
1

Paper 3199-2019

The Power of a Good SUIT. SAS® Unit and Integration Testing
Cameron Lawson, Selerity

ABSTRACT
Test automation is an integral component of modern software development. Many
programming languages and the communities built around them either enjoy integrated test
libraries as part of the language's standard library or have adopted a de facto standard such
as Python's unit test module or Java JUnit libraries. Many libraries that have been developed
or promoted in the SAS® community have been adopted to varying degrees. This includes
notable projects such as SASUnit and the SAS Operational Quality testing tool. All of these
libraries are focused on the programmer and geared toward unit testing approaches. SUIT is
a new testing tool offered to the community that not only provides familiar JUnit-style test
assertions for the SAS® programmer, but also keyword-driven test-case development more
suitable for business-focused SAS® users and testers to adopt automated testing. With a
wide range of out-of-the-box test cases for SAS® 9 and Viya™, users can quickly develop
robust test cases. The extendable architecture easily enables business units to develop their
own keyword libraries. Using the power of SAS®, tests can be developed across the full
lifecycle of your development, from data to user interface. Test results integrate into
common continuous integration tools such as Jenkins and Bamboo. A modern-browser-
based interface provides a seamless interface to SAS middle-tier applications.

INTRODUCTION
As a SAS® consultant I constantly engage with customers performing projects that are
building business solutions based on SAS® and Viya™. These projects range from
initiatives exploring new revenue streams and services through to highly complex business
critical solutions that underpin significant business processes and revenue streams.

Project and delivery teams often have difficulty in testing SAS® based solutions. Quite often
the testing team come from different backgrounds and do not have the sufficient skills to
write and analyze SAS® code or test teams have difficulty integrating the execution and
results from bespoke SAS® test scripts. Delays often occur as these teams navigate the
complexities of SAS® code. Often the testing team will get the SAS® developers write the
tests for them creating issues with quality control and regulatory processes.

In conjunction, many SAS® programmers do not utilize a testing framework as part of their
development lifecycle and either do not automate tests or they continually re-write the
same logic over and over through different projects to test new features. Research has
shown that test automation not only greatly improves the reliability of software
development, but it also improves the speed of delivery (Dustin, Rashka and Paul. 1999
p392.)

The availability of open source SAS® centric frameworks is limited. There are some
exceptions such as SASUnit which provides J-Unit style test assertions. The SUIT
framework looks to address some of these limitations by making a framework available that
is simple to use, improves development efficiency and can be used by both SAS®
programmers and non-programmers alike. SUIT does not aim to replace existing test
frameworks currently available. It seeks to work alongside these and fill the gaps often
encountered by testing teams, user acceptance testers and SAS® developers.

DESIGN PRINCIPLES

2

The development of SUIT is guided by a series of overarching design principles outlined in
Table 1:

Principle Description
Build an accessible
framework

Construct a testing framework that can used by both SAS® and non-
SAS® users.

Build an extendable
framework

Construct a framework that can be adapted and improved over time
following core software design principles.

Make the
framework simple

Provide interfaces that are simple to use.

Make the
framework play
well with others

Allow the framework to integrate into automation frameworks and
interface with other systems using well known and supported
protocols.

Table 1. SUIT Design Principles

SUIT is open source and will be available on or around the SAS Global Forum 2019 (May
2019). A premium Enterprise version is also in development which will provide Enterprise
grade features to SUIT and is suitable for organizations that have an embedded testing
culture and want premium level support. Table 2 provides a comparison of features
between SUIT and SUIT Enterprise:

Feature SUIT Core SUIT Enterprise
SUIT Programming Interface X

SUIT File Interface X

SUIT Command Line Interface X

Core Test Keywords X

Web Interface and REST API X

Viya™ containers / Docker support X

Ansible Modules and Chef Recipes X

Group and User Security X

Suit File Editor X

Premium Keyword Libraries (UI testing, OWASP) X

Level 1 and 2 help desk support X

Table 2. SUIT Core and SUIT Enterprise Features.

SUIT Enterprise is expected to be available in the third quarter of 2019 (July – September).

Selerity is also looking for contributors to SUIT Core. Contributors will have heavily
discounted access to SUIT Enterprise. For further information please contact
support@seleritysas.com.

3

SUIT ARCHITECTURE
The core of SUIT is built with the SAS® language. Table 3 outlines the key objects within
the SUIT framework:

Object Description
Keywords These are the building blocks for test cases. A keyword

implements an action or asserts truthiness.
Test Cases A Test Case is a collection of one or more keywords. Test

Cases are typically created to test an object or a process. A
test case can produce multiple test results.

Test Suites A Test Suite is a collection of test cases that are executed as
one entity. A Test Suite will output a series of object showing
the results of keywords within test cases as well as producing a
SUIT results log and additional reporting.

Test Results A Test Result is produced by executing Test Suites. A Test
Result records the outcomes of test keywords executed within
each test case and grouped by a test suite.

Table 3. SUIT Components.
SUIT is written to accommodate SAS® and Viya™ programmers as well as test practitioners
who do not have experience with the SAS® language. The typical workflow for SUIT is
shown in Figure 1:

4

Figure 1. SUIT Workflow.
Interfaces are available for programmers and non-programmers. The execution of SUIT can
be invoked manually by a user or incorporated into continuous integration / development
processes such as Jenkins, Bamboo or other process orchestration tools like Ansible or Chef.

SUIT implements a plugin-based architecture to extend SUIT functionality, a flexible library-
based approach to extend and customize keywords and a range of lifecycle hooks to trigger
custom tasks and plugin processes at every stage of the SUIT testing lifecycle.

5

Figure 2. SUIT Services Diagram.
SUIT framework objects can be written using either SAS® Code or using a simple text
markup. This markup language is loosely based on the Markdown language and saved with
the extension of “.suit” or “.md”.

SUIT results are recorded to a test suite log file which is implemented using the SAS®
Enhanced Logging Framework. This framework is based on the log4j Java library and
provides advanced logging capabilities. Results can be streamed to a console, written to
databases or to multiple log files. SUIT then parses the result logs into test reports. These
reports can be viewed in your browser or integrated into test reporting tools that support
the J-Unit XML format.

Tests support the concept of decorators which are macros that alter default behaviors of
keywords or provide run-time extensions in functionality. A tester can “decorate” a test by
calling the required decorator immediately before a test keyword. Decorators are
maintained in a plugin within SUIT and can also be extended. Table 4 outlines the standard
decorators SUIT core ships with:

Decorator SUIT File Keyword Description
%expect_failure Expect failure Will record a failed test as passed. This

is useful for performing negative
assertions in tests.

6

Decorator SUIT File Keyword Description
%skip_test Skip test Will skip execution of the test and

record the test as skipped in test
results.

%tags Tags Will tag tests by the given tags. This is
slated for a future release that will
allow test execution by tag name.

Table 4. SUIT Decorators

USAGE SCENARIOS

SAS® OR VIYA™PROGRAMMER
SUIT is written in the SAS® language. Using SUIT is no different to writing any other SAS®
program. It is recommended however that a user has an understanding of how to invoke
SAS® Macros. Typically, a programmer will write test cases either inside projects such as
unit and functional tests and some organizations will also maintain separate user acceptance
and regression test repositories. A SAS® or Viya™ programmer simply writes their desired
test cases and saves them in a location accessible to either the SAS® or Viya™ server and
executes test suites using the %suit_testsuite() macro.

SOFTWARE TESTER
Software testers not accustomed to the SAS® language can write test keywords and test
cases using the suit file format. This format described further in this paper is a simple text
file format that is parsed into SAS® code and then executed like any other SAS® program.
As testers may not have direct access to SAS or have a limited knowledge in the SAS®
interface, a command line tool written in python is also provided called suit-cli. A tester can
write tests locally on their client machine and upload them to the SAS® or Viya™ server
and then execute test suites. The client simply needs ssh access to the SAS® server and
write access to the location of where test keywords, test cases and test suites are stored.

AUTOMATION SCENARIOS
SUIT also supports automation. This is a common scenario where test automation is used
as a control gate in the promotion or committing of code. SUIT can be invoked by a CI/CD
application such as Jenkins or Bamboo via the suit-cli tool. SUIT will produce a J-Unit style
xml results file that then be used by Jenkins to report test history and in Bamboo via the J-
Unit XML Parser. A premium version of SUIT is also in active development and this will also
provide a custom Ansible module and Chef recipe that can be invoked to integrate SUIT
testing into configuration management processes.

INSTALLATION AND CONFIGURATION
SUIT is easy to install and flexible to accommodate varying business requirements within
SAS® and Viya™ installations. In the simplest form, SUIT requires the following:

• Folders to store Test Cases, Test Suites and Application Logs.

• The setting configuration variables to point to the location of SUIT, and your Test
Case, Test Suite and Application Log Paths.

• SAS® Metadata Server details and Viya™ server details if running through Viya™

SINGLE USER

7

SUIT can be used from SAS® University Edition quite easily. The following steps outline the
setup:

1. Clone SUIT from https://github.com/selerity/suit into your shared folders location. If
you are using the latest version of SAS® University Edition, you can use the newly
available git functions to clone the repository as required.

2. In your shared folder location under SASUniversityEdition/myfolders create the
following new folders:

a. suit_logs

b. suit_results

c. suit_testcases

d. suit_testsuites

3. Edit your autoexec file and add the following:
options set = SUIT_HOME "/folders/myfolders/suit";

options set = SUIT_TESTCASE_HOME "/folders/myfolders/suit_testcases";

options set = SUIT_RESULTS_HOME "/folders/myfolders/suit_results";

options set = SUIT_LOG_HOME "/folders/myfolders/suit_logs";

%include “/folders/myfolders/suit/suit_init.sas”;

Output 1. SUIT Configuration Variables.

SERVER
For server installations, the configuration can be implemented in a number of ways. The
installation is essentially the same for SAS® 9 and Viya™ environments as SUIT utilizes the
programming interface for Viya™ which initialize SAS® Workspace servers. SUIT Enterprise
will also include support for initiating SUIT as a containerized process allowing users to
create and teardown test environments easily.

For the Application Context you wish to run SUIT from, it is recommended you place SUIT
under your SASEnvironment/ path however it can be installed in any server-side location
that you store SAS® Code.

You need to invoke suit/suit_init.sas from your appserver_autoexec_usermods.sas file or by
adjusting the INITSTMT option on your workspace server. You can set configuration
variables either in your operating system, sasv9_usermods.cfg file or your
appserver_autoexec_usermods.sas file. The suit/suit_init.sas file by default looks for the
following environment variables. The minimum required configuration variables are outlined
below in Table 5:

Variable Value
SUIT_HOME The path to where the suit

framework is located.
SUIT_TESTCASE_HOME The top-level path to where test

cases will be stored.
SUIT_RESULTS_HOME The top-level path to where test

results are written.

8

Variable Value
SUIT_LOG_HOME The top-level path to where suit

application logs is written.
Table 5. SUIT Configuration Variables.
The paths you set for these variables need to have read, write, execute permissions for SAS
and suit users. The SUIT_HOME location can be set with read, execute permissions. It is
recommended to have separate top-level directories for test cases and test suites. This
ensures that test suites do not have circular references to files.

THE SUIT FILE FORMAT
A suit file is a simple text-based markup format that can be used by a tester to create test
keywords, test cases and test suites. This markup is parsed by SUIT into SAS® code and
executed on the SAS® or Viya™ environment. The SUIT file format is separated into
different sections depending on the role of the markup. Sections are marked up using a
single hash (#) followed by the section name. The format currently supports the following
sections

METADATA
The metadata section contains descriptive information for the object being created. The
information in this section is essentially descriptive and the purpose is to inform test results
and documentation output. The information in this section typically contains:

• The name of the object

• A description of the object

• Authorship information

• Any other key / value pair that assists with the understanding of the object.

At a minimum, a name is required. All other parameters are optional. An example
metadata section is as follows:

Metadata
Name Example SUIT Test Case
Desc An example of the different capabilities for a suit file.
Author Cameron Lawson
Project SUIT

Output 2. SUIT File Metadata Section Example.

VARIABLES
Variables allow the setting of constants that can be used within keywords and tests.
Variables are defined as key / value pairs with values separated via a TAB characters.
Variables may also reference other variables and they should be referenced using the SAS &
token. Output 3 shows a typical Variable structure:
Variables

stagelib stagelib

sourcetable1 &stagelib..s_assets

stagetable1 &stagelib..s_assets

tfmtable1 &assetlib..t_assets_keys

9

Output 3. SUIT File Variables Section Example.

KEYWORDS
The keywords section allows the creation of custom keywords. Keywords are written as the
name of the keyword followed by the parameters of the keyword each separated by TABs
followed by subsequent lines indented by a TAB. The following example shows this syntax:

Keywords
Dataset test library dataset
 Dataset exists &library..&dataset
 Variable exists &library..&dataset rowid
 Variable exists &library..&dataset dt_created
 Variable exists &library..&dataset dt_modified
 Format equals &library..&dataset dt_created datetime20.
 Format equals &library..&dataset dt_modified datetime20.

Dataset is not empty &library..&dataset
Variable unique &library..&dataset rowid

Output 4. SUIT File Keywords Section Example.
The above output will create a SAS® Macro called %dataset_test and will look as follows:

/* Variables */
%let saslib = %nrbquote(mylib);
%let dataset1 = %nrbquote(data001);
%let dataset2 = %nrbquote(data002);

/* Keywords */
%dataset_test(library,dataset) / des=’Custom Keyword created in suit test
file xxxx.suit by cameron’;
 %dataset_exists(&library..&dataset);
 %variable_exists(&library..&dataset, rowid);
 %variable_exists(&library..&dataset, dt_created);
 %variable_exists(&library..&dataset, dt_modified);
 %format_equals(&library..&dataset, dt_created,datetime20.);
 %dataset_is_not_empty(&library..&dataset);
 %variable_unique(&library..&dataset,rowid);
%mend;

/* Tests */
...

Output 5. SUIT File Keyword Parsed Output.
Keywords are generally written using the SAS® Macro language. The main use case for
creating keywords in a suit file is to combine multiple keywords into a single keyword.

TESTS
The tests section contains either the test case or test suite you wish to execute. Tests are
written as one line per keyword with each parameter for the keyword separated by a tab.
Variables used in the tests and keyword sections are referenced using the common SAS®
syntax of an ampersand (&). Keyword parameters can either be referenced variables or
absolute values. Keywords that are defined in a keywords section can also be used:

Tests
Library exists &saslib
Variables exist metric1 metric2 metric3
Dataset test &saslib &dataset1
Dataset test &saslib &dataset2

10

Output 6. SUIT File Tests Section Example.

COMPLETE EXAMPLE
Metadata

name test suit format

desc this is a description of the test

author Cameron Lawson

version 1.0

tags unittest

Variables

stagelib stagelib

sourcetable1 &stagelib..s_assets

stagetable1 &stagelib..s_assets

tfmtable1 &assetlib..t_assets_keys

Keywords

run daily staging jobs

 run sas program /opt/foo stage_*.sas

 run sas program /opt/foo/stats.sas

run daily transform jobs

 run sas program /opt/foo transform_*.sas

Tests

run daily staging jobs

assert sas log /saslogs/staging.log ERROR 0

count rows &sourcetable1 sourcerowcount

count rows &stagetable1 stagerowcount

assert equals &sourcerowcount &stagerowcount

run daily transform jobs

assert sas log /saslogs/transform.log ERROR 0

count rows &tfmtable1 tfmrowcount

assert equals &stagerowcount &tfmrowcount

Output 7. SUIT File Example.

11

SAS® PROGRAMMING INTERFACE
The suit file format is primarily designed for test practitioners who do not have detailed
SAS® programming knowledge. Those with SAS® programming knowledge may wish
instead to use the programming interface. The interface uses the SAS® Macro language
and suit objects can be written just like any other SAS® program. This allows an end user
to easily integrate the process of test-driven development into the development lifecycle.

TEST CASES
Tests are written using available keywords. A tester can also write new keywords directly
within tests or by extending the available global keyword libraries. It is recommended to
write tests separately to the SAS® objects being tested. If your tests have dependencies
such as the execution of a certain program, you can include the program to be executed in
the test case. Keywords available to suit files are also available to the SAS® programmer
with the difference being that keywords must be referenced using valid SAS® macro
naming conventions. Keywords in the suit file format will replace spaces with underscores,
so a test keyword called dataset exists is referenced as %dataset_exists in the
programming interface:

/**
Test Program for something critical.
:author: Cameron Lawson
:project: SUIT
*/
%let logpath = %nrbquote(/path/to/log.log);
proc printto log = ”&logpath.” new;
run;
%include “/my/program/i/want/to/test.sas”;
proc printto;
run;

/* Start of test keywords */
%saslog_errors_equal(&logpath,0);
%saslog_warnings_equal(&logpath,0);
%expect_failure;
%dataset_exists(mylib.mydata);

Output 8. SUIT Programming Test Case Example.

KEYWORDS
Keywords can be defined either locally or by extending the global SUIT keyword library.
Keywords may or may not generate a test result. A Test Result will write a result to the
SUIT log and will record a test as either Passed or Failed. To implement this, SUIT provides
two macros which can be used by a developer:

• %suit_pass_test

• %suit_fail_test

Each macro takes the following parameters:

Parameter Value
testname The name of the test
msg A custom message to write to

the SUIT log.

Table 6. SUIT Log Message Parameters

12

Keywords should implement the following parameters:

Parameter Purpose
testname A placeholder for the name of

the test. This should be given a
default value of
&sysmacroname.

Table 7. SUIT Keyword Required Parameters.
Keyword macros should also include the DES=’’ option as this is used to assist documenting
the keyword. The naming of keywords should reflect a natural language style syntax and
words separated with an underscore.

In conjunction to the above, there are some additional Global variables which can be set to
influence the behavior of SUIT. For further details of these see the developer
documentation at https://suit.seleritysas.com.

SUIT ships with a J-Unit style assertion keyword library. This library provides test result
creation for numerous operations and can be used to simplify the creation of higher-level
keywords. For example, most keywords in the built-in libraries use the %assert keyword
to produce a test result.

An example keyword macro can be seen below which implements the following:
%macro assert(actual,expected,operator,msg=,testname=&sysmacroname.) /

 des = "Tests that an expected value meets an actual value by a given
operator";

 %local _testname _passmsg _failmsg actualc expectedc;

 %let _testname = &testname.;

 %let _passmsg = %nrbquote(&actual. &operator. &expected. &msg.);

 %let _failmsg = %nrbquote(&actual. was expected to be &operator.
&expected. &msg.);

 %if (&SUIT_IGNORE_CASE_IN_STRINGS) %then %do;

 %let actual = %upcase(&actual.);

 %let expected = %upcase(&expected.);

 %end;

 %if %datatyp(&expected) eq CHAR %then %do;

 %let actualc = %sysfunc(md5(&actual),$hex32.);

 %let expectedc = %sysfunc(md5(&expected),$hex32.);

 %if &actualc &operator &expectedc %then %do;

 %suit_pass_test(test=&_testname,msg=&_passmsg.);

 %end;

 %else %do;

 %suit_fail_test(test=&_testname,msg=&_failmsg.);

13

 %end;

 %return;

 %end;

 %else %do;

 %if %eval(&actual. &operator &expected.) %then %do;

 %suit_pass_test(test=&_testname,msg=&_passmsg.);

 %end;

 %else %do;

 %suit_fail_test(test=&_testname,msg=&_failmsg.);

 %end;

 %return;

 %end;

%mend assert;

Output 9. SUIT Keyword Programming Example.
In order to obtain a listing of available keywords in your session you can run the
%suit_libdoc macro. This will produce a listing of available keywords, their parameters
and the description of the macro recorded in the DES attribute. Table x shows the output of
running %suit_libdoc(assert):

Figure 3. SUIT LibDoc Example Output.

TEST SUITES
To execute a test suite, a SAS® programmer can call the %suit_testsuite macro. This
macro operates in a similar fashion to a suit file except it accepts a name and description for
the test suite followed by an optional list of paths and search patterns for tests to discover
and include. In the SUIT configuration file, parameters are set for the default test case path
and default search pattern for test names. The default values for these are as follows:

14

Parameter Default Value
SUIT_DEFAULT_TEST_CASE_PFX test_*
SUIT_TESTCASE_HOME <User Specified>

Table 8. SUIT Test Case Default Parameters.
If a user does not include any paths or search patterns, these default values are used. The
below examples show invocations of %suit_testsuite using default parameters and then
supplying multiple paths for test cases:

/* Test Suite with Default Parameters */
%suit_testsuite(
standard_testsuite,
tests executed from the default testcase path and pattern
);

/* Test Suite with a Custom List of Paths */
%suit_testsuite(
custom_testsuite,
A custom test suite with multiple paths,
/home/cameron/private_tests/unittest_*,
test_critical*,
test_smoke*,
test_uat*
);

Output 10. SUIT Test suite Code Examples.

TEST RESULTS
By default, SUIT will output results of tests into the SUIT_TESTRESULTS_HOME path
specified in the configuration. The results directory is structured as follows:

Path Purpose
/logs SAS® program logs and listings

and the SUIT results log.
/report SUIT html and j-unit xml

reports.
/tests A copy of each suit and sas

program executed in the test
suite.

/data SAS Datasets containing parsed
test results and test suite
metadata.

Table 9. SUIT Test Result Structure
Each test result directory by default is named by the test suite executed and a datetime to
ensure uniqueness. The output name of this directory can be changed within the SUIT
configuration file.

LOGS DIRECTORY
Test results are written to a custom SAS® log which is created via the SAS® Enhanced
Logging Facility. Each result contains the following information:

15

Attribute Value
Datetime Datetime of the entry
Result PASS or FAIL
SUIT_SESSION_ID A unique ID for the invocation

of SUIT.
Test Start Datetime Datetime Test Keyword

initiated.
Test End Datetime. Datetime Test Keyword

terminated.
Test Suite Name of the Test Suite
Test Case Filename of the Executing Test

Case.
Test Name of the executing Test

Keyword.
Level The SAS Logging Level

(ERROR,WARN,NOTE,DEBUG)
Msg The custom message passed to

the Test Keyword.
Table 10. SUIT Result Log Attributes
This log is parsed by the SUIT and then turned into results reporting and stored in the
SUIT_RESULT table.

TESTS DIRECTORY
Each test discovered is copied to the results directory in order to allow the auditing of tests
at time of execution. If a suit file is included in the test suite, two files are written to the
tests directory:

• The original suit file.

• The parsed suit file in .sas format.

DATA DIRECTORY
Test Suite metadata, test case discovery and test results are stored in SAS® datasets
within the /data directory. The SUIT Enterprise product collects these tables and stores
them into a central database to allow results reporting and analytics on test results across
an organization.

The tables within the directory are as follows.

Dataset Purpose
SUIT_TESTSUITE Metadata about the test suite

including name, description,
execution time, author

SUIT_TESTCASE A list of test cases executed by
a test suite.

SUIT_RESULT A listing of executed keywords
that produce a test result and
their execution time and pass /
failure status.

16

Dataset Purpose
SUIT_HOOKS A list of executed plugins by

test lifecycle stage.
Table 11. SUIT Output Datasets.
For full information on the attributes within each table please consult the SUIT online help
documentation at https://suit.seleritysas.com.

RESULTS DIRECTORY
The results directory contains an ODS html report containing a listing of all test cases and
test keywords executed and their results. The output report contains links to the test cases
executed and the full SAS Log for each test case.

In conjunction, a J-Unit formatted XML report called report.xml is also outputted to the
directory. This document can then be used to integrate into CI/CD systems.

17

18

Output 11. SUIT HTML Output.

SUIT CLI
A command line utility is also available. The cli provides a client-side interface for non-
SAS® users to upload, execute and download SUIT keywords, test cases and test suites.

The cli is written in Python and operates on both Linux and Windows. The cli is pre-
compiled with an embedded Python interpreter and all the required libraries to operate. The
cli uses the Pycrypto library which is a C based extension for Python. As a result, when
downloading the cli, ensure you obtain the right distribution for your platform.

To see the available options in the cli simply run suit-cli using the -h option:
suit-cli -h
suit-cli –help

The output from this produces the following:

 _____ _ _ _

 *** / ___| | | (_)| |

 ******** \ `--. ___ | | ___ _ __ _ | |_ _ _

*********** `--. \ / _ \| | / _ \| '__|| || __|| | | |

 ******** /__/ /| __/| || __/| | | || |_ | |_| |

 **** ____/ ___||_| ___||_| |_| __| __, |

 __/ |

 |___/

SUIT(TM) - SAS(r) Unit and Integration Testing

version : 0.1

build : 1

positional arguments:

 {libdoc,testcase,testsuite}

 Available Sub-Commands

 libdoc Execute Keyword Library Documentation

 testcase Manage SUIT Test Case Files

 testsuite Manage SUIT Test Suites

optional arguments:

 -h, --help show this help message and exit

19

 -v, --version show program's version number and exit

 -p PROFILE, --profile PROFILE

 Specify which stored profile to use to connect to the

 server side instance of SUIT. By default, SUIT will

 look for a .suitprofile file under your home

 directory.

Don't like the purity of command line?

Try SUIT Enterprise. Go To https://suit.seleritysas.com

Output 12. SUIT CLI Help Screen

The SUIT cli provide three main options:

• Libdoc: Display Keyword Documentation

• TestCase: Upload Test Cases to the Server

• TestSuite: Define and Run SUIT Test Suites.

Full help documentation is available at https://suit.seleritysas.com. SUIT comes with pre-
compiled binaries for Linux and Windows.

EXTENDING SUIT
If you are using SUIT we encourage you to extend the framework to match the needs of
your organization and processes. To assist, a number of utilities are available and Selerity
maintain detailed developer documentation at https://suit.seleritysas.com

EXTENDING PLUGINS.
A new plugin can be created by calling %suit_create_plugin and passing in the name of
the plugin you wish to create. This will create a new empty plugin structure in the
SUIT_PLUGIN_HOME path.

Plugins utilize SUIT’s hook script functionality to execute processes at a required lifecycle
stage. The available lifecycle states are shown in table 12:

Lifecycle Hook Description
suit_pre_init Executes prior to the suit framework

initialization

suit_post_init Executes after suit framework initialization

testsuite_startup_pre_init Executes prior to Test Suite initialization

testsuite_startup_post_init Executes after Test Suite initialization

20

Lifecycle Hook Description
testsuite_teardown_pre_init Executes prior to teardown activities for a Test

Suite

testsuite_teardown_post_init Executes after teardown activities complete for
a Test Suite

testcase_startup Executes prior to Test Case execution

testcase_teardown Executes after Test Case execution

test_startup Executes prior to each test keyword

test_teardown Execute after each test keyword

results_startup Executes prior to generating results reporting

results_teardown Executes after generating results reporting.

Table 12. SUIT Lifecycle Hooks

EXTENDING KEYWORDS.
A new keyword library can be created by calling %suit_create_lib and passing in the
name of the keyword library to create. New keywords can be added using the
%suit_create_keyword macro and passing in the name of the library, and the name of
the file. A file can contain one or more macros and the content of the macros should follow
the keyword creation conventions outlined previously in this paper.

After adding the keywords, you should maintain the keyword from the library as part of the
creation process for both keywords and plugins is to store them inside version control.

CONCLUSION
SUIT provides a simple to use interface that operates over both SAS® 9 and Viya™
environments and presents interfaces that are simple, flexible and targeted to both SAS®
programmers and non-programmers. SUIT does not aim to replace existing test
frameworks. It is the intent to provide integration points to incorporate some of these
frameworks and augment existing testing gaps in organizations.

SUIT is open source. SUIT Enterprise which provides Enterprise grade functionality will will
ship around the third quarter of 2019.

To learn more about SUIT go to https://suit.seleritysas.com or feel free to contact the
author.

REFERENCES
Dustin, E., Rashka, J. and Paul, J. 1999. “Automated Software Testing: Introduction,
Management, and Performance” Addison-Wesley Professional.

21

SAS Institute Inc. 2018. SAS® 9.4 Logging: Configuration and Programming Reference,
Second Edition.
https://documentation.sas.com/?docsetId=logug&docsetTarget=titlepage.htm&docsetVersio
n=9.4&locale=en

ACKNOWLEDGMENTS
Many thanks to Michael Dixon for SAS® Programming consultation. Thanks to Melissa Jones
and Jafreen Hossain for reviewing this document.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Cameron Lawson
Selerity
support@selerity.com.au
https://seleritysas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

