
Paper 3186-2019 
 

Introduction to Data-driven Programming Using SAS® 
 

Kirk Paul Lafler, Software Intelligence Corporation 
 
 

Abstract 

Data-driven programming, or data oriented programming (DOP), is a specific programming paradigm where the data, and/or 

data structures, control the flow of a program and not the program logic. Often, data-driven programming approaches are 

applied in organizations with structured and unstructured data for filtering, aggregating, transforming and calling other 

programs. This paper and presentation explores several data-driven programming techniques that are available to SAS® users. 

Topics include using metadata to capture valuable information about a SAS session such as the librefs that are currently 

assigned, the names of the tables available in a session, whether a data set is empty, the number of observations in a data set, 

the number of character versus numeric variables in a data set, and a variable’s attributes; using the CALL EXECUTE routine to 

process (or execute) code generated by a DATA step; constructing a user-defined format directly from data; and using the SQL 

procedure and the macro language to construct an automated looping process. 

 

Introduction 

The SAS System collects and populates valuable information (“metadata”) about SAS libraries, data sets (tables), catalogs, 

indexes, macros, system options, titles, views and a collection of other read-only tables called dictionary tables. Dictionary 

tables serve a special purpose by providing system-related information about the current SAS session’s SAS databases and 

applications.  When a query is requested against a Dictionary table, SAS automatically launches a discovery process at runtime 

to collect information pertinent to that table. Metadata content can be very useful for developing data-driven techniques. 

Other data-driven programming techniques include using the CALL EXECUTE routine to process (or execute) code generated by 

a DATA step; constructing a user-defined format directly from data; and using the SQL procedure and the macro language to 

construct an automated looping process. 

 

Tables Used in Examples 

The data used in all the examples in this paper uses a movies and actors data set (table). The Movies table consists of twenty-

two observations (rows) and six variables (columns): Title, Length, Category, Year, Studio, and Rating. Title, Category, Studio, 

and Rating are defined as character columns with Length and Year being defined as numeric columns, and is shown below. 

 

 
 

The ACTORS data set (table) consists of thirteen observations (rows) and three variables (columns): Title, Actor_Leading, and 

Actor_Supporting which are all character columns, and is shown below. 



Introduction to Data-driven Programming Using SAS®, continued SASGF 2019 

 
Page 2 

 

 
 

 

Programming Paradigms 

Programming languages are often classified by their basic features into one of the many programming paradigms. Three 

popular programming paradigms in use today by programming professionals are 1) Procedural programming – represented by 

blocks of code being organized logically by function, such as data input, data processing or manipulation, and data / results 

output; 2) Object-oriented programming – represented by a combination of functionality (behaviors) and data (attributes) 

hidden inside an object which can then be arranged into classes; and 3) Data-driven programming – represented by data 

controlling the flow of execution in a program. 

 

What is Data-driven Programming? 

Unlike procedural programming languages where a program’s flow of execution is described using a detailed step-by-step 

logical approach to solving a problem or with object-oriented programming where an object is told how to behave without all 

the detailed steps that informs the object how to behave. Data-driven programming involves a program that has its decisions 

and processes (the flow of execution) controlled (or dictated) by the data (or data structures). 

 

Data-driven programming possesses many virtues over rival programming paradigms including having a default action assigned 

to it, provide greater flexibility, are often shorter in length, and can be easier to maintain due to a reduction, or elimination, of 

“hard-coded” values. 

 

Traditional (or “Legacy”) SAS Metadata Sources 

SAS users have traditionally been accessing and producing metadata using PROC CONTENTS and PROC DATASETS. 

 

• PROC CONTENTS – Produces a directory of the SAS library and the details associated with each member type stored in a 

SAS library. 

 

• PROC DATASETS – In Michael A. Raithel’s (2016) landmark paper, PROC DATASETS is the Swiss Army Knife of Data 

Management procedures. Like PROC CONTENTS, the PROC DATASETS CONTENTS statement produces a directory of the 

SAS library and the details associated with each member type (e.g., DATA, VIEW, INDEX) stored in a SAS library. 

 

In the next example, PROC CONTENTS is specified to describe the metadata associated with the SAS data set, Movies. 

 

PROC CONTENTS Code: 

 

PROC CONTENTS DATA=WORK.Movies ; 

RUN ; 

 

  



Introduction to Data-driven Programming Using SAS®, continued SASGF 2019 

 
Page 3 

 

Results from PROC CONTENTS: 

 

 
 

 

 

In the next example, PROC CONTENTS is specified to print a list of all SAS files that reside in the SAS library. 

 

PROC CONTENTS Code: 

 

PROC CONTENTS DATA=WORK.Movies DIRECTORY ; 

RUN ; 

 

  



Introduction to Data-driven Programming Using SAS®, continued SASGF 2019 

 
Page 4 

 

Results from PROC CONTENTS: 

 

 

 



Introduction to Data-driven Programming Using SAS®, continued SASGF 2019 

 
Page 5 

 

In the next example, PROC CONTENTS is specified to save the results of a SAS data set’s metadata that resides in the SAS library 

to a SAS data set. 

 

PROC CONTENTS and PROC PRINT Code: 

 

PROC CONTENTS DATA=WORK.Movies 

               OUT=WORK.Contents_Structure 

              DIRECTORY ; 

RUN ; 

PROC PRINT DATA=WORK.Contents_Structure ; 

RUN ; 

 

Results from PROC CONTENTS and PROC PRINT: 

 

<  Same as PROC CONTENTS Results from the previous example  > 

 

.   .   .   .   .   .  .   .   .  .   .   .  .    .    . 

 

 
 

 
 

 
 

 

Data-driven Programming Using DICTIONARY Tables and SASHELP Views 

SAS users can quickly and conveniently obtain useful information (metadata) about their SAS session with a number of read-

only SAS system tables called DICTIONARY tables and SASHELP views. At any time during a SAS session, DICTIONARY tables can 

be accessed using the libref DICTIONARY in the FROM clause of a PROC SQL SELECT statement to capture information related to 

currently defined libnames, table names, column names and attributes, formats, and much more. SASHELP views can be 

accessed using any of your favorite procedures or in the DATA step. 

 

Identifying the Names of the DICTIONARIES Tables and SASHELP Views 

SAS users can identify any new Dictionary table release by accessing the read-only DICTIONARIES Dictionary table or VSVIEW 

SASHELP view. The content of the DICTIONARIES Dictionary table reveals the names of supported Dictionary tables. The 

following PROC SQL query uses the UNIQUE (or DISTINCT) keyword to generate a listing of existing Dictionary tables. 

 

 



Introduction to Data-driven Programming Using SAS®, continued SASGF 2019 

 
Page 6 

 

PROC SQL Code: 

 

PROC SQL ; 

  SELECT UNIQUE MEMNAME 

    FROM DICTIONARY.DICTIONARIES ; 

QUIT ; 

 

Results from DICTIONARY.DICTIONARIES: 

 

 
 

SAS 9.4 currently supports 32 DICTIONARY tables as is illustrated below. Earlier versions of SAS supported fewer Dictionary 

tables. SAS 9.3 supported 30 DICTIONARY tables; SAS 9.2 supported 29 Dictionary tables; and SAS 9.1 software supported 22 

Dictionary tables. 

 

The contents of the VSVIEW SASHELP view reveals the names of supported SASHELP views in SAS 9.4. The following PROC SQL 

query uses the DISTINCT (or UNIQUE) keyword along with the SUBSTR function to identify a listing of SASHELP views starting 

with the character value, “V”. 

 

PROC SQL Code: 

 

PROC SQL ; 

 SELECT DISTINCT MEMNAME 

  FROM SASHELP.VSVIEW 

   WHERE UPCASE(SUBSTR(MEMNAME,1,1)) = 'V' 

     AND UPCASE(LIBNAME) = 'SASHELP' 

    ORDER BY MEMNAME ; 

QUIT ; 

 

  



Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 7 

 

Results from SASHELP.VSVIEWS: 

 

 

 

 

 

Names and Purpose of Each DICTIONARY Table and SASHELP View 

The names and purpose of the DICTIONARY tables and equivalent SASHELP views appear in the following table. 

 

DICTIONARY Table SASHELP View Purpose 

CATALOGS VCATALG SAS Catalogs and Catalog-specific Information. 

CHECK_CONSTRAINTS VCHKCON Check Constraints information. 

COLUMNS VCOLUMN Columns from All Tables. 

CONSTRAINT_COLUMN_USAGE VCNCOLU Constraint Column Usage. 

CONSTRAINT_TABLE_USAGE VCNTABU Constraint Table Usage. 

DATAITEMS VDATAIT Information Map Data Items. 

DESTINATIONS VDEST Open ODS Destinations. 

DICTIONARIES VDCTNRY DICTIONARY Tables and their Columns. 

ENGINES VENGINE Available Engines. 

EXTFILES VEXTFL 
Implicitly-defined File Definitions and Files Defined in FILENAME 
statements. 

FILTERS VFILTER Information Map Filters. 



Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 8 

 

FORMATS VFORMAT Available SAS and User-defined Formats and Informats. 

FUNCTIONS VFUNC Available Functions. 

GOPTIONS VGOPT SAS/GRAPH Software Graphics Options. 

INDEXES VINDEX Information related to Defined Indexes. 

INFOMAPS VINFOMP Information Maps. 

LIBNAMES VLIBNAM Information related to SAS Data Libraries. 

LOCALES VLOCALE Available Locales, Regions, Languages and Currency Symbols. 

MACROS VMACRO Information about Defined Macros. 

MEMBERS VMEMBER Information about SAS Defined Tables, Catalogs and Views. 

OPTIONS VOPTION Information about SAS Default System Options. 

PROMPTS VPROMPT Information about Information Map Prompts. 

PROMPTSXML VPRMXML Information Map Prompts XML. 

REFERENTIAL_CONSTRAINTS VREFCON Information about Referential Constraints. 

REMEMBER VREMEMB All Remembered Information. 

STYLES VSTYLE Information about All Styles. 

TABLES VTABLE SAS Tables and Table-specific Information. 

TABLE_CONSTRAINTS VTABCON Information about Table Constraints. 

TITLES VTITLE Information about Defined Titles. 

VIEWS VVIEW Views and View-specific Information. 

VIEW_SOURCES VSVIEW Sources Referenced by View. 

XATTRS VXATTR Extended Attributes. 

 

 

Displaying DICTIONARY Table Definitions 

A dictionary table’s definition can be displayed by specifying a DESCRIBE TABLE statement. The results of the statements and 

clauses used to create each dictionary table can be displayed on the SAS Log. For example, a DESCRIBE TABLE statement is 

illustrated below to display the CREATE TABLE statement used in building the OPTIONS dictionary table containing current SAS 

System option settings. 

 

PROC SQL Code: 

 

PROC SQL ; 

  DESCRIBE TABLE 

    DICTIONARY.OPTIONS ; 

QUIT ; 

 

 

 

 



Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 9 

 

SAS Log Results: 

 

create table DICTIONARY.OPTIONS 

  ( 

   optname char(32) label='Option Name', 

   setting char(1024) label='Option Setting', 

   optdesc char(160) label='Option Description', 

   level char(8) label='Option Location' 

  ); 

 

Note: The information contained in dictionary tables is also available to DATA and PROC steps outside the SQL procedure. 

Referred to as SASHELP views, each view is prefaced with the letter “V” and may be shortened with abbreviated names. 

SASHELP views can be accessed by referencing the view by its name in the SASHELP library. Please refer to the SAS Procedures 

Guide for further details on accessing and using dictionary views in the SASHELP library. 

 

 

The COLUMNS DICTIONARY Table and VCOLUMN SASHELP View 

Retrieving information about the columns in one or more data sets or tables is easy with the COLUMNS dictionary table. Similar 

to the results of the CONTENTS procedure, users are able to capture column-level information including column name, type, 

length, position, label, format, informat, and indexes, as well as produce cross-reference listings containing the location of 

columns in a SAS library. For example, the following code requests a cross-reference listing of the tables containing the TITLE 

column in the WORK library.  Note: Care should be used when specifying multiple functions on the WHERE clause since the SQL 

Optimizer is unable to optimize the query resulting in all allocated SAS session librefs being searched. This can cause the query 

to run much longer than expected. 

 

PROC SQL Code: 

 

PROC SQL ; 

  SELECT * 

    FROM DICTIONARY.COLUMNS 

      WHERE LIBNAME=”WORK” 

        AND UPCASE(NAME)=”TITLE” ; 

QUIT ; 

 

Results: 

 

 
 

 

  



Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 10 

 

The TABLES DICTIONARY Table and VTABLE SASHELP View 

When users need more information about SAS files consider using the TABLES Dictionary table or the VTABLE SASHELP view. 

The TABLES dictionary table provides detailed information about the library name, member name and type, date created and 

last modified, number of observations, observation length, number of variables, password protection, compression, encryption, 

number of pages, reuse space, buffer size, number of deleted observations, type of indexes, and requirements vector. For 

example, to obtain a detailed list of files in the WORK library, a PROC SQL SELECT query can be constructed as follows. Note: 

Because the TABLE Dictionary table produces a considerable amount of information, users should consider specifying a WHERE 

clause when accessing this table. 

 

PROC SQL Code: 

 

PROC SQL ; 

  SELECT * 

    FROM DICTIONARY.TABLES 

      WHERE LIBNAME="WORK" ; 

QUIT ; 

 

Results: 

 

 
 
 

Accessing Information from SAS DICTIONARY Tables to Do Cool Things 

SAS users can quickly and conveniently obtain useful information about their SAS session with a number of read-only SAS 

system tables called DICTIONARY tables. At any time during a SAS session, DICTIONARY tables can be accessed using the libref 

DICTIONARY in the FROM clause of a PROC SQL SELECT statement to capture information related to currently defined libnames, 

table names, column names and attributes, formats, and much more. SASHELP views can be accessed using any of your favorite 

procedures or in the DATA step. SAS 9.1 software supported 22 Dictionary tables and SASHELP views, SAS 9.2 supported 29 

Dictionary tables and SASHELP views, SAS 9.3 supported 30 DICTIONARY tables and SASHELP views, and SAS 9.4 supports 32 

DICTIONARY tables and SASHELP views. 

 



Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 11 

 

Accessing and Displaying the Number of Rows in a Table 
The DICTIONARY table, TABLES, can be accessed to capture and display each table name and the number of observations in the 

user-assigned WORK libref. The following PROC SQL code provides a handy way to quickly determine the number of rows in one 

or all tables in a libref without having to execute multiple PROC CONTENTS by using the stored information in the Dictionary 

table TABLES. 

 
PROC SQL Code: 
 

PROC SQL ; 

  SELECT LIBNAME, MEMNAME, NOBS 

    FROM DICTIONARY.TABLES 

      WHERE LIBNAME="WORK" 

        AND UPCASE(MEMTYPE)="DATA" ; 

QUIT ; 

 
Results: 
 

 
 

Accessing and Displaying the Column Definitions for a “Key” Variable (or Variables) in All Tables 
The DICTIONARY table, COLUMNS, is accessed to display all table names (data sets) that contain the variable TITLE in the user-

assigned WORK libref as a cross-reference listing. To retrieve the needed type of information, you could execute multiple PROC 

CONTENTS against selected tables. Or in a more efficient method, you could retrieve the information directly from the read-

only Dictionary table COLUMNS with the selected columns LIBNAME, MEMNAME, NAME, TYPE and LENGTH, as shown. For 

more information about Dictionary tables, readers may want to view the “free” SAS Press Webinar by Kirk Paul Lafler at 

http://support.sas.com/publishing/bbu/webinar.html#lafler2 or the published paper by Kirk Paul Lafler, Exploring Dictionary 

Tables and SASHELP Views. 

 

PROC SQL Code: 
 

PROC SQL ; 

  SELECT LIBNAME, MEMNAME, NAME, TYPE, LENGTH 

    FROM DICTIONARY.COLUMNS 

      WHERE LIBNAME="WORK" 

        AND UPCASE(NAME)="TITLE" 

        AND UPCASE(MEMTYPE)="DATA" ; 

QUIT ; 

 
  

      Library                               Number of Physical 

      Name      Member Name                       Observations 

      WORK      ACTORS                                      13 

      WORK      CUSTOMERS                                    3 

      WORK      MOVIES                                      22 

      WORK      PG_RATED_MOVIES                             13 

http://support.sas.com/publishing/bbu/webinar.html#lafler2


Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 12 

 

Results: 
 

 
 

Capturing a List of Variables from the COLUMNS Dictionary Table 
The DICTIONARY table, COLUMNS, can be accessed to capture and display each column name contained in one or more tables 

in the WORK libref. The following PROC SQL code provides a handy way to quickly capture the names of any, and all, columns 

contained in the MOVIES table without having to execute PROC CONTENTS. 

 

PROC SQL Code: 
 

PROC SQL NOPRINT ; 

  SELECT NAME, 

         COUNT(NAME) 

         INTO :MVARIABLES SEPARATED BY ' ', 

              :MVARIABLESNUM 

   FROM DICTIONARY.COLUMNS 

    WHERE LIBNAME="WORK" 

      AND UPCASE(MEMNAME)="MOVIES" ; 

QUIT ; 

%PUT &MVARIABLES &MVARIABLESNUM ; 

 

SAS Log Results: 

 

%PUT &MVARIABLES &MVARIABLESNUM ; 

Title Length Category Year Studio Rating        6 

 

The previous example can be expanded so only the character-defined variables are saved in the macro variable. The next 

example illustrates PROC SQL code to capture the names of the character-defined columns contained in the MOVIES table and 

the contents of the macro variable is then specified in a SELECT statement to produce a report. 

 

PROC SQL Code: 
 

PROC SQL NOPRINT ; 

  SELECT NAME 

         INTO :MVARIABLES SEPARATED BY ', ' 

   FROM DICTIONARY.COLUMNS 

    WHERE LIBNAME="WORK" 

      AND UPCASE(MEMNAME)="MOVIES"  

      AND UPCASE(TYPE)="CHAR" ; 

  %PUT &MVARIABLES ; 

  RESET PRINT ; 

  SELECT &MVARIABLES FROM MOVIES ; 

QUIT ; 

 

 

 

  Library                                           Column    Column 

  Name       Member Name         Column Name        Type      Length 

  WORK       ACTORS              Title              char          30 

  WORK       MOVIES              Title              char          30 

  WORK       PG_MOVIES           Title              char          30 

  WORK       PG_RATED_MOVIES     Title              char          30 

  WORK       RENTAL_INFO         Title              char          30 



Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 13 

 

SAS Log Results: 

 

%PUT &MVARIABLES ; 

Title, Category, Studio, Rating 

 

PROC PRINT Results: 
 

 
 

 

Data-driven Programming Using the CALL EXECUTE Routine 

SAS users have a powerful DATA step routine called CALL EXECUTE that can be used for data-driven processing. The CALL 

EXECUTE routine accepts a single argument where the value can be a character-string or, when needed, a character expression 

containing SAS code elements to be executed after they are resolved. The CALL EXECUTE routine permits SAS statements and 

macro code to be stacked together and then executed, Batkhan (2017). 

 

When the CALL EXECUTE routine contains SAS statement code without macro variables or macro references, the code is 

appended to the input stack for immediate execution after the DATA step ends. The argument can be specified with single or 

double quotes, dynamically generating SAS code for execution. To leverage data-driven processes with CALL EXECUTE, a control 

data set containing four distinct movie ratings (i.e., “G”, “PG”, “PG-13” and “R”) represented as four observations is created. 

The second DATA step then reads the contents of the control data set populating the unique value for the movie_rating 

variable in the individual CALL EXECUTE statements. Note: The CATS function is used to strip blanks and concatenate multiple 

strings together. 

 

Code: 
 

data movie_list ;  /* Control Data Set */ 

  length movie_rating $5. ; 

  input @1 movie_rating $5. ; 

  datalines ; 

G 

PG 



Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 14 

 

PG-13 

R 

; 

run ; 

 

data _null_ ;  /* Populate Unique Value for the Movie_rating Variable */ 

  set movie_list ; 

  call execute(CATS('ods Excel file="/folders/myfolders/',movie_rating,'_Rpt.xlsx" 

                              style=styles.barrettsblue 

                              options(embedded_titles="yes");')) ; 

  call execute(CAT('title ', movie_rating, ' Movies;')) ; 

  call execute(CATS('proc freq data=mydata.Movies(where= 

                            (rating="',movie_rating,'"));')) ; 

  call execute('tables Title;') ; 

  call execute('run;') ; 

  call execute('ods Excel close;') ; 

run ; 

 
 
The dynamically generated SAS code produced by the preceding CALL EXECUTE statements is displayed, below. 
 
SAS Log (Generated SAS Code): 
 

1  + ods Excel file="/folders/myfolders/G_Rpt.xlsx" 

           style=styles.barrettsblue 

           options(embedded_titles="yes"); 

2  + title G  Movies; 

3  + proc freq data=mydata.Movies(where=(rating="G")); 

4  + tables Title; 

5  + run; 

 

6  + ods Excel file="/folders/myfolders/PG_Rpt.xlsx" 

           style=styles.barrettsblue 

           options(embedded_titles="yes"); 

7  + title PG  Movies; 

8  + proc freq data=mydata.Movies(where=(rating="PG")); 

9  + tables Title; 

10 + run; 

 

11 + ods Excel file="/folders/myfolders/PG-13_Rpt.xlsx" 

           style=styles.barrettsblue 

           options(embedded_titles="yes"); 

12 + title PG-13  Movies; 

13 + proc freq data=mydata.Movies(where=(rating="PG-13")); 

14 + tables Title; 

15 + run; 

 

16 + ods Excel file="/folders/myfolders/R_Rpt.xlsx" 

           style=styles.barrettsblue 

           options(embedded_titles="yes"); 

17 + title R  Movies; 

18 + proc freq data=mydata.Movies(where=(rating="R")); 

19 + tables Title; 

20 + run; 

 



Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 15 

 

Results (Using CALL EXECUTE): 
 

 
 

 
 

 
 

 
 

 

Data-driven Programming Using Custom-defined Formats from Data 

The FORMAT procedure is a powerful tool for building user-defined informats and formats. These “custom” user-defined 

informats and formats provides SAS with instructions on how to read data into SAS variables and write (or display) output. 

Custom-defined informats and formats are defined as temporary or permanent, and are stored as entries in SAS catalogs. The 

available operations performed by the FORMAT procedure include the ability to: 



Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 16 

 

 Convert character values to numeric values 

 Convert numeric values to character values 

 Convert character values to other character values. 

 

To prevent hard-coding VALUE clauses, custom-defined formats can be created dynamically from a SAS data set. This not only 

can be a more efficient approach than processing sort, merge, and join operations, Droogendyk (2010), it also allows data-

driven processes to be leveraged. Consequently, the FORMAT procedure is able to create informats and formats without 

specifying an INVALUE, PICTURE, or VALUE clause by using a SAS control data set as input. 

 

The control data set is specified with the CNTLIN option of PROC FORMAT. To start the process, the control data set being used 

must have the following required variables: 

 

• FMTNAME - specifies the name of a character variable whose value is the format or informat name. 

• START - specifies the name of a character variable that contains the value to be converted. 

• LABEL - specifies the name of a character variable that contains the converted value. 

 

In the next example, the DATA step is specified with IF-THEN/ELSE logic to produce the control data set with the required 

variables. The contents of the control data set are then displayed with the PRINT procedure. Finally, the control data set is 

specified in the PROC FORMAT CNTLIN option. 

 

Code: 
 

data control ; 

  fmtname = "$Movie_Rating" ; 

  length label $23. ; 

  input start $5. ; 

  if start = "G"          then label = "General Audience" ; 

  else if start = "PG"    then label = "Parental Guidance" ; 

  else if start = "PG-13" then label = "Parental Guidance >= 13" ; 

  else if start = "R"     then label = "Restricted" ; 

  else if start = ""      then label = "ERROR – Movie Rating" ; 

  output ; 

  datalines ; 

G 

PG 

PG-13 

R 

 

; 

run ; 

 

proc print data=control noobs ; 

  title ; 

  var fmtname start label ; 

run ; 

 

proc format library=work cntlin=control ; 

quit ; 

 

proc print data=mydata.movies noobs ; 

  format rating $movie_rating. ; 

run ; 

 

 



Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 17 

 

SAS Log (Generated Control Data Set): 
 

data control ; 

  fmtname = "$Movie_Rating" ; 

  length label $23. ; 

  input start $5. ; 

  if start = "G"          then label = "General Audience" ; 

  else if start = "PG"    then label = "Parental Guidance" ; 

  else if start = "PG-13" then label = "Parental Guidance >= 13" ; 

  else if start = "R"     then label = "Restricted" ; 

  else if start = ""      then label = "ERROR – Movie Rating" ; 

  output ; 

  datalines ; 

  

 NOTE: The data set WORK.CONTROL has 5 observations and 3 variables. 

 

; 

run ; 

 

proc print data=control noobs ; 

  title ; 

  var fmtname start label ; 

run ; 

  

 NOTE: There were 5 observations read from the data set WORK.CONTROL. 

 

proc format library=work cntlin=control ; 

 NOTE: Format $MOVIE_RATING has been output. 

quit ; 

  

 NOTE: There were 5 observations read from the data set WORK.CONTROL. 

 

proc print data=mydata.movies noobs ; 

  format rating $movie_rating. ; 

run ; 

  

 NOTE: There were 22 observations read from the data set MYDATA.MOVIES. 

 

 

Results: 
 

The results of printing the dynamically-generated control data set and performing the formatted output are displayed, below. 

 



Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 18 

 

 

 
 
 

Data-driven Programming Using the SQL Procedure and the Macro Language 

The SQL procedure and the macro language are two versatile tools found in the Base SAS software. Combining the two together 

provides users with all the tools necessary to construct highly useful and effective data-driven programs. Lafler (2018) offers a 

data-driven approach to creating multiple Excel files. Triggered by calling a macro to reduce coding requirements, the process 

uses the Macro language, PROC SQL, the ODS Excel destination, and PROC FREQ to send output (results) to Excel. The ODS Excel 

Destination became production in SAS 9.4 (M4). It serves as an interface between SAS and Excel. The ODS Excel features 

include: 

 

 SAS Results and Output can be sent directly to Excel 

 Offers a Flexible way to create Excel files 

 Supports Reports, Tables, Statistics and Graphs 

 Formats Data into Excel Worksheet cells 

 Permits Automation of Production-level Workbooks. 

 

The ODS Excel destination easily sends output and results to Excel. The ODS Excel syntax simplifies the process of sending 

output, reports, tables, statistics and graphs to Excel files. The ODS Excel options are able to: 

 

 Programmatically generate output and results 

 Control font used and font sizes 

 Add special features to row and column headers 

 Adjust row and column sizes 

 Format data values 

 Align data to the left, center or right 

 Add hyperlinks for drill-down capability. 

 

Producing Multiple Excel Files 

In the next example, a data-driven approach using PROC SQL SELECT code embedded inside a user-defined macro routine is 

constructed to dynamically produce separate Excel spreadsheets containing the frequency results for each unique By-group 

(e.g., Movie Rating). The SELECT query processes the Movies table, creates a single-value macro variable with the number of 

unique movie ratings, and a value-list macro variable with a list of the unique movie ratings separated with a tilde “~”. Using the 

FREQ procedure and a user-defined macro, both macro variables along with their respective values, an iterative macro %DO 



Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 19 

 

statement, a %SCAN function, and WHERE= data set option dynamically sends the results to one or more Excel spreadsheets for 

each By-group. 

 

Macro and PROC SQL Code: 
 

%macro multExcelfiles ; 

  proc sql noprint ; 

   select count(distinct rating) 

    into :mrating_cnt  /* number of unique movie ratings */ 

     from WORK.Movies 

      order by rating ; 

   select distinct rating 

    into :mrating_lst separated by "~"  /* list of movies */ 

     from WORK.Movies 

      order by rating ; 

  quit ; 

  %do i=1 %to &mrating_cnt ; 

     ods Excel file="c:/%SCAN(&mrating_lst,&i,~)_Rpt.xlsx" 

              style=styles.barrettsblue 

              options(embedded_titles="yes") ; 

     title "%SCAN(&mrating_lst,&i,~)-Rated Movies" ; 

     proc freq data=WORK.Movies(where=(rating="%SCAN(&mrating_lst,&i,~)")) ; 

       tables Title ; 

     run ; 

     ods Excel close ; 

  %end ; 

  %put &mrating_lst ; 

%mend multExcelfiles ; 

 

%multExcelfiles ; 

 
 
The dynamically generated SAS code produced by the iterative %DO statement is displayed, below. 
 
SAS Log (Generated SAS Code): 
 

ods Excel file="/folders/myfolders/G_Rpt.xlsx" 

         style=styles.barrettsblue 

         options(embedded_titles="yes") ; 

title "G-Rated Movies" ; 

proc freq data=mydata.Movies(where=(rating="G")) ; 

  tables Title ; 

run ; 

ods Excel close ; 

NOTE: There were 1 observations read from the data set MYDATA.MOVIES. 

       WHERE rating='G'; 

NOTE: Writing EXCEL file: /folders/myfolders/G_Rpt.xlsx 

 

ods Excel file="/folders/myfolders/PG_Rpt.xlsx" 

         style=styles.barrettsblue 

         options(embedded_titles="yes") ; 

title "PG-Rated Movies" ; 

proc freq data=mydata.Movies(where=(rating="PG")) ; 

  tables Title ; 

run ; 



Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 20 

 

ods Excel close ; 

NOTE: There were 6 observations read from the data set MYDATA.MOVIES. 

       WHERE rating='PG'; 

NOTE: Writing EXCEL file: /folders/myfolders/PG_Rpt.xlsx 

 

ods Excel file="/folders/myfolders/PG-13_Rpt.xlsx" 

         style=styles.barrettsblue 

         options(embedded_titles="yes") ; 

title "PG-13-Rated Movies" ; 

proc freq data=mydata.Movies(where=(rating="PG-13")) ; 

  tables Title ; 

run ; 

ods Excel close ; 

NOTE: There were 7 observations read from the data set MYDATA.MOVIES. 

       WHERE rating='PG-13'; 

NOTE: Writing EXCEL file: /folders/myfolders/PG-13_Rpt.xlsx 

 

ods Excel file="/folders/myfolders/R_Rpt.xlsx" 

         style=styles.barrettsblue 

         options(embedded_titles="yes") ; 

title "R-Rated Movies" ; 

proc freq data=mydata.Movies(where=(rating="R")) ; 

  tables Title ; 

run ; 

ods Excel close ; 

NOTE: There were 8 observations read from the data set MYDATA.MOVIES. 

       WHERE rating='R'; 

NOTE: Writing EXCEL file: /folders/myfolders/R_Rpt.xlsx 

 

G~PG~PG-13~R 

 
 
Results (4 Excel spreadsheets are produced): 
 

 
 

 
 



Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 21 

 

 
 

 
 

 

Conclusion 

Unlike procedural programming languages where a program’s flow of execution is described using a detailed step-by-step 

logical approach to solving a problem or with object-oriented programming where an object is told how to behave, data-driven 

programming involves writing code that has its decisions and processes (the flow of execution) controlled (or dictated) by the 

data (or data structures). Data-driven programming offers SAS users with many virtues over rival programming paradigms 

including enhanced flexibility and easier to maintain due to a reduction, or elimination, of “hard-coded” values. Several data-

driven programming techniques were presented including using the SAS System’s read-only Dictionary tables and SASHELP 

views to provide valuable information about SAS libraries, data sets, columns and attributes, catalogs, indexes, macros, system 

options, and views; using the CALL EXECUTE routine to process (or execute) code generated by a DATA step; constructing a 

user-defined format directly from data; and using the SQL procedure and the macro language to construct an automated 

looping process. 

 

References 

Abolafia, Jeff and Frank DiIorio (2008), “Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language,” 
Proceedings of the 2008 SAS Global Forum (SGF) Conference. 

 

Batkhan, Leonid, 2017, “CALL EXECUTE made easy for SAS data-driven programming”, a SAS Blog Post. 
 

Batkhan, Leonid, 2016, “Modifying variable attributes in all datasets of a SAS library”, a SAS Blog Post, 
http://blogs.sas.com/content/sgf/2016/11/25/modifying-variable-attributes-in-all-datasets-of-a-sas-library/. 

 

Carpenter, Arthur L. (2017), “Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language,” 2017 SAS 
Global Forum (SGF) Conference, California Occidental Consultants, Anchorage, AK, USA. 

 

Davis, Michael (2001), “You Could Look It Up: An Introduction to SASHELP Dictionary Views,” Proceedings of the 2001 SAS Users 
Group International (SUGI) Conference, Bassett Consulting Services, North Haven, CT, USA. 

 

Droogendyk, Harry (2010). “SAS® Formats: Effective and Efficient,” Proceedings of the 2010 SouthEast SAS Users Group (SESUG) 
Conference. 

 

http://www2.sas.com/proceedings/forum2008/128-2008.pdf
https://blogs.sas.com/content/sgf/2017/08/02/call-execute-for-sas-data-driven-programming/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+SasGlobalForumBlog+%2528SAS+Users%2529
https://blogs.sas.com/content/sgf/2016/11/25/modifying-variable-attributes-in-all-datasets-of-a-sas-library/#comment-380722
http://support.sas.com/resources/papers/proceedings17/0835-2017.pdf
http://www2.sas.com/proceedings/sugi26/p017-26.pdf
https://analytics.ncsu.edu/sesug/2010/FF04_Droogendyk.pdf


Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 22 

 

Graebner, Robert W. (2001). “Developing Data-Driven SAS® Programs Using PROC CONTENTS,” Proceedings of the 2001 
MidWest SAS Users Group (MWSUG) Conference. 

 

Hamilton, Jack (1998), “Some Utility Applications of the Dictionary Tables in PROC SQL,” Proceedings of the 1998 Western Users 
of SAS Software (WUSS) Conference, 85-90. 

 

Lafler, Kirk Paul (2018), “Introduction to Data-driven Programming Using SAS®,” Proceedings of the 2018 South Central SAS 
Users Group (SCSUG) Conference, Software Intelligence Corporation, Spring Valley, CA, USA. 

 

Lafler, Kirk Paul (2016), “Valuable Things You Can Do with SAS DICTIONARY Tables and SASHELP Views,” Wisconsin Illinois SAS 
Users (WIILSU) Conference, Software Intelligence Corporation, Spring Valley, CA, USA. 

 

Lafler, Kirk Paul (2019). PROC SQL: Beyond the Basics Using SAS, Third Edition, SAS Institute Inc., Cary, NC, USA. 
 

Lafler, Kirk Paul (2012), “Exploring DICTIONARY Tables and SASHELP Views,” South Central SAS Users Group (SCSUG) Conference 
and Kansas City SAS Users Group (KCSUG) Meeting, Software Intelligence Corporation, Spring Valley, CA, USA. 

 

Lafler, Kirk Paul (2009), “DATA Step versus PROC SQL Programming Techniques,” 2009 South East SAS Users Group (SESUG) 
Conference, Software Intelligence Corporation, Spring Valley, CA, USA. 

 

Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” 2009 Western Users of SAS Software (WUSS) 
Conference and 2009 Pharmaceutical SAS Users Group (PharmaSUG) Conference, Software Intelligence Corporation, Spring 
Valley, CA, USA. 

 

Lafler, Kirk Paul (2008), “Undocumented and Hard-to-find PROC SQL Features,” Greater Atlanta SAS Users Group (GASUG) 
Meeting (June 11

th
, 2008); Pharmaceutical SAS Users Group (PharmaSUG) Conference (June 1

st
 - 4

th
, 2008); 2008 Michigan 

SAS Users Group (MSUG) Meeting (May 29
th

, 2008); 2008 Vancouver SAS Users Group Meeting (April 23
rd

, 2008); and 2008 
PhilaSUG User Group Meeting (March 13

th
, 2008); Software Intelligence Corporation, Spring Valley, CA, USA. 

 

Lafler, Kirk Paul (2006), “Exploring Dictionary Tables with PROC SQL,” SAS Press Webinar Series – June 27, 2006. 
 

Lafler, Kirk Paul (2005), “Exploring Dictionary Tables and SASHELP Views,” Proceedings of the Thirteenth Annual Western Users 
of SAS Software Conference. 

 

Matise, Joe (2016). “Writing Code With Your Data: Basics of Data-Driven Programming Techniques,” Proceedings of the 2016 
South East SAS Users Group (SESUG) Conference. 

 

Raithel, Michael A. (2016). “PROC DATASETS; The Swiss Army Knife of SAS® Procedures,” Proceedings of the 2016 SAS Global 
Forum (SGF) Conference. 

 

Varney, Brian (2000). “How to Think Through the SAS® DATA Step,” Proceedings of the 2000 SAS Users Group International 
(SUGI) Conference. 

 

Villacorte, Renato G. (2012). “Go Beyond The Wizard With Data-Driven Programming,” Proceedings of the 2012 SAS Global 
Forum (SGF) Conference.  

 

Wang, Hui (2015). “Creating Data-Driven SAS® Code with CALL EXECUTE,” Proceedings of the 2015 PharmaSUG Conference. 
 

Whitlock, Ian (2006). “How to Think Through the SAS® DATA Step,” Proceedings of the 2006 SAS Users Group International 
(SUGI) Conference. 

 

Whitlock, Ian (1998). “CALL EXECUTE: How and Why,” Proceedings of the 1998 SAS Users Group International (SUGI) 
Conference. 

 

Acknowledgments 
The author wishes to thank MaryAnne DePesquo, SAS Global Forum (SGF) 2019 Conference Chair, and the SGF 2019 Leadership 

for accepting my abstract and paper. The author also wishes to thank the SAS Global Forum (SGF) Executive Board and SAS 

Institute for organizing and supporting a great conference! 

 

Trademark Citations 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the 

USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective 

companies. 

 

  

http://www.lexjansen.com/mwsug/2001/ApplicationDevelopment/APP-009-developing.pdf
http://www.lexjansen.com/mwsug/2001/ApplicationDevelopment/APP-009-developing.pdf
http://www.lexjansen.com/mwsug/2001/ApplicationDevelopment/APP-009-developing.pdf
https://www.lexjansen.com/wuss/1998/WUSS98017.pdf
https://www.lexjansen.com/scsug/2018/Introduction%20to%20Data-driven%20Programming%20Using%20SAS%20(SCSUG%202018).pdf
http://www.wiilsu.org/sdajgfuirHIUTlsdfnloa312/SUSJun2016/Proceedings/Papers/Lafler%20-%20Valuable%20Things%20You%20Can%20Do%20with%20SAS%20DICTIONARY%20Tables%20and%20SASHELP%20Views.pdf
https://www.sas.com/store/prodBK_71650_en.html
https://www.lexjansen.com/scsug/2012/Exploring-DICTIONARY-Tables-and-SASHELP-Views-SCSUG-2012.pdf
http://analytics.ncsu.edu/sesug/2009/FF003.Lafler.pdf
https://www.lexjansen.com/wuss/2009/dmw/DMW-Lafler.pdf
https://www.lexjansen.com/pharmasug/2008/tt/TT02.pdf
https://support.sas.com/en/search.html?q=%22sas%20press%20webinar%20series%22
https://www.lexjansen.com/wuss/2005/data_warehousing_and_database_management/dwdb_exploring_dictionary.pdf
http://analytics.ncsu.edu/sesug/2016/BB-229_Final_PDF.pdf
http://support.sas.com/resources/papers/proceedings16/3440-2016.pdf
http://support.sas.com/resources/papers/proceedings16/3440-2016.pdf
http://support.sas.com/resources/papers/proceedings16/3440-2016.pdf
http://www2.sas.com/proceedings/sugi25/25/cc/25p077.pdf
http://support.sas.com/resources/papers/proceedings12/148-2012.pdf
http://support.sas.com/resources/papers/proceedings12/148-2012.pdf
http://support.sas.com/resources/papers/proceedings12/148-2012.pdf
https://www.pharmasug.org/proceedings/2015/BB/PharmaSUG-2015-BB15.pdf
http://www2.sas.com/proceedings/sugi31/246-31.pdf
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER70.PDF


Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019 

 
Page 23 

 

About The Author 

Kirk Paul Lafler is entrepreneur and founder at Software Intelligence Corporation, and has worked with SAS software since 

1979. As a SAS consultant, application developer, programmer, data analyst, mentor, infrastructure specialist, educator and 

author at Software Intelligence Corporation, and an advisor and SAS programming adjunct professor at the University of 

California San Diego Extension, Kirk has taught SAS courses, seminars, workshops, and webinars to thousands of users around 

the world. Kirk has also authored or co-authored several books including PROC SQL: Beyond the Basics Using SAS, Third Edition 

(SAS Press. 2019) and Google® Search Complete (Odyssey Press. 2014); hundreds of papers and articles on a variety of SAS 

topics; selected as an Invited speaker, educator, keynote and section leader at SAS user group conferences and meetings 

worldwide; and is the recipient of 25 "Best" contributed paper, hands-on workshop (HOW), and poster awards. 

 

Comments and suggestions can be sent to: 
 

Kirk Paul Lafler 
SAS® Consultant, Application Developer, Programmer, Data Analyst, Educator and Author 

Software Intelligence Corporation 
E-mail: KirkLafler@cs.com 

LinkedIn: https://www.linkedin.com/in/KirkPaulLafler/ 
LinkedIn: https://www.linkedin.com/in/Order-of-Magnitude-Analytics/ 

Twitter: @sasNerd 
 
 

mailto:KirkLafler@cs.com
https://www.linkedin.com/in/KirkPaulLafler/
https://www.linkedin.com/in/Order-of-Magnitude-Analytics/

