
1

Paper 3191-2019

Utiization of Python in clinical study by SASPy

Yuichi Nakajima, Novartis Pharma K.K

ABSTRACT

Python is the one of the most popular programming languages in recent years. It is now

getting used in machine learning and AI. Big advantage of Python is that plenty of Python

libraries to implement various analysis and it can be a “one stop shop” for programming.

Although SAS® is and will be the most powerful analytical tool in clinical study, Python will

expand reporting activity such as data aggregation and visualization in addition to SAS, and

also it can be potential advancement of SAS programmer’s career.

SASPy is the new ticket to Python for SAS programmers. It is known as Python Package

library to the SAS system and enables to start SAS session in Python. This means Python

can support the activities from SAS data handling to reporting.

This paper describes basic usage of SASPy and introduction of tips for handling SAS dataset.

Then, discuss possible reporting activities using Python in clinical study.

INTRODUCTION

When SAS programmers try to use Python in your daily work, the first thing that comes to

mind is SAS ViyaTM. SAS Viya is known as cloud analytic platform to solve various business

needs and it is the one of the best analytic environment to use Python for SAS programmer.

However unless your company decides to implement SAS Viya with spending a large

amount of costs, it may not be a feasible option for the people who starts Python

programming from scratch.

SASPy is the module, which provides Python Application Programming Interfaces (APIs) to

the SAS system. By using SASPy, Python can establish SAS session and run analytics from

Python.

PRE-REQUIREMENTS

If you have already installed SAS to your laptop, now you are ready to use SASPy.

Additional a few steps will enable you to handle SAS datasets by Python. Here’s a list for

pre-requirements.

1. SAS 9.4 or higher

2. Anaconda distribution (Jupyter notebook, Python 3.X or higher, etc)

3. SASPy-2.4.3 (As of March 2019, v2.4.3 is the latest version)

Anaconda is the distribution package developed for implementation Python analytic library

such as NumPy, Matplolib, Pandas and so on. The advantage of using Anaconda is that

plenty of analytic libraries. If you start with single Python program, every time you need to

install every libraries that you need. In other words, anaconda will provide a generic

analytic environment instead of those a laborious process.

Jupyter notebook is the editor application whose kernel is the IPython. IPython kernel

becomes a bridge between Jupyter notebook and Python so that Python can be effective in

Jupyter notebook as a programming language. This IPython provides Magic Commands and

this will be the best combination between Python and SAS. This will be explained in later

section.

SASPY INSTALLATION PROCESS

2

SASPy installation will be the most complicated steps of utilization SASPy. Here is the

example to install SASPy with local Windows PC SAS. All steps other than 3 can be

completed in Anaconda Prompt only. Anaconda Prompt will be available on your PC after

anaconda installation.

1. Make sure to ready above pre requirements respectively.

2. After download SASPy into your laptop, open Anaconda Prompt and enter pip install SASPy for

install SASPy.

3. SASPy-2.4.3 (As of March 2019, v2.4.3 is the latest version) Now you need to update SAS
configuration files (sascfg.py) to establish corresponding SAS session. If you can’t find location of file,

type saspy.SAScfg after importing SASPy in step 4.

 Update sascfg.py

Location can be found by saspy.SAScfg in Python (Type python in Anaconda prompt then python

is started.) When you update sascfg.py, first you can copy file and rename it as sascfg_personal.py.
Then you can update below three points.

 SAS_config_names to ‘winlocal’, e.g.

SAS_config_names=['winlocal']

 SAS session to specify java.exe file in sascfg_personal.py, e.g

winlocal = {'java':'C:\ProgramData\Oracle\Java\javapath\java.exe',

'encoding' : 'windows-1252',

'classpath' : cpW}

 Windows client class path. Make sure below links are corresponded to your own links.

cpW = "C:\\Program
Files\\SASHome\\SASDeploymentManager\\9.4\\products\\deploywiz__94472__prt__xx__sp0__1
\\deploywiz\\sas.svc.connection.jar"

cpW += ";C:\\Program
Files\\SASHome\\SASDeploymentManager\\9.4\\products\\deploywiz__94472__prt__xx__sp0__1
\\deploywiz\\log4j.jar"

cpW += ";C:\\Program
Files\\SASHome\\SASDeploymentManager\\9.4\\products\\deploywiz__94472__prt__xx__sp0__1
\\deploywiz\\sas.security.sspi.jar"

cpW += ";C:\\Program
Files\\SASHome\\SASDeploymentManager\\9.4\\products\\deploywiz__94472__prt__xx__sp0__1
\\deploywiz\\sas.core.jar"

cpW += ";C:\\ProgramData\\Anaconda3\\Lib\\site-packages\\saspy\\java\\saspyiom.jar"

 Add system PATH environment variable for “C:\Program
Files\SASHome\SASFoundation\9.4\core\sasext”. (In fact it is a location of sspiauth.dll and it depends
on your PC environment.)

4. Then import SASPy into your Python session by import saspy in python, check SAS connection is

correctly established by sas=saspy.SASsession(cfgname=’winlocal’) with no error. If

subprocess is displayed, SASPy installation is successfully completed.

Note that this example is only focusing on SASPy installation to PC SAS. Configuration

update process depends on OS (Windows or Unix), and what to connect either local or

server SAS.

3

Recently SAS announced SAS University Edition has implemented a functionality of Python

by using SASPy. Only for learning purpose, you can use SAS University Edition and it will

not request any additional steps to start.

DATA HANDLING CHOICES IN PYTHON

When SAS programmer thinks about data handling using Python, Pandas which is Python

Package providing efficient data handling process would be one of possible option. Pandas

data structures are called “Series” for single dimension like vector and “DataFrame” for two

dimensions data like matrix.

Figure 1. Image of Pandas DataFrame

Pandas can read directly both sas7bdat and xpt format and convert to Pandas DataFrame.

This is the simplest way to handle SAS data in Python. On the other hands, SASPy is

capable to handle SAS datasets without conversion to DataFrame. This means there are

several ways to process SAS dataset in python. In fact, at least three types of process,

Jupyter magic, SASPy API and Pandas DataFrame, can be choices to get the same result in

Python although data format is different. Thus, depending on your purpose, you can choose

the best way among them. Here is a brief comparison of those selections. Actual example

will be shown in later section.

Choices Description Example code of data sorting in Jupyter
notebook cell

<>: SAS dataset, []: Pandas DataFrame

Jupyter
magic

Magic commands is utility command such
provided by IPython. Set “%%SAS” on the
top of cell, then SAS code can be effective
within that python cell.

%%SAS

libname temp ’xxxxxx’;

proc sort data = temp.<AAAA> out

= work.<BBBB>;

 by USUBJID descending AESEV;

run;

SASPy API SASPy can setup a SAS session and run
analytics from Python.

sas.saslib(’temp’, path=’xxxxxx’)

<AAAA>=sas.sasdata(’<AAAA>’,

libref=’temp’)

<BBBB>=<AAAA>.sort(by=’USUBJID

DESCENDING AESEV’, out=’WORK’)

4

Choices Description Example code of data sorting in Jupyter
notebook cell

<>: SAS dataset, []: Pandas DataFrame

Pandas
DataFrame

Pandas is a third-party package to handle
one dimension data (Vector: Series) and 2
dimension data (Matrix: DataFrame) with
Pandas analytic functions. Set “import
Pandas” to use Pandas first.

[BBBB]=<AAAA>.sort_values(by=['US

UBJID', 'AESEV'],

ascending=[True, False])

Table 1. Choices of data sorting step in Python

This paper mainly focus on using Pandas DataFrame because Pandas is very basic and

popular Python library to process input data regardless its data formats. For the comparison

to SAS programming, the summary of differences between Python and SAS in basic data

process technics can be found in the backup section.

DATA HANDLING AND REPOTING

Now let us get started with data reporting in Python using SAS dataset. The goal of this

section is to understand how to start SAS session and to create a basic summary table with

CDISC standardized dataset.

Here is the overview process before data reporting. As the first step, import 2 python

libraries, SASPy and Pandas. Secondary, establish SAS session to read SAS data with SASPy

API, SASsession(). Note that SAS dataset can be directly obtained in Python as a SAS

dataset by SASPy API, sasdata(). Then, convert SAS dataset to Pandas DataFrame by

SASPy API, sasdata2dataframe().

Display 1. General step to create SAS session in Jupyter notebook

Now you will see the data type of each element, “ae” is SAS data and “dfae” is DataFrame.

Those data type can be obtained by type() function.

Display 2. Result of type function

COMMON TABLES IN CLINICAL STUDY

If you are success to establish SAS session, now start to create DataFrame to be used for

reporting. This section will show a few summary tables which are commonly used in clinical

study with simple Python code.

5

Firstly, DM and AE domain are merged to create AE summary table by treatment arm

(ARM). The first DM is converted to Pandas DataFrame and keep only columns to be used.

Then, create merged DataFrame wk from two DataFrame dfdm1 and dfae with merge()

function e.g. wk = pd.merge(dfdm1, dfae, on=’USUBJID’, how=’inner’). Merge function

has several options how to merge, such as inner, right, left and outer join.

Display 3. Convert SAS dataset to DataFrame and merge example

Here is a merged DataFrame. Default setting won’t show every column so that below two

set_option() functions are recommended to use. Otherwise some columns will be shown as

“...”. To display contents of DataFrame display() function is one of option.

Display 4. Example of display DataFrame in Jupyter notebook

With simple code of Pandas pivot_table() function will show Adverse Event (AE) summary

table by treatment arm can be displayed. This pivot_table() has several functionalities for

summary table by setting aggfunc option. This example is counting records in values (e.g.

USUBJID) without duplicated records. If data has no duplicated record, simply set aggfunc =

count. In addition to python function like count function, actually argument for aggfunc can

be selected from numpy function such as np.mean(), np.sum(). Return value of

pivot_table() is Pandas DataFrame, that means index are AEBODSYS and AEDECOD,

columns are ARM corresponding values, Miracle Drug 10 mg, Miracle Drug 20 mg and

Placebo.

6

Display 5. Example of AE summary table by SOC and PT

If you would like to sort in alphabetically in AEBODSYS and frequency in high dose, you

need to remove index first with Pandas reset_index() function. Now You see ARM is changed

from index to column. Then sort column with Pandas sort_values() function and back to

index by set_index() function.

Display 6. Change sorting order in column

Note that “NaN” in results can be replaced by zero if fill_value=0 option is applied in

pivot_table function. Adding percentage is also important for this type of output. As there is

no one step calculation of percentage in Pandas library, to get percentage of each ARM,

total number of subject should be counted first. Then function that can calculate percentage

is defined and apply to each column in DF.

7

Display 7. Example to add percentage of each ARM

Secondary, if you would like to check summary statistics from LB domain, Pandas

pivot_table() function will also provide you a result for both continuous and categorical

values. “describe” and “count” in aggfunc option will give descriptive statistics and simple

count table respectively as below. For example, descriptive statistics is obtained by rslt1 =
pd.pivot_table(wk, values=’LBSTRESN’), index=[‘LBTEST’, ‘VISIT’], columns =

[‘ARM’], aggfunc=’describe’).

8

Display 8. Summary table of descriptive statistics and simple counting

Finally, when those results are available in Python, you can export them to html (Use

DF.to_html(‘result01.html’)).

Thus, Python can produce simple summary result easily with simple code. Of course Python

is possible to create a TFL shells for clinical study report but as you can easily imagine it will

be difficult in terms of computer system validation. Oh the other hand, Python can be used

for quick data review for data manager and also be considered as a tool for acceptance

checks for outsourced deliverables. In addition, Python programming can be started with no

additional system cost.

DATA VISUALIZATION IN PYTHON

This section will explain the data visualization in python and focus on using

Matplotlib.pyplot, which is a Python plotting library. Actually Pandas has implemented a plot

method called Pandas Plot as known as a simple wrapper around Matplotlib. The reason to

use Matplotlib is because Matplotlib is able to export an output in several formats (png, gif,

pdf, mp4, ...), to set the detail figure setting like axis, title, legend, and to find an

information easily from several website thanks to huge number of Matplotlib users.

GETTING STARTED WITH MATPLOTLIB

After importing Matplotlib, generate 1) Figure and 2) Subplot object first. Figure is the

plotting area to locate Subplot and Subplot is the plotting area to display plot. At least, one

Subplot must be included in Figure.

Figure 2. Concept of Figure and Subplot

PLOT EXAMPLE FOR CLINICAL STUDY

Now, we will more focus on the plot to be referred in clinical study reporting. The first

example is a mean plot with SD. To get summary statistics, save mean and SD as Pandas

9

DataFrame by Pandas describe() function. Then, prepare Pandas Series which contains each

mean and SD by Pandas loc() function.

Display 9. Extract Mean and SD columns from DataFrame

Note that wk1 is the ADaM BDS structured dummy data in Pandas DF and “sum” is a Pandas

DF structure whose index are [TRT01_P, AVISITN] and columns are [count, mean, std].

mean1, 2, 3 and std1, 2, 3 are Pandas Series whose index is AVISITN and column is each

statistic (mean or SD).

Display 10. Example of Mean with SD plot by Matplotlib

10

Figure 3. Mean with SD plot

The point here is x-axis labels. The set_xticklabels() is the function to display x-axis labels.

If we use AVISIT in set_xticklabels(), labels will be displayed alphabetically so that it is not

a sequential order. To aboid this problem, you need to prepare the label list to be displaied

which is corresponding to actual AVISIT values.

Another example is a patient level plot as known as “spaghetti plot”. As there will be 3

treatment groups in dummy data, 3 subplot will be required. Note that most of subplot

setting are equal, it can be processed by for loop with subset list axes = [ax1, ax2, ax3].

For loop, for ax in axes: , will do each process per subplot read by the list [ax1, ax2, ax3].

Figure 4. Example code and figures of Spaghetti plot

11

Actually above those examples might not be a simple code as it was tried to approach the

general plots in clinical study. Here are some quick examples for other type of plots with

simple code. It would be sufficient if you need only quick data check and review.

Type of
plot

Histgrams Bar charts Pie charts Scatter plot

Matplotlib
function

hist() bar() pie() scatter()

Descripti
on

Compute and draw
the histogram of x.

The bars are
positioned at x with
the given
alignment. Their
dimensions are
given by width and

height.

Make a pie chart of
array x. The
fractional area of
each wedge is given
by x/sum(x).

A scatter plot of y vs
x with varying
marker size and/or
color.

Python
code

>>> plt.hist(x,
bins=16,
range=(50, 100),
rwidth=0.8,
color='red')

>>> plt.bar(x1, x2,
width=1.0,
linewidth=3,
align='center',
tick_label=['Jan',
'Feb', 'Mar', 'Apr',
'May'])

>>> plt.pie(x3,
labels=['Tokyo',
'Osaka', 'Hiroshima',
'Kyoto'],
counterclock=False,
startangle=90,
autopct="%1.1f%%")

>>> plt.axis('equal')

>>> plt.scatter(x, y,
s=15, c='blue',
marker='*',
linewidth='2')

Example

Table 2. Python plot gallery

UTLIZATION PYTHON IN CLINICAL STUDY

As described in previous sections, Python is possible to be used in clinical study reporting

regarding data review, acceptance check and data visualization. With combination of SAS

and Python in Jupyter notebook, more efficient program development will be possible. For

example, when you create AE table for CSR in Jupyter notebook, you can use proc report by

SAS code in Jupyter magic then the results can be checked by Pandas pivot_table() by

yourself. In other words, when SAS session can be established in Jupyter notebook, it can

be an enhanced editor which is capable to use both SAS and Python. Of course, Python can

be used for validation purpose as far as main program will be created by SAS. If analysis

datasets like ADaM is well prepared and created, validation code could be also simple. This

might reduce total cost and time of validation programming because of multiple choices in

validation such as programming languages, type of tables and skill level of programmers.

12

Obviously, those activities can be completed by SAS only. Now, let us consider about Python

advantage programming at which SAS is not good.

In Novartis, annotated CRF (acrf.pdf) is generated by semi-automated process. Annotation

database in both central and project level are well structured and controlled, and easy to

carry out annotation to new studies. However, there is the only thing that programmer has

to do manually. That is creation of the simple excel file which contains two columns, CRF ID

and page number of where that CRF ID is located. In process, SAS program will read excel

file and link annotation database and blank study CRF.

Figure 5. Process overview of creation of aCRF in Novartis

What Python does in this section is to extract every text including CRF ID from each page

and extract corresponded page number from PDF file, then, merge with annotation database

and create the excel file to be required. This process is executed in only Jupyter notebook

by combination of SASPy API and Jupyter magic command.

In order to achieve this idea, third vendor library pdfminer has to be installed. Please note

that detail information about pdfminer is not explained in this paper because the key

message is the process of data extraction from PDF to SAS dataset by using SASPy done in

Jupyter notebook only. Here is an example code.

13

Display 11. Example code of extract PDF comment box to DataFrame

After running the above command in Jupyter, SAS dataset with all page numbers and values

will be generated from blank crf. This format is exactly the same format which annotation

tool requires in excel format.

14

Figure 6. Text information in CRF are extracted to SAS dataset

As you can see in the below figure, when SAS session is established in Jupyter notebook,

%%SAS will enable to run SAS code directly in Jupyter notebook cell. After the above SAS

dataset is created, it will be merged to central annotation database and keep only effective

crfid in database.

Display 12. Example of Jupyter magic to run SAS code

15

Finally completed excel file (only if every crfid are available in annotation database) will be

created from final dataset (temp.rslt) above.

CONCLUSION

As described, SASPy is able to establish SAS session in Jupyter notebook via SASPy, and

Python can provide summary tables and figures for data review from SAS dataset in clinical

study. This also means Python can be possibly used not only for acceptance check to vendor

deliverables, but also for a part of output validation process. In addition, Python will provide

several possibilities by plenty of useful libraries such as reading PDF file.

There is no doubt SAS is the most popular software in clinical study data analysis. However,

acquiring Python programming skill additionally will enable SAS programmer to expand the

capability and opportunity of daily work. As described in previous section, SAS is good at

data handling and Python can read PDF file. Both programming languages have each

advantage and disadvantage respectively. With the combination of SAS and Python via

SASPy, their disadvantage can be covered each other. If you are the experienced SAS

programmer, it is never too late to start Python.

REFERENCES

“pandas.” https://pandas.pydata.org/

“matplotlib.” https://matplotlib.org/

“SASPy.” https://sassoftware.github.io/saspy/

“Pdfminer.” https://media.readthedocs.org/pdf/pdfminer-docs/latest/pdfminer-docs.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Yuichi Nakajima

yuichi.nakajima@novartis.com

https://pandas.pydata.org/
https://matplotlib.org/
https://sassoftware.github.io/saspy/
https://media.readthedocs.org/pdf/pdfminer-docs/latest/pdfminer-docs.pdf
mailto:yuichi.nakajima@novartis.com

