object. The 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙
function allows layers to be added to the 𝑚𝑜𝑑𝑒𝑙 object one by one without specifying their

inputs and outputs. Then, two fully-connected (dense layers) with 50 hidden neurons and

using the ReLU activation function, and an output layer of two output neurons using

SoftMax output function, are added to the network. As can be seen, besides syntax, this is

similar to using the 𝑏𝑢𝑖𝑙𝑑𝑀𝑜𝑑𝑒𝑙 and 𝑎𝑑𝑑𝐿𝑎𝑦𝑒𝑟 actions in CASL. A difference is that, unless the

input data is not ready for a network, an input layer is not necessary.

An initialized network must be compiled before training. A simple way is as below:

model.compile(optimizer=tf.train.AdamOptimizer(0.001),

 loss='categorical_crossentropy',

 metrics=['accuracy'])

model.fit(trainX, trainY, epochs=10, batch_size=32)

the compile function set some important criteria such as optimizer (Adam in this case), loss

function, and evaluation metric. The model then is trained with the fit function. Finally, a

trained model can be scored with the evaluation function:

model.evaluate(testX, testY, batch_size=32)

Similar to in CASL, the layer type can be changed to convolutional, pooling, recurrent, etc.

to accommodate the deep architecture that is needed. For example, the snippet below:

model = tf.keras.Sequential()

model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=2, padding='same',

 activation='relu', input_shape=(28,28,1)))

model.add(tf.keras.layers.MaxPooling2D(pool_size=2))

model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=2, padding='same',

 activation='relu'))

model.add(tf.keras.layers.MaxPooling2D(pool_size=2))

model.add(tf.keras.layers.Flatten())

model.add(tf.keras.layers.Dense(256, activation='relu'))

model.add(tf.keras.layers.Dense(10, activation='softmax'))

generates an empty model, then add two pairs of convolutional/pooling layers, and two

fully-connected layers to the empty model. As mentioned previously, the network must be

compiled and trained before using.

LOW-LEVEL API

A more complicated but more flexible way (depending on the use case) to build a deep

learning model is to define its computational map. This method is usually referred to as low-

level API in deep learning packages such as TensorFlow and Theano. Refer to equation (2),

the computational flow of a two-hidden-layer DNN with binary output can be as follows

𝐻1 = 𝑟𝑒𝑙𝑢(𝑊0 ∙ 𝑋 + 𝑏0)

𝐻2 = 𝑟𝑒𝑙𝑢(𝑊1 ∙ 𝐻1 + 𝑏1)

�̂� = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜𝑢𝑡 ∙ 𝐻2 + 𝑏2)

(5)

Where 𝐻1 and 𝐻2 are the output of the hidden layers, �̂� is the output of the DNN, and 𝑊∗ and

𝑏∗ are the weights and bias vectors of the layers. In building a network with low-level API,

𝑋, 𝐻1, 𝐻2, and �̂� are considered variables that are input or computed on fitting; whereas all

𝑊’s and 𝑏’s are considered trainable parameters that have to be initialized (e.g. randomly

12

initialized) before training. The training process then updates the values of 𝑊’s and 𝑏’s to

optimize a certain loss function. After training, the values of all 𝑊’s and 𝑏’s are fixed. The

code snippet below realizes the computational map in (5) with Theano:

from theano import *

import theano.tensor as T

from numpy.random import normal

x = T.matrix('x')

y = T.matrix('y')

#1st hidden layer

W0 = theano.shared(normal(loc=0,scale=0.001,size=(8,50)),name='W0')

b0 = theano.shared(np.zeros(50),name='b0')

H1 = T.nnet.relu(T.dot(x,W0) + b0)

#2nd hidden layer

W1 = theano.shared(normal(loc=0,scale=0.001,size=(50,50)),name='W1')

b1 = theano.shared(np.zeros(50),name='b1')

H2 = T.nnet.relu(T.dot(H1,W1) + b1)

#output layer

Wout = theano.shared(np.zeros((50,1)),name='Wout')

bout = theano.shared(np.zeros(1),name='b1')

Yhat = T.nnet.sigmoid(T.dot(H2,Wout) + bout)

First, used packages are first imported and aliased (if necessary). We also import the 𝑛𝑜𝑟𝑚𝑎𝑙
function from Numpy to initialize the weights of the DNN with a normal distribution (with

mean of 0 and scale of 0.001, as seen later in the code).

𝑥 and 𝑦 are then generated as variables that will be used in training and testing the

network; outsides of such cases, they are symbolic and carry no actual values. With the

input (𝑥) defined, we begin to generate the weights and biases of each layer, as well as

define the computations as needed (i.e. the computational sequence 𝑥 → 𝐻1 → 𝐻2 → �̂�).

To train the DNN, Theano provides certain modules for computing gradients and updating

parameters. For example, the generated DNN can be trained with stochastic Gradient

Descent as follows:

#loss function

L = T.nnet.binary_crossentropy(Yhat,y).mean()

#select trainable parameters and compute gradients w.r.t. L

params = [W0,b0,W1,b1,Wout,bout]

gparams = [T.grad(L, param) for param in params]

learning_rate = T.scalar('learning_rate')

updates = [

 (param, param - learning_rate * gparam)

 for param, gparam in zip(params, gparams)

]

#functions to train and predict

train_model = theano.function(

 inputs=[x,y,learning_rate],

 outputs=L,

 updates=updates,

)

13

predict = theano.function(

 inputs=[x],

 outputs=Yhat

)
In this case, the loss function is binary cross entropy that is computed based on the true

label 𝑦 and the output label �̂�. After defining the gradients and updating rules, the

𝑡𝑟𝑎𝑖𝑛_𝑚𝑜𝑑𝑒𝑙 function can be called iteratively to train the selected parameters:

for epoch in range(10):

 print("Epoch %d, cost: %f" %

 (epoch,train_model(trainX,trainY,np.float32(0.1))))

Finally, we can make predictions with the 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 function:

Y_pred = (predict(testX) > 0.5) * 1

Since the raw output of the predict function is the probability of �̂� = 1 (since the output layer

use sigmoid function), we can compare it to 0.5 and convert the Boolean values to integer to

have the final prediction. As seen from the sample codes, building a deep model with low-

level API is more complicated compared to high-level tools like CASL.

DISCUSSION

Previously, we show the programming styles for deep learning in CASL and two

representative Python packages – TensorFlow and Python. As can be seen, the steps to

build, train, and use, a deep learning model in SAS/CASL is relatively similar to the high-

level API of deep learning packages in Python. There are a few notable differences,

however:

1. CASL has all the dataset-centric characteristics of SAS. More specifically, components

(i.e. layers and parameters) of a deep network are stored in SAS datasets. In

Python, parameters in layers are typically stored as tensors, matrices, or vectors,

that are connected by the network’s computational map.

2. Similar to the network’s components, training and testing data are also stored in SAS

datasets. In Python, data can be stored as different types of objects. In the simplest

case, datasets are also tensors, matrices, or vectors.

The advantages of CASL is that its syntax and usages is similar to other SAS procedures,

and thus being friendlier to SAS users. Moreover, the users can utilize other powerful tools

like SAS data steps and procedures to manipulate the data in the same sessions. However,

in certain cases, this data-centric characteristic of SAS may cause some disadvantages to

user.

First, storing parameters in a dataset is not desirable in really big network, as one

parameter takes place as one row with additional information like layer ID and weight ID

(we show this architecture in Figure 8). Consequently, a network of millions of parameters

would result in the same number of rows with considerably more information to be

processed, which may cause more overhead when the network is first accessed.

14

Figure 8. Stored Parameters of a Deep Model in CAS

Second, storing data as SAS dataset is also not desirable in certain cases, for example,

image processing. The wide image format in SAS converts each pixel in one channel to one

column in the storing dataset. Therefore, a 28 × 28 RGB image is converted to a SAS dataset

of 28 × 28 × 3 = 2352 variables, or a 128 × 128 grayscale image results in a dataset of over

16,000 variables. Overall, this method requires more storage and processing power than

the Python method, which represent images through 3D or 4D tensors.

Compared to low-level deep learning package like Theano, CASL is certainly simpler to use.

These packages are usually used as backends for other high-level packages like Keras, or

when users need more controls in the implementation process (e.g. when designing new

types of deep models). Consequently, the low-level tools are arguably more flexible than

high-level tools like CASL. However, this is, however, not necessary and may be over-

complicated for new users or tasks that focus more on application of common deep

architectures.

Outside of the disadvantages, however, we believe CASL/SAS is a powerful tool for SAS

users to utilize deep learning architectures in their tasks without the needs of learning or

integrating new tools in their SAS sessions.

CONCLUSION

In this paper, we showcase the uses of three toolboxes, namely SAS Viya/CASL, Python-

TensorFlow, and Python-Theano, in modeling with deep learning. We highlight the main

differences between CASL and the Python packages, and show that for the general purpose

of using common deep learning models, CASL is sufficient and arguably more powerful for

SAS users.

REFERENCES

[1] Schmidhuber, Jürgen (2015). “Deep learning in neural networks: An overview”. In:

Neural networks 61, pp. 85–117.

[2] LeCun, Yann, Yoshua Bengio, et al. (1995). “Convolutional networks for images,

speech, and time series”. In: The handbook of brain theory and neural networks

3361.10, p. 1995.

[3] Funahashi, Ken-ichi and Yuichi Nakamura (1993). “Approximation of dynamical

systems by continuous time recurrent neural networks”. In: Neural networks 6.6, pp.

801–806.

[4] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016).

Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium

on Operating Systems Design and Implementation ({OSDI} 16) (pp. 265-283).

15

[5] Bergstra, James et al. (2010). “Theano:ACPU and GPU math compiler in Python”. In:

Proc. 9th Python in Science Conf, pp. 1–7.

[6] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with

Deep Convolutional Neural Networks. In NIPS, 2012.

[8] Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolutional networks

for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556.

[9] He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In:

Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

770–778.

[10] Schroff, Florian, Dmitry Kalenichenko, and James Philbin (2015). “Facenet: A unified

embedding for face recognition and clustering”. In: Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 815–823.

[11] Funahashi, Ken-ichi and Yuichi Nakamura (1993). “Approximation of dynamical

systems by continuous time recurrent neural networks”. In: Neural networks 6.6, pp.

801–806.

[12] Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In:

Neural computation 9.8, pp. 1735–1780.

[13] Chung, Junyoung et al. (2014). “Empirical evaluation of gated recurrent neural

networks on sequence modeling”. In: arXiv preprint arXiv:1412.3555.

[14] Gulli, A., & Pal, S. (2017). Deep Learning with Keras. Packt Publishing Ltd.

[15] Ketkar, N. (2017). Introduction to pytorch. In Deep learning with python (pp. 195-

208). Apress, Berkeley, CA.

[16] Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: a

structure for efficient numerical computation. Computing in Science & Engineering,

13(2), 22.

[17] McKinney, W. (2011). pandas: a foundational Python library for data analysis and

statistics. Python for High Performance and Scientific Computing, 14.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Linh Le

Institute of Analytics and Data Science

lle12@students.kennesaw.edu

