Paper 3191-2019

Utiization of Python in clinical study by SASPy
Yuichi Nakajima, Novartis Pharma K.K

ABSTRACT

Python is the one of the most popular programming languages in recent years. It is now
getting used in machine learning and Al. Big advantage of Python is that plenty of Python
libraries to implement various analysis and it can be a “one stop shop” for programming.
Although SAS® is and will be the most powerful analytical tool in clinical study, Python will
expand reporting activity such as data aggregation and visualization in addition to SAS, and
also it can be potential advancement of SAS programmer’s career.

SASPy is the new ticket to Python for SAS programmers. It is known as Python Package
library to the SAS system and enables to start SAS session in Python. This means Python
can support the activities from SAS data handling to reporting.

This paper describes basic usage of SASPy and introduction of tips for handling SAS dataset.
Then, discuss possible reporting activities using Python in clinical study.

INTRODUCTION

When SAS programmers try to use Python in your daily work, the first thing that comes to
mind is SAS Viya™. SAS Viya is known as cloud analytic platform to solve various business
needs and it is the one of the best analytic environment to use Python for SAS programmer.
However unless your company decides to implement SAS Viya with spending a large
amount of costs, it may not be a feasible option for the people who starts Python
programming from scratch.

SASPy is the module, which provides Python Application Programming Interfaces (APIs) to
the SAS system. By using SASPy, Python can establish SAS session and run analytics from
Python.

PRE-REQUIREMENTS

If you have already installed SAS to your laptop, now you are ready to use SASPy.
Additional a few steps will enable you to handle SAS datasets by Python. Here's a list for
pre-requirements.

1. SAS 9.4 or higher
2. Anaconda distribution (Jupyter notebook, Python 3.X or higher, etc)
3. SASPy-2.4.3 (As of March 2019, v2.4.3 is the latest version)

Anaconda is the distribution package developed for implementation Python analytic library
such as NumPy, Matplolib, Pandas and so on. The advantage of using Anaconda is that
plenty of analytic libraries. If you start with single Python program, every time you need to
install every libraries that you need. In other words, anaconda will provide a generic
analytic environment instead of those a laborious process.

Jupyter notebook is the editor application whose kernel is the IPython. IPython kernel
becomes a bridge between Jupyter notebook and Python so that Python can be effective in
Jupyter notebook as a programming language. This IPython provides Magic Commands and
this will be the best combination between Python and SAS. This will be explained in later
section.

SASPY INSTALLATION PROCESS

SASPy installation will be the most complicated steps of utilization SASPy. Here is the
example to install SASPy with local Windows PC SAS. All steps other than 3 can be
completed in Anaconda Prompt only. Anaconda Prompt will be available on your PC after
anaconda installation.

1.
2.

Make sure to ready above pre requirements respectively.

After download SASPYy into your laptop, open Anaconda Prompt and enter pip install SASPy for
install SASPy.

SASPy-2.4.3 (As of March 2019, v2.4.3 is the latest version) Now you need to update SAS
configuration files (sascfg.py) to establish corresponding SAS session. If you can’t find location of file,
type saspy.SASctg after importing SASPy in step 4.

Update sascfg.py

Location can be found by saspy.SAScfg in Python (Type python in Anaconda prompt then python
is started.) When you update sascfg.py, first you can copy file and rename it as sascfg_personal.py.
Then you can update below three points.

SAS_config_names to ‘winlocal’, e.g.
SAS_config_names=['winlocal']
SAS session to specify java.exe file in sascfg_personal.py, e.g
winlocal = {java":'C:\ProgramData\Oracle\Java\javapath\java.exe',
‘encoding' : 'windows-1252',
‘classpath’ : cpW}
Windows client class path. Make sure below links are corresponded to your own links.

cpW = "C:\\Program
Files\SASHome\SASDeploymentManager\\9.4\\products\\deploywiz_ 94472 prt xx__sp0_ 1
\\deploywiz\\sas.svc.connection.jar"

cpW +=";C:\\Program
Files\SASHome\SASDeploymentManager\\9.4\\products\\deploywiz_ 94472 prt _xx__sp0_ 1
\\deploywiz\\log4j.jar"

cpW +=";C:\\Program
Files\SASHome\\SASDeploymentManager\\9.4\\products\\deploywiz__ 94472 prt__xx_ sp0__ 1
\\deploywiz\\sas.security.sspi.jar"

cpW +=";C:\\Program
Files\SASHome\\SASDeploymentManager\\9.4\\products\\deploywiz__ 94472 prt__xx__ sp0__ 1
\\deploywiz\\sas.core.jar"

cpW +=";C:\\ProgramData\\Anaconda3\\Lib\\site-packages\\saspy\\java\\saspyiom.jar"

Add system PATH environment variable for “C:\Program
Files\SASHome\SASFoundation\9.4\core\sasext”. (In fact it is a location of sspiauth.dll and it depends
on your PC environment.)

Then import SASPy into your Python session by import saspy in python, check SAS connection is
correctly established by sas=saspy.SASsession (cfgname='winlocal’) with no error. If
subprocess is displayed, SASPYy installation is successfully completed.

Note that this example is only focusing on SASPy installation to PC SAS. Configuration
update process depends on OS (Windows or Unix), and what to connect either local or
server SAS.

Recently SAS announced SAS University Edition has implemented a functionality of Python
by using SASPy. Only for learning purpose, you can use SAS University Edition and it will
not request any additional steps to start.

DATA HANDLING CHOICES IN PYTHON

When SAS programmer thinks about data handling using Python, Pandas which is Python
Package providing efficient data handling process would be one of possible option. Pandas
data structures are called “Series” for single dimension like vector and “DataFrame” for two
dimensions data like matrix.

Pandas DataFrame

|| USUBJID | SITEID _| ISIT_
0

.T
2
3

Figure 1. Image of Pandas DataFrame

Pandas can read directly both sas7bdat and xpt format and convert to Pandas DataFrame.
This is the simplest way to handle SAS data in Python. On the other hands, SASPy is
capable to handle SAS datasets without conversion to DataFrame. This means there are
several ways to process SAS dataset in python. In fact, at least three types of process,
Jupyter magic, SASPy API and Pandas DataFrame, can be choices to get the same result in
Python although data format is different. Thus, depending on your purpose, you can choose
the best way among them. Here is a brief comparison of those selections. Actual example
will be shown in later section.

Choices Description Example code of data sorting in Jupyter
notebook cell
<>: SAS dataset, []: Pandas DataFrame
Jupyter Magic commands is utility command such $%SAS
magic provided by IPython. Set “%%SAS” on the 1ibname temo ’ xxxxxx’ :
top of cell, then SAS code can be effective P !
within that python cell. proc sort data = temp.<ARAA> out
= work.<BBBB>;
by USUBJID descending AESEV;
run;
SASPy API | SASPy can setup a SAS session and run sas.saslib (/' temp’, path='xxxxxx')
analytics from Python. <AAAA>=sas.sasdata (’ <AAAA>',
libref='temp’)
<BBBB>=<AAAA>.sort (by='USUBJID
DESCENDING AESEV’, out=’WORK’)

Choices Description Example code of data sorting in Jupyter
notebook cell

<>: SAS dataset, []: Pandas DataFrame

Pandas Pandas is a third-party package to handle [BBBB] =<AAAA>.sort_values (by=['US
DataFrame | one dimension data (Vector: Series) and 2 | UBJID', 'AESEV'],
dimension data (Matrix: DataFrame) with ascending=[True, False])

Pandas analytic functions. Set “import
Pandas” to use Pandas first.

Table 1. Choices of data sorting step in Python

This paper mainly focus on using Pandas DataFrame because Pandas is very basic and
popular Python library to process input data regardless its data formats. For the comparison
to SAS programming, the summary of differences between Python and SAS in basic data
process technics can be found in the backup section.

DATA HANDLING AND REPOTING

Now let us get started with data reporting in Python using SAS dataset. The goal of this
section is to understand how to start SAS session and to create a basic summary table with
CDISC standardized dataset.

Here is the overview process before data reporting. As the first step, import 2 python
libraries, SASPy and Pandas. Secondary, establish SAS session to read SAS data with SASPy
API, SASsession(). Note that SAS dataset can be directly obtained in Python as a SAS
dataset by SASPy API, sasdata(). Then, convert SAS dataset to Pandas DataFrame by
SASPy API, sasdata2dataframe().

import saspy
import pandas as pd

Establish SAS connection in Python by saspy

sas = saspy.S5ASsessiocon(cfgname="winlocal'

SAS Connecticn estaklished. Subprocess id is 9888

libname in SAS

="C:\\Users\\NARAJYU1\\Desktop\\tempds")

Display 1. General step to create SAS session in Jupyter notebook

Now you will see the data type of each element, “ae” is SAS data and “dfae” is DataFrame.
Those data type can be obtained by type() function.

print (type (ae}}

print (type (dfae)

<class 'saspy.sasbase.SASdata’'>
<class 'pandas.core.frame.DataFrame'>

Display 2. Result of type function
COMMON TABLES IN CLINICAL STUDY

If you are success to establish SAS session, now start to create DataFrame to be used for
reporting. This section will show a few summary tables which are commonly used in clinical
study with simple Python code.

Firstly, DM and AE domain are merged to create AE summary table by treatment arm
(ARM). The first DM is converted to Pandas DataFrame and keep only columns to be used.
Then, create merged DataFrame wk from two DataFrame dfdm1 and dfae with merge()
function e.g. wk = pd.merge (dfdml, dfae, on='USUBJID’, how=’inner’). Merge function
has several options how to merge, such as inner, right, left and outer join.

SAS dataset t

dfdm—sas.sasdataZdataframe ("dm’',
dfdml=dfdm[['USUEJID', 'RRM','SEX', '

1="USUBJID', how='"inner')

Display 3. Convert SAS dataset to DataFrame and merge example

Here is a merged DataFrame. Default setting won’t show every column so that below two
set_option() functions are recommended to use. Otherwise some columns will be shown as
“..."”. To display contents of DataFrame display() function is one of option.

pd.set_option('display.max columns', None)

pd.=set option('display.max rows', None}
display (wk
USUBJD ARM SEX AGE RACE STUDYID DOMAIN AESEQ AESPID AETERM AEMODIFY AEDECOD AEBODSYS
LT Psychiatric
CDISCO1.100008 Drug10 M 72 OTHER CDISCO1 AE 1 1 AGITATED AGITATION Agitation T
mg
Miracle Psychiatric
CDISCO1 100008 Drug 10 M 72 OTHER CDISCO1 AE 2 2 ANXIETY NaN Anxiety sycnialic
mg
2 Miracle Metabolism and
CDISCO1.100008 Drugid M 72 OTHER CDISCO! AE 3 3 DECREASED Nay Decreased nutrition
mg P disorders ‘
3 Miracle
CDISCO1.100014 Drug20 F 66 WHITE CDISCO1 AE 1 1 DIARRHEA NaN Diarthoea Gas”"é‘?;ifé‘g;' ;
m
B Wl ,,,,__,g. , - s, P — B e W N W N e f -

Display 4. Example of display DataFrame in Jupyter notebook

With simple code of Pandas pivot_table() function will show Adverse Event (AE) summary
table by treatment arm can be displayed. This pivot_table() has several functionalities for
summary table by setting aggfunc option. This example is counting records in values (e.g.
USUBJID) without duplicated records. If data has no duplicated record, simply set aggfunc =
count. In addition to python function like count function, actually argument for aggfunc can
be selected from numpy function such as np.mean(), np.sum(). Return value of
pivot_table() is Pandas DataFrame, that means index are AEBODSYS and AEDECOD,
columns are ARM corresponding values, Miracle Drug 10 mg, Miracle Drug 20 mg and
Placebo.

wkl=pd.pivot_table (wk, values='USUBJID',index = ['AEBODSYS', 'REDECOD'],columns = ['ARM'], aggfunc=lambda x:x.nunique (})
display (wkl

ARM Miracle Drug 10 mg Miracle Drug 20 mg Placebo
AEBODSYS AEDECOD
Cardiac disorders Palpitations 1.0 NaN NaM
Gastrointestinal disorders Constipation NaN MaM 1.0
Diarrhoea NaN 1.0 NaN
Haemorrhoids NaN 1.0 NaN
Nausea NaN NaN 1.0
Vomiting NaN 1.0 NaN
General disorders and administration site conditions Fatigue NaN MaM 1.0
Metabolism and nutrition disorders Decreased appetite 1.0 MaN MaN
Musculoskeletal and connective tissue disorders Arthralgia NaN NaN 1.0
Muscle spasms 1.0 MaN MaN
Nervous system disorders Dizziness 1.0 NaN NaMN
Headache Nan 1.0 NaN
Psychiatric disorders Agitation 1.0 NaN NaM
Anxiety 1.0 NaN 10

Display 5. Example of AE summary table by SOC and PT

If you would like to sort in alphabetically in AEBODSYS and frequency in high dose, you
need to remove index first with Pandas reset_index() function. Now You see ARM is changed
from index to column. Then sort column with Pandas sort_values() function and back to
index by set_index() function.

wk2=wkl.reset_ index()

display (wk2

I ARM AEBODSYS AEDECOD IMiral:Ie Drug 10 mg Miracle Drug 20 mg Placebo
0 Cardiac disorders Palpitations 1.0 NaN MaM
1 Gastrointestinal disorders Constipation MNaN MNaM 1.0

wk3=wk2.sort walues(by=['REBODSYS', 'Miracle Drug 20 mg'], ascending=[True, PFalse])

wk4=wk3.zet_index (['REBODSY5', "AREDECCD'])
display (wk4

ARM Miracle Drug 10 mg Miracle Drug 20 mg Placebo
AEBODSYS AEDECOD
Cardiac disorders Palpitations 1.0 NaN NaN
Gastrointestinal disorders Diarrhoea NaN 1.0 NaN
Haemorrhoids NaN 1.0 NaN
Vomiting Nah 1.0 NaN
Constipation NaN MaN 1.0
Nausea NaN NaN 1.0
General disorders and administration site conditions Fatigue NaN MaN 1.0
Metabolism and nutrition disorders Decreased appetite 1.0 NaMN NaN
Musculoskeletal and connective tissue disorders Arthralgia NaMN NaN 1.0
Muscle spasms 1.0 NaM NaN
Nervous system disorders Headache NaN 1.0 NaN
Dizziness 1.0 NaN NaN
Psychiatric disorders Agitation 1.0 MaN NaN
Anxiety 1.0 MaN 1.0

Display 6. Change sorting order in column

Note that "NaN" in results can be replaced by zero if fill_value=0 option is applied in
pivot_table function. Adding percentage is also important for this type of output. As there is
no one step calculation of percentage in Pandas library, to get percentage of each ARM,
total number of subject should be counted first. Then function that can calculate percentage
is defined and apply to each column in DF.

ARM Miracle Drug 10 mg Miracle Drug 20 mg Placebo

UsuBJID

def divfia, bl:
return str(a) + "~ (" 4+ str(a x 100 / b) + °)’

2

1

1

wk1['Miracle Orug 10 mg’]=wk1['Miracle Drug 10 mg’].applyidivf, b=div.loc["USUBJID", "Miracle Drug 10 mg’'])

wk1["Miracle Drug 20 mg'I=wki["Miracle Drug 20 mg'l.apply(divf, b=div.loc["USUBJID",
wk1["Placebo J=wk1['Placebo’].apply(divf, b=div.loc["USUBJID",

display(wkl)

"Placebo™ 1)

Miracle Drug 20 mg'1)

ARM Miracle Drug 10 mg Miracle Drug 20 mg Placebo
AEBODSYS AEDECOD
Cardiac disorders Palpitations 1 (50.0) 0(0.0) 0(0.0)
Gastrointestinal disorders Constipation 0(0.0) 0(0.0) 1(100.0)
Diarrhoea 0 (0.0) 1 (100.0) 0(0.0)
Haemorrhoids 0 (0.0} 1(100.0) 0(0.0)
Nausea 0 (0.0) 0(0.0) 1(100.0)
Vomiting 0(0.0) 1(100.0) 0(0.0)
General disorders and administration site conditions Fatigue 0(0.0) 0(0.0) 1(100.0)
Metabolism and nutrition disorders Decreased appetite 1(50.0) 0(0.0) 0(0.0)
Musculoskeletal and connective tissue disorders Arthralgia 0(0.0) 0(0.0) 1(100.0)
Muscle spasms 1(50.0) 0(0.0) 0(0.0)

Display 7. Example to add percentage of each ARM

Secondary, if you would like to check summary statistics from LB domain, Pandas

pivot_table() function will also provide you a result for both continuous and categorical
values. “describe” and “count” in aggfunc option will give descriptive statistics and simple

count table respectively as below. For example, descriptive statistics is obtained by rsit1

pd.pivot table (wk, values='LBSTRESN’), index=[‘LBTEST’, ‘VISIT’], columns =
[‘ARM’], aggfunc=’describe’).
25% 50% 5% count max (
Miracle Miracle Miracle Miracle Miracle Miracle Miracle Miracle Miracle Miracle
ARM Drug 10 Drug Placebo Drug Drug Placebo Drug10 Drug Placebo Drug Drug Placebo Drug Drug Placebo
mg 20 mg 10 mg 20 mg mg 20 mg 10mg 20 mg 10mg 20 mg
LBTEST VISIT
Bilirubin SCREEN 55250 5100 5100 5.950 510 510 6.3750 5.100 5100 20 10 10 6.80 510 510
WEEK
24 55250 3400 5100 5.950 340 510 6.3750 3.400 5.100 20 10 10 6.80 340 510
Blood Urea SCREEN 5.8000 5710 4.280 6.960 57 423 8.1200 5710 4280 20 10 10 928 571 4238
Nitrogen
WEEX seas 5000 5360 5895 500 536 61625 5000 5360 20 10 10 643 500 53
Glucose SCREEN 0.9750 3.025 1.300 2.600 415 2.60 4.4500 5.275 3.900 40 2.0 20 5.50 6.40 5.203
e [T N - .’PL & A _\-" » —— e - o

ARM Miracle Drug 10 mg Miracle Drug 20 mg Placebo

LBTEST VISIT LBSTRESC
Occult Blood SCREEN 1+ 1.0 NaN NaN
NEGATIVE 1.0 10 10
WEEK 24 NEGATIVE 20 NaN 10

Display 8. Summary table of descriptive statistics and simple counting

Finally, when those results are available in Python, you can export them to html (Use
DF.to_html(‘result01.html")).

Thus, Python can produce simple summary result easily with simple code. Of course Python
is possible to create a TFL shells for clinical study report but as you can easily imagine it will
be difficult in terms of computer system validation. Oh the other hand, Python can be used
for quick data review for data manager and also be considered as a tool for acceptance
checks for outsourced deliverables. In addition, Python programming can be started with no
additional system cost.

DATA VISUALIZATION IN PYTHON

This section will explain the data visualization in python and focus on using
Matplotlib.pyplot, which is a Python plotting library. Actually Pandas has implemented a plot
method called Pandas Plot as known as a simple wrapper around Matplotlib. The reason to
use Matplotlib is because Matplotlib is able to export an output in several formats (png, gif,
pdf, mp4, ...), to set the detail figure setting like axis, title, legend, and to find an
information easily from several website thanks to huge number of Matplotlib users.

GETTING STARTED WITH MATPLOTLIB

After importing Matplotlib, generate 1) Figure and 2) Subplot object first. Figure is the
plotting area to locate Subplot and Subplot is the plotting area to display plot. At least, one
Subplot must be included in Figure.

import matplotlib.pyplot as plt

Figure 221 ‘222

Subplot _, Subplot

223

Subplot

Figure 2. Concept of Figure and Subplot
PLOT EXAMPLE FOR CLINICAL STUDY

Now, we will more focus on the plot to be referred in clinical study reporting. The first
example is a mean plot with SD. To get summary statistics, save mean and SD as Pandas

DataFrame by Pandas describe() function. Then, prepare Pandas Series which contains each
mean and SD by Pandas loc() function.

'] .describe ()}

meanl=sum.loc["
meanZ=sum.loc["
mean3=sum.loc["E

stdl=sum.loc['DRUG X',

std2=sum.loc["DRUG ¥', *

std3=sum.loc['Placebo", "std']

Display 9. Extract Mean and SD columns from DataFrame

Note that wk1l is the ADaM BDS structured dummy data in Pandas DF and “sum” is a Pandas
DF structure whose index are [TRTO01_P, AVISITN] and columns are [count, mean, std].
meanl, 2, 3 and std1, 2, 3 are Pandas Series whose index is AVISITN and column is each
statistic (mean or SD).

plt.style.use({'ggplot"})

fig=plt.figure(figsize

ax = fig.add subplot(111)

Define subplot setting

ax.plot (meanl.index-0.5, meanl, coler="r"', L
ax.plot (mean2.index, mean2, coclor='g'
ax.plot (mean3.index+0.5, mean3, color='b',
axX.legend (loc="upper left")

= Far s
for x-a

.array ([0,

’
.array(["Baseline", i, "W 2

"Week 2", "Week 4", "Week B8"])

ax.set xticks(vis_num)

x-axis labels

ax.set xticklabels(vis order, rotation=90

Define =rror bar

ax.errorbar {meanl.index-0.5, meanl err=stdl, fmt="ro', ecolor='r', capsize=4
.

ax.errorbar (meanl.index, meanZ, yerr=std2, fmt= ,
aX.errorbar (meanl.index+0.5, mean3, yerr=std3, fmt="ro',6 ecolor='k', capsize=41)

ecolor='g'"', capsize=4%)

plt.show ()

Display 10. Example of Mean with SD plot by Matplotlib

SEF [mmHgl, Mean sith S0

Figure 3. Mean with SD plot

The point here is x-axis labels. The set_xticklabels() is the function to display x-axis labels.
If we use AVISIT in set_xticklabels(), labels will be displayed alphabetically so that it is not
a sequential order. To aboid this problem, you need to prepare the label list to be displaied
which is corresponding to actual AVISIT values.

Another example is a patient level plot as known as “spaghetti plot”. As there will be 3
treatment groups in dummy data, 3 subplot will be required. Note that most of subplot
setting are equal, it can be processed by for loop with subset list axes = [ax1l, ax2, ax3].
For loop, for ax in axes: , will do each process per subplot read by the list [ax1, ax2, ax3].

Figure 4. Example code and figures of Spaghetti plot

10

Actually above those examples might not be a simple code as it was tried to approach the
general plots in clinical study. Here are some quick examples for other type of plots with
simple code. It would be sufficient if you need only quick data check and review.

Type of Histgrams Bar charts Pie charts Scatter plot
plot
Matplotlib | hist() bar() pie() scatter()
function
Descripti | Compute and draw | The bars are Make a pie chart of A scatter plot of y vs
on the histogram of x. positioned at x with | array x. The X with varying
the given fractional area of marker size and/or
alignment. Their each wedge is given | color.
dimensions are by x/sum(x).
given by width and
height.
Python >>> plt.hist(x, >>> plt.bar(x1, x2, | >>> plt.pie(x3, >>> plt.scatter(x, Y,
code bins=16, width=1.0, labels=['Tokyo', s=15, c='blue’,
range=(50, 100), linewidth=3, '‘Osaka’, 'Hiroshima', | marker=""
rwidth=0.8, align="center’, 'KyotoT, linewidth="2")
color="red") tick_label=['Jan’, counterclock=False,
'Feb’, 'Mar', ‘Apr', startangle=90,
‘May']) autopct="%21.1f%%")

>>> plt.axis('equal’)

Example

30.0%

.

]

.

.

: III

ol | LI
T’

Table 2. Python plot gallery

Hiroshima

UTLIZATION PYTHON IN CLINICAL STUDY

As described in previous sections, Python is possible to be used in clinical study reporting
regarding data review, acceptance check and data visualization. With combination of SAS
and Python in Jupyter notebook, more efficient program development will be possible. For
example, when you create AE table for CSR in Jupyter notebook, you can use proc report by
SAS code in Jupyter magic then the results can be checked by Pandas pivot_table() by
yourself. In other words, when SAS session can be established in Jupyter notebook, it can
be an enhanced editor which is capable to use both SAS and Python. Of course, Python can
be used for validation purpose as far as main program will be created by SAS. If analysis
datasets like ADaM is well prepared and created, validation code could be also simple. This
might reduce total cost and time of validation programming because of multiple choices in
validation such as programming languages, type of tables and skill level of programmers.

11

Obviously, those activities can be completed by SAS only. Now, let us consider about Python
advantage programming at which SAS is not good.

In Novartis, annotated CRF (acrf.pdf) is generated by semi-automated process. Annotation
database in both central and project level are well structured and controlled, and easy to
carry out annotation to new studies. However, there is the only thing that programmer has
to do manually. That is creation of the simple excel file which contains two columns, CRF ID
and page number of where that CRF ID is located. In process, SAS program will read excel
file and link annotation database and blank study CRF.

Central level

/ ,.f/ -l.\\‘-.
{ Central | Blank CRF of
Standard CRFs . Annotation | | Study Y =
Database | /
AN \\‘ s
Excel file to link
Project level page and CRF ID
Annotated CRF .
from study 1
e . N Annotated CRF
’ Project / N

of Study Y

Annotated CRF level | E==m |
fmm study 2 | Annotation | g .':

N Database "\\ _../,-f

Annotated CRF
from study X

Figure 5. Process overview of creation of aCRF in Novartis

What Python does in this section is to extract every text including CRF ID from each page
and extract corresponded page number from PDF file, then, merge with annotation database
and create the excel file to be required. This process is executed in only Jupyter notebook
by combination of SASPy API and Jupyter magic command.

In order to achieve this idea, third vendor library pdfminer has to be installed. Please note
that detail information about pdfminer is not explained in this paper because the key
message is the process of data extraction from PDF to SAS dataset by using SASPy done in
Jupyter notebook only. Here is an example code.

12

£ Import librariss

import sys

import saspy

import pandas as pd

from pdfminer converter import PDFPagelggregator

from pdfminer_layout import LAParams, LIContainer, LITextBox

from pdfminer pdfinterp import PDFPegelnterpreter, PDFRescurceMansger
from pdfminer pdfpage import PDFPage

Opsn SAS sessior Open SAS session in Jupyter
58z = sagpy.ShSseszicn (cfgname="winlocsl'] notebook by SESW
¥ Defins fu in pdf

def find textboxes recursively({layout objl:
if isinstance{layout obj, LITextBox):
return [layout obj
if isinstance{layout_obj, LIContainer]):
boxes = []
fer child in layout obj:

boxzes.extend(find textboxes recursiwvely(child)]
return boxes
return []

laparams = LAParame (detect wverticzl=True)

resource manager = DDFResourceManzger()

device = PDFPagelggregator(resource manager, laparams=laparams}
interpreter = PDFPagelnterpreter(rascurce manager, device)

ersh\\nakajyul\\OneDrive - Novartis Pharma AG\\work\\02_RON DROJECT\‘\python\\SRhS\ "-__ETI-C: ated |

f{:r page in '—‘..F'—‘:gtl get E Bage“lf]
interpreter process_page [page)
layout = device.get result()
boxes = find textboxes recursively(layout)

page num += 1
page = stripage num)
templ = pd.DataFrame (init) T

g CextT 1inrto

for box in boxes:
temp=pd._DataFrame ([page, box_get_text() _strip(]1).T
templ=templ . append (temp)

total=total . .—.ppe‘m[templ]

IEl_t'. "page™, 1z "value"})
:Elt ralt. :eplar:e '\n', "', regex=True)
Convert DataFrame to SAS

¥ Convert dataframe to SAS dataset by SEED'; A.P‘T
text”, libraf=

dataset via Saspy API

pdftext=sas . dfZ=d{rslt, "p
T.closzel}

<

Display 11. Example code of extract PDF comment box to DataFrame

After running the above command in Jupyter, SAS dataset with all page humbers and values
will be generated from blank crf. This format is exactly the same format which annotation
tool requires in excel format.

13

Kl kovarTIs o SCREEMNGY |
Study cumamanzn Conlsr Mo, Subject Ho. Vise Hame T VIEWTABLE: Tem
R page| value
— -
- 3 1 1D

4 1 Cantar No.
5 1 Subject No,
6 1 Wist Mame
7 1 Drabe of wist
] 1 DO-MON-1YYY
3 1 Epoch\esfied
0 |1 Approved
1 1 Locked
121 Frozen
13 1 Drocument Mumber
14 1 Fage Mame
15 1 Subsvert i
16 1 Page Mumbar
17 1 Status
18 1 Viarsion

Fpoah SCRERNING Decaman Wamtt parem— Pagt Mmstet 1 132 Sudy

vartad [] dppemess [ocist [Frosen] g omne gy [——— 20 2 D

Figure 6. Text information in CRF are extracted to SAS dataset

As you can see in the below figure, when SAS session is established in Jupyter notebook,
% %SAS will enable to run SAS code directly in Jupyter notebook cell. After the above SAS
dataset is created, it will be merged to central annotation database and keep only effective
crfid in database.

Jupytar magic command, run SAS commsnd in cesll
#HSLS
libname temp "C:\Uszers\makajyul\OneDrive - Novartis Pharma RG\work\02 NON PROJECT\python\SAS";

proc sort data = temp.pdftext out = wkl nodupkey;
by walue page;
rumy
datz wkZ;
zet wkl;
length erfid $30.;
pagenum = input{page, best_);
crfid = strip(wvalue};
runy
proc sgl moprint ;
select max | pagenum) into :maxn from wkZ ;
quit ;
#let maxn = &maxn ;
proc sort data = temp.central annotation database cut = wk3d nodupkey;
by crfid; - -
oy

deta wké4:
merge wkZ (in=a) wk3(in=b):
by crfid;
if a and b;
keep pagenum crfid;
proc Sort;
by pagenum criid;
rumny
datz dummy;
do pagenum = 1 to &maxn.;
output; end;
rumny
datz temp.rslt;
merge dummy wkd;
by pagenum;
rumny

Display 12. Example of Jupyter magic to run SAS code

14

Finally completed excel file (only if every crfid are available in annotation database) will be
created from final dataset (temp.rslt) above.

CONCLUSION

As described, SASPy is able to establish SAS session in Jupyter notebook via SASPy, and
Python can provide summary tables and figures for data review from SAS dataset in clinical
study. This also means Python can be possibly used not only for acceptance check to vendor
deliverables, but also for a part of output validation process. In addition, Python will provide
several possibilities by plenty of useful libraries such as reading PDF file.

There is no doubt SAS is the most popular software in clinical study data analysis. However,
acquiring Python programming skill additionally will enable SAS programmer to expand the
capability and opportunity of daily work. As described in previous section, SAS is good at
data handling and Python can read PDF file. Both programming languages have each
advantage and disadvantage respectively. With the combination of SAS and Python via
SASPy, their disadvantage can be covered each other. If you are the experienced SAS
programmer, it is never too late to start Python.

REFERENCES
“pandas.” https://pandas.pydata.org/

“matplotlib.” https://matplotlib.org/

“SASPy.” https://sassoftware.github.io/saspy/

“Pdfminer.” https://media.readthedocs.org/pdf/pdfminer-docs/latest/pdfminer-docs.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Yuichi Nakajima
yuichi.nakajima@novartis.com

15

https://pandas.pydata.org/
https://matplotlib.org/
https://sassoftware.github.io/saspy/
https://media.readthedocs.org/pdf/pdfminer-docs/latest/pdfminer-docs.pdf
mailto:yuichi.nakajima@novartis.com

