Paper 3186-2019
Introduction to Data-driven Programming Using SAS®

Kirk Paul Lafler, Software Intelligence Corporation

Abstract

Data-driven programming, or data oriented programming (DOP), is a specific programming paradigm where the data, and/or
data structures, control the flow of a program and not the program logic. Often, data-driven programming approaches are
applied in organizations with structured and unstructured data for filtering, aggregating, transforming and calling other
programs. This paper and presentation explores several data-driven programming techniques that are available to SAS® users.
Topics include using metadata to capture valuable information about a SAS session such as the librefs that are currently
assigned, the names of the tables available in a session, whether a data set is empty, the number of observations in a data set,
the number of character versus numeric variables in a data set, and a variable’s attributes; using the CALL EXECUTE routine to
process (or execute) code generated by a DATA step; constructing a user-defined format directly from data; and using the SQL
procedure and the macro language to construct an automated looping process.

Introduction

The SAS System collects and populates valuable information (“metadata”) about SAS libraries, data sets (tables), catalogs,
indexes, macros, system options, titles, views and a collection of other read-only tables called dictionary tables. Dictionary
tables serve a special purpose by providing system-related information about the current SAS session’s SAS databases and
applications. When a query is requested against a Dictionary table, SAS automatically launches a discovery process at runtime
to collect information pertinent to that table. Metadata content can be very useful for developing data-driven techniques.
Other data-driven programming techniques include using the CALL EXECUTE routine to process (or execute) code generated by
a DATA step; constructing a user-defined format directly from data; and using the SQL procedure and the macro language to
construct an automated looping process.

Tables Used in Examples

The data used in all the examples in this paper uses a movies and actors data set (table). The Movies table consists of twenty-

two observations (rows) and six variables (columns): Title, Length, Category, Year, Studio, and Rating. Title, Category, Studio,

and Rating are defined as character columns with Length and Year being defined as numeric columns, and is shown below.

Title | Length | Category | Studio | Rating II

1 Brave Heart 177 Action Adventure 1995 Paramount Pictures R

2 Casablanca 103 Drama 1342 MGM / Ua PG

3 Christmas Yacation 97 Comedy 1989 Warner Brothers PG-13
4 Coming to America 116 Comedy 1988 Paramount Pictures R

5 Dracula 130 Horror 1393 Columbia TriStar R

3] Dressed to Kill 105 Drama Mysteries 1980 Filmways Pictures R

7 Forrest Gump 142 Drama 1994 Paramount Pictures PG-13
8 Ghost 127 Drama Romance 1390 Paramount Pictures PG-13
9 Jaws 125 Action &dventure 1975 Universal Studios PG
10 [Jurassic Park 127 Action 1993 Universal Pictures PG-13
11 Lethal Weapon 110 Action Cops & Robber 1987 Warmer Brothers R

12 Michael 106 Drama 1397 Wamer Brothers PG-13
13 [National Lampoon's 98 Comedy 1983 Wamer Brothers PG-13

Wacation

14 Poltergeist 115 Hormor 1982 MGM /U4 PG

15 Rocky 120 Action Adventure 1976 MGM 7/ Ua PG

16 Scarface 170 Action Cops & Robber 1983 Universal Studios R

17 Silence of the Lambs 118 Drama Suspense 1391 Orion R

18 Star Wars 124 Action Sci-Fi 1977 Lucas Film Ltd PG

19 The Hunt for Red October 135 Action Adventure 1983 Paramount Pictures PG

20 The Terminator 108 Action Sci-Fi 1384 Live Entertainment R

21 The Wizard of Oz 101 Adventure 1939 MGM / Ua G

22 Titanic 194 Drama Romance 1997 Paramount Pictures PG-13

The ACTORS data set (table) consists of thirteen observations (rows) and three variables (columns): Title, Actor_Leading, and

Actor_Supporting which are all character columns, and is shown below.

Introduction to Data-driven Programming Using SAS®, continued

SASGF 2019

Title Actor_Leading Actor_Supporting
1 Brave Heart Mel Gibson Sophie Marceau
2 Christmas Yacation Chevy Chase Beverly D'Angelo
3 Coming to America Eddie Murphy Arsenio Hall
4 Forrest Gump Tom Hanks Sally Field
5 Ghost Patrick Swayze Demi Moore
B Lethal Weapon Mel Gibson Danny Glover
7 Michael John Travolta Andie MacDowell
8 National Lampoon's Vacation Chevy Chase Beverly D'Angelo
] Rocky Sylvester Stallone Talia Shire
10 Silence of the Lambs Anthony Hopkins Jodie Foster
11 The Hunt for Red October Sean Connery Alec Baldwin
12 The Terminator Arnold Schwarzenegge Michael Biehn
13 Titanic Leonardo DiCaprio Kate Winslet

Programming Paradigms

Programming languages are often classified by their basic features into one of the many programming paradigms. Three
popular programming paradigms in use today by programming professionals are 1) Procedural programming — represented by
blocks of code being organized logically by function, such as data input, data processing or manipulation, and data / results
output; 2) Object-oriented programming — represented by a combination of functionality (behaviors) and data (attributes)
hidden inside an object which can then be arranged into classes; and 3) Data-driven programming — represented by data
controlling the flow of execution in a program.

What is Data-driven Programming?

Unlike procedural programming languages where a program’s flow of execution is described using a detailed step-by-step
logical approach to solving a problem or with object-oriented programming where an object is told how to behave without all
the detailed steps that informs the object how to behave. Data-driven programming involves a program that has its decisions
and processes (the flow of execution) controlled (or dictated) by the data (or data structures).

Data-driven programming possesses many virtues over rival programming paradigms including having a default action assigned

to it, provide greater flexibility, are often shorter in length, and can be easier to maintain due to a reduction, or elimination, of
“hard-coded” values.

Traditional (or “Legacy”) SAS Metadata Sources
SAS users have traditionally been accessing and producing metadata using PROC CONTENTS and PROC DATASETS.

e PROC CONTENTS — Produces a directory of the SAS library and the details associated with each member type stored in a
SAS library.

e PROC DATASETS — In Michael A. Raithel’s (2016) landmark paper, PROC DATASETS is the Swiss Army Knife of Data
Management procedures. Like PROC CONTENTS, the PROC DATASETS CONTENTS statement produces a directory of the
SAS library and the details associated with each member type (e.g., DATA, VIEW, INDEX) stored in a SAS library.

In the next example, PROC CONTENTS is specified to describe the metadata associated with the SAS data set, Movies.

PROC CONTENTS Code:

PROC CONTENTS DATA=WORK.Movies ;
RUN ;

Page 2

Introduction to Data-driven Programming Using SAS®, continued

Results from PROC CONTENTS:

Diata 5et Page Slzs
Humber of Data Set Pages
First Data Fage

Max Obs per Page

Oba In First Data Pags
Humber of Data Set Repalrs
ExtandObaCountar
Fllgnams

Relazes Cragted

Hoat Creatad

Inode Numbar

Access Parmiszion
Crwnar Hame

Flla 3iz8

Flla 2iza (bytes)

The CONTENT £ Procedura

Data 2at Mame WORKMCWVIES Obeervations 2z
Mambar Type CATA ‘Warlables]
Enging WG Indaxas a
Cragted 04/15/2015 04:53:10 Obeervation Length | 38
Laat Modified 04/15/2015 04:58:10 Daleted Obasrvations | 0
Prataction Campragesd NO
Data et Typs Sortad YES
Labal

Data Reprazantation | waNDOWSs_54

Encading wiatin1 Weslem (Windaws)

EnginaiHozt Depangant Information

AMp'SAS_WrkTEZZ00006027_locahost localdoman/SAS_wWork32C300006027_lacalhoet localdomalnimovies. eas Thdal
S.C401MS5

Linux

ETOSES

F-T-—

Easdemo

12846

131072

Alphabstic List of varlables and Attributes

| varianis Type Len
3 | Catagory Char 20
2 | Largth Num 3
& | Rafng Char 5
5 | Studio Char 25
1 | The Char 30
4 | Yaar Num 4

Sort Information
Sortedby =
walldated YES
Character Set | ANZI
Sort Optlon MODURKEY

In the next example, PROC CONTENTS is specified to print a list of all SAS files that reside in the SAS library.

PROC CONTENTS Code:

PROC CONTENTS

RUN

H

DATA=WORK.Movies DIRECTORY ;

Page 3

SASGF 2019

Introduction to Data-driven Programming Using SAS®, continued

Results from PROC CONTENTS:

Librst WORK
Englng e
Phiyslcal Hama tmip/SAZ workTE2EODCOECZT_localhoet localdomalin/SAS wark32C300006027_lecalhos! localdomain
Fllename Imp'SAS_ workTEZEODODEDZT localhoetlocaldomain/SAS waork32C300005D2T_localmost.locakiomain
Incds Humber 670832
Access Permizalon | mw—-—
Owner Hame s3gd=ma
Fllg Slze K5
Flig lze [bytas) 4096
| Name Mambsar Type | Flie Slze | Last Modified
1| ACTORS DATA 16KS | 04152016 1
2 | MOWVIES DATA 1285 | Q4ME2018 11
3 | REGETRY | [TEMSTOR 32K5 | 04152015 11:5240
4 | BASGOPT | CATALDG 12KS | 04152018 11:5809
5 | SASMAZI | CATALOS 206K5 | 04152015 11:52°40
E | SAEMACZ | CATALDG 20KS | D4MS2018 11:5240
T | SASMALZS | CATALOG 20KS | 04152015 11:5240
& | SAEMACL | CATALDG 20KS | D4MEZ01E 12:05:27
5 | SASMALZS | CATALOG 20KS | 04152015 11:5240
10 | SASMACSE | CATALOG 20KS | D4MS2018 11:5240
11 | SASMACT | CATALCS 20KS | 04152015 11:5240
12 | SASMACE | CATALOG 20KS | D4MS2018 11:5240
13 | SASMACS | CATALCS 20KS | 04152015 11:5240
14 | SASMACR | CATALOG 20KS | 04152018 115810
Tna CONTENT § Procedurs
Data Sat Kame WORKMOWIES ‘Obeervations
Mamber Type DATA Varlables
Enging e Indaxas
Craated 04115/2015 D4:55:10 ‘Obeervation Langtn
Last Modifled 041502015 045510 Deleted Obesrvations
Protaction Comprazesd
Data Sat Type Sortad
Label
Data Reprasantation | WANDOWS_54
Encoding wiatini Wesiem (Windaws)
EnginaiHoat Depandant Information
Data 56t Page Slza E5536
Mumber of Data Set Pages | 1
Flrst Data Pags 1
Max Obs par Page T43
02 In Flrst Cata Pagse 22
Mumber of Data %6t Repalrs | 0
ExtandObaCaountar YES
Fllanama MMpVSAS_WOrkTE,
Felsass Created SL0401M3
Host Creatad Linux
Inode Humibsar ETOSES
Access Permiszion TR-Tl-T—
Ownar Mama Eazdemn
Flla 8zs 12E%E
Flls Slze {bytes) 131072

The CONTENT & Procadure

Diractory

Alphabstic List of Varlables and Attributes

#

g | = eh | @ | ke

varlabla Type Len
Cargary char 20
Langth Mum 3
Rafing Char 5
Shudia Char 23
L] Char i)
a2ar Mum]

Sort Infermation
Sartedby e
valldated YEE
Cheracter Set | AMEI
Sart Option NODURKEY

S00006027_locanest localdomaln/SAS_work32 C30000E02T_kealnast ncaldomalnmovies.eas7odat

Page 4

SASGF 2019

Introduction to Data-driven Programming Using SAS®, continued SASGF 2019

In the next example, PROC CONTENTS is specified to save the results of a SAS data set’s metadata that resides in the SAS library
to a SAS data set.

PROC CONTENTS and PROC PRINT Code:

PROC CONTENTS DATA=WORK.Movies
OUT=WORK.Contents_Structure
DIRECTORY ;

RUN ;

PROC PRINT DATA=WORK.Contents_Structure ;

RUN ;

Results from PROC CONTENTS and PROC PRINT:

< Same as PROC CONTENTS Results from the previous example >

Oba | LIBMAME | MEMHAME MEMLABEL | TYPEMEM | HAME TYPE | LENGTH | VARHUM | LABEL | FORMAT | FORMATL | FORMATD | INFORMAT | INFORML | INFORMD

WORK MOVIES Category 2 20 3 o L L L
2 | WORK MOAIES Length 1 3 2 C C C C
3 | WORK MOVIES Rating 2 5 E o L L L
4 | WORK MOVIES Studia 2 25 L C L L L
5 | WORK MOAIES Tiie Z 30 1 C C C C
E | WORK MOVIES Year 1 4 4 C o o o
JUST | NPOE | NOBES | ENGIME CRDATE DELOBS | IDXKU3SAGE | MEMTYPE | IDXCOUNT | PROTECT | FLAGE COMPRESS | REU3E
o 7 22 |3 1SAPR1E104:5810 0 | MOME DATA o|— - MO MO
4 22 |3 1SAPR1E104:5810 0 | MOME DATA o|— - MO MO
o &z 22 |3 2 0 | MOME DATA o|— - MO MO
o a7 22 |3 0 | MOME DATA o|— - MO MO
o T 22 |3 0 | MOME DATA o|— - MO MO
L o 22 |3 0 | MOME DATA o|— - MO MO

20RTED | BORTEDEY | CHARSET | COLLATE | HODUPKEY | NODUPREC | ENCRYPT | POINTOES | GENMAXK | GENHUM | GENMEXT | TRANSCOD

ANEI YES MO NI YEE c YES
ANEI YEE MO NI YEE C YEE
ANE YES MO MO YEE L YEZ
ANE YES MO MO YEES o YES
ANEI YES MO NI YEE c YES
ANEI YEE MO NI YEE C YEE

Data-driven Programming Using DICTIONARY Tables and SASHELP Views

SAS users can quickly and conveniently obtain useful information (metadata) about their SAS session with a number of read-
only SAS system tables called DICTIONARY tables and SASHELP views. At any time during a SAS session, DICTIONARY tables can
be accessed using the libref DICTIONARY in the FROM clause of a PROC SQL SELECT statement to capture information related to
currently defined libnames, table names, column names and attributes, formats, and much more. SASHELP views can be
accessed using any of your favorite procedures or in the DATA step.

Identifying the Names of the DICTIONARIES Tables and SASHELP Views

SAS users can identify any new Dictionary table release by accessing the read-only DICTIONARIES Dictionary table or VSVIEW
SASHELP view. The content of the DICTIONARIES Dictionary table reveals the names of supported Dictionary tables. The
following PROC SQL query uses the UNIQUE (or DISTINCT) keyword to generate a listing of existing Dictionary tables.

Page 5

Introduction to Data-driven Programming Using SAS®, continued SASGF 2019

PROC SQL Code:

PROC SQL ;
SELECT UNIQUE MEMNAME
FROM DICTIONARY.DICTIONARIES ;
QUIT ;

Results from DICTIONARY.DICTIONARIES:

Member Name Member Name
CATALOGS LIBMAMES
CHECK_COMSTRAINTS LOCALES

COLUMNS MACROS
COMSTRAINT_COLUMN_USAGE MEMEERS
COMSTRAINT_TABLE_USAGE OFTIONS

DATAITEMS PROMPTS
DESTIMATIONS PROMPTEXML
DICTIONARIES REFEREMTIAL_COMSTRAINTS
EMGIMES REMEMBER
EXTFILES STYLES

FILTERS TABLES

FORMATS TABLE_COMSTRAINTS
FUNCTIONS TITLES

GOFTIONS VIEWS

INDEXES VIEW_SOURCES
INFOMAPS

XKATTRS

SAS 9.4 currently supports 32 DICTIONARY tables as is illustrated below. Earlier versions of SAS supported fewer Dictionary
tables. SAS 9.3 supported 30 DICTIONARY tables; SAS 9.2 supported 29 Dictionary tables; and SAS 9.1 software supported 22
Dictionary tables.

The contents of the VSVIEW SASHELP view reveals the names of supported SASHELP views in SAS 9.4. The following PROC SQL
query uses the DISTINCT (or UNIQUE) keyword along with the SUBSTR function to identify a listing of SASHELP views starting
with the character value, “V”.

PROC SQL Code:

PROC SQL ;
SELECT DISTINCT MEMNAME
FROM SASHELP.VSVIEW
WHERE UPCASE(SUBSTR(MEMNAME,1,1)) = 'V’
AND UPCASE(LIBNAME) = 'SASHELP'
ORDER BY MEMNAME ;
QUIT ;

Page 6

Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019

Results from SASHELP.VSVIEWS:

Member Name Member Name
VALLOPT VOPTION
VCATALG VPRMXML
VCFORMAT VPROMPT
VCHKCON VREECON
VENCOLY VREMEMB
VCNTABU VSACCES
VCOLUMN VSCATLG
VDATAIT VSLIE
VDCTNRY VSTABLE
VDEST VSTABVW
VENGINE VSTYLE
VEXTFL VSVIEW
VFILTER VTABCON
VFORMAT VTABLE
VFUMNC VTITLE
VGOPT VVIEW
VINDEX VXATTR
VINFOMP

VLIBNAM

VLOCALE

VMACRO

VMEMBER

Names and Purpose of Each DICTIONARY Table and SASHELP View
The names and purpose of the DICTIONARY tables and equivalent SASHELP views appear in the following table.

I e

CATALOGS VCATALG SAS Catalogs and Catalog-specific Information.
CHECK_CONSTRAINTS VCHKCON Check Constraints information.

COLUMNS VCOLUMN Columns from All Tables.
CONSTRAINT_COLUMN_USAGE VCNCOLU Constraint Column Usage.
CONSTRAINT_TABLE_USAGE VCNTABU Constraint Table Usage.

DATAITEMS VDATAIT Information Map Data Items.

DESTINATIONS VDEST Open ODS Destinations.

DICTIONARIES VDCTNRY DICTIONARY Tables and their Columns.
ENGINES VENGINE Available Engines.

EXTFILES VEXTEL Isr;r;;;lgtr:‘iqtelrtci.efined File Definitions and Files Defined in FILENAME
FILTERS VFILTER Information Map Filters.

Page 7

Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019

FORMATS
FUNCTIONS
GOPTIONS

INDEXES

INFOMAPS
LIBNAMES

LOCALES

MACROS

MEMBERS

OPTIONS

PROMPTS
PROMPTSXML
REFERENTIAL_CONSTRAINTS
REMEMBER

STYLES

TABLES
TABLE_CONSTRAINTS
TITLES

VIEWS
VIEW_SOURCES

XATTRS

VFORMAT

VFUNC

VGOPT

VINDEX

VINFOMP

VLIBNAM

VLOCALE

VMACRO

VMEMBER

VOPTION

VPROMPT

VPRMXML

VREFCON

VREMEMB

VSTYLE

VTABLE

VTABCON

VTITLE

VVIEW

VSVIEW

VXATTR

Available SAS and User-defined Formats and Informats.
Available Functions.

SAS/GRAPH Software Graphics Options.

Information related to Defined Indexes.

Information Maps.

Information related to SAS Data Libraries.

Available Locales, Regions, Languages and Currency Symbols.
Information about Defined Macros.

Information about SAS Defined Tables, Catalogs and Views.
Information about SAS Default System Options.
Information about Information Map Prompts.

Information Map Prompts XML.

Information about Referential Constraints.

All Remembered Information.

Information about All Styles.

SAS Tables and Table-specific Information.

Information about Table Constraints.

Information about Defined Titles.

Views and View-specific Information.

Sources Referenced by View.

Extended Attributes.

Displaying DICTIONARY Table Definitions
A dictionary table’s definition can be displayed by specifying a DESCRIBE TABLE statement. The results of the statements and

clauses used to create each dictionary table can be displayed on the SAS Log. For example, a DESCRIBE TABLE statement is
illustrated below to display the CREATE TABLE statement used in building the OPTIONS dictionary table containing current SAS

System option settings.

PROC SQL Code:

PROC SQL ;
DESCRIBE TABLE

DICTIONARY.OPTIONS ;

QUIT ;

Page 8

Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019

SAS Log Results:

create table DICTIONARY.OPTIONS
(
optname char(32) label='Option Name',
setting char(1024) label='Option Setting',
optdesc char(160) label='Option Description’,
level char(8) label='Option Location'’
)5

Note: The information contained in dictionary tables is also available to DATA and PROC steps outside the SQL procedure.
Referred to as SASHELP views, each view is prefaced with the letter “V” and may be shortened with abbreviated names.
SASHELP views can be accessed by referencing the view by its name in the SASHELP library. Please refer to the SAS Procedures
Guide for further details on accessing and using dictionary views in the SASHELP library.

The COLUNMNS DICTIONARY Table and VCOLUNMN SASHELP View

Retrieving information about the columns in one or more data sets or tables is easy with the COLUMNS dictionary table. Similar
to the results of the CONTENTS procedure, users are able to capture column-level information including column name, type,
length, position, label, format, informat, and indexes, as well as produce cross-reference listings containing the location of
columns in a SAS library. For example, the following code requests a cross-reference listing of the tables containing the TITLE
column in the WORK library. Note: Care should be used when specifying multiple functions on the WHERE clause since the SQL
Optimizer is unable to optimize the query resulting in all allocated SAS session librefs being searched. This can cause the query
to run much longer than expected.

PROC SQL Code:

PROC SQL ;
SELECT *
FROM DICTIONARY.COLUMNS
WHERE LIBNAME="WORK”
AND UPCASE(NAME)="TITLE” ;
QUIT ;

Results:

Column Column
Library | Member | Member | Column | Column | Column | Column | Number | Column | Column | Column | Index
Name | Name Type Name |Type Length | Position | in Table | Label Format | Informat | Type

Order in
Key | Extended | Not
Sequence | Type NULL? | Precision | Scale | Transcoded?

WORK If\('T()RS I[)AT.»\ ITitlc Ichur | 30| ()| 1 | I I |
Jow T» [] e

WORK IM()\/IES |[):\'I'A I'I'itlc Ichm | 30| 7| 1| I | ISIMPI.E
0 I char I no I . I 5 | yes

Page 9

Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019

The TABLES DICTIONARY Table and VTABLE SASHELP View

When users need more information about SAS files consider using the TABLES Dictionary table or the VTABLE SASHELP view.
The TABLES dictionary table provides detailed information about the library name, member name and type, date created and
last modified, number of observations, observation length, number of variables, password protection, compression, encryption,
number of pages, reuse space, buffer size, number of deleted observations, type of indexes, and requirements vector. For
example, to obtain a detailed list of files in the WORK library, a PROC SQL SELECT query can be constructed as follows. Note:
Because the TABLE Dictionary table produces a considerable amount of information, users should consider specifying a WHERE
clause when accessing this table.

PROC SQL Code:

PROC SQL ;
SELECT *
FROM DICTIONARY.TABLES
WHERE LIBNAME="WORK" ;

QUIT ;
Results:
DBMS
Library | Member | Member | Member | Dataset | Dataset Number of Physical
Name |Name Type Type Label | Type Date Created Date Modified Observations
Number | Type of Size

Observation of | Password | Compression Number of Percent | Reuse

Length | Variables | Protection | Routine Encryption | of Pages | File | Compression | Space Bufsize

Number of | Number of | Longest Maximum

Deleted Logical | variable | Longest | number of | Generation | Dataset Type of
Observations | Observations name label | generations number | Attributes | Indexes | Data Representation
Name of Charset Data Audit
Collating | Sorting | Sorted Representation | Data Trail
Sequence | Type | By Requirements Vector Name Encoding | Active?

Audit | Audit | Audit
Before | Admin | Error
Image? | Image? | Image? | Audit Data Image?

WORK | ACTORS ID;\'l'.-‘\ I | ID;\'['A I()t)AlJG()4;15:4():1x|()9;\(}(;04:15:40;15 13
70] 3 I |N0 |No | 1 l mxx4| 0 | no I 8192
0 | 13 16 | 0 0 | ; | ON | | NATIVE
181F101122220032220102320432012222003E00001003 | WINDOWS_32 | wlatinl 1o
01 Western
(Windows)
no I no I no I no
WORK IMOVIES ||),‘\1.-\ | IDATA I()‘).¢\lJ(i04:15:4():18I()‘)AU(’;O4:15:4():18I 22
88 | 6 | | NO | NO | 2 | 24576 | 0 | 1o | 8192
0 | 22 3 | 0 | 0 | . | ON | SIMPLE] NATIVE
181F101122220032220102320432012222003E00001003 | WINDOWS 32 | wlatinl 1o
01 Western
(Windows)
no I no I no I no

Accessing Information from SAS DICTIONARY Tables to Do Cool Things

SAS users can quickly and conveniently obtain useful information about their SAS session with a number of read-only SAS
system tables called DICTIONARY tables. At any time during a SAS session, DICTIONARY tables can be accessed using the libref
DICTIONARY in the FROM clause of a PROC SQL SELECT statement to capture information related to currently defined libnames,
table names, column names and attributes, formats, and much more. SASHELP views can be accessed using any of your favorite
procedures or in the DATA step. SAS 9.1 software supported 22 Dictionary tables and SASHELP views, SAS 9.2 supported 29
Dictionary tables and SASHELP views, SAS 9.3 supported 30 DICTIONARY tables and SASHELP views, and SAS 9.4 supports 32
DICTIONARY tables and SASHELP views.

Page 10

Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019

Accessing and Displaying the Number of Rows in a Table

The DICTIONARY table, TABLES, can be accessed to capture and display each table name and the number of observations in the
user-assigned WORK libref. The following PROC SQL code provides a handy way to quickly determine the number of rows in one
or all tables in a libref without having to execute multiple PROC CONTENTS by using the stored information in the Dictionary
table TABLES.

PROC SQL Code:

PROC SQL ;
SELECT LIBNAME, MEMNAME, NOBS
FROM DICTIONARY.TABLES
WHERE LIBNAME="WORK"
AND UPCASE(MEMTYPE)="DATA" ;

QUIT ;
Results:
Library Number of Physical
Name Member Name Observations
WORK ACTORS 13
WORK CUSTOMERS 3
WORK MOVIES 22
WORK PG_RATED_MOVIES 13

Accessing and Displaying the Column Definitions for a “Key” Variable (or Variables) in All Tables
The DICTIONARY table, COLUMNS, is accessed to display all table names (data sets) that contain the variable TITLE in the user-

assigned WORK libref as a cross-reference listing. To retrieve the needed type of information, you could execute multiple PROC
CONTENTS against selected tables. Or in a more efficient method, you could retrieve the information directly from the read-
only Dictionary table COLUMNS with the selected columns LIBNAME, MEMNAME, NAME, TYPE and LENGTH, as shown. For
more information about Dictionary tables, readers may want to view the “free” SAS Press Webinar by Kirk Paul Lafler at
http://support.sas.com/publishing/bbu/webinar.htmli#lafler2 or the published paper by Kirk Paul Lafler, Exploring Dictionary
Tables and SASHELP Views.

PROC SQL Code:

PROC SQL ;
SELECT LIBNAME, MEMNAME, NAME, TYPE, LENGTH
FROM DICTIONARY.COLUMNS
WHERE LIBNAME="WORK"
AND UPCASE(NAME)="TITLE"
AND UPCASE(MEMTYPE)="DATA" ;
QUIT ;

Page 11

http://support.sas.com/publishing/bbu/webinar.html#lafler2

Introduction to Data-driven Programming Techniques Using SAS®, continued

Results:
Library Column Column
Name Member Name Column Name Type Length
WORK ACTORS Title char 30
WORK MOVIES Title char 30
WORK PG_MOVIES Title char 30
WORK PG_RATED_MOVIES Title char 30
WORK RENTAL_INFO Title char 30

Capturing a List of Variables from the COLUMNS Dictionary Table

SGF 2019

The DICTIONARY table, COLUMNS, can be accessed to capture and display each column name contained in one or more tables

in the WORK libref. The following PROC SQL code provides a handy way to quickly capture the names of any, and all, columns
contained in the MOVIES table without having to execute PROC CONTENTS.

PROC SQL Code:

PROC SQL NOPRINT ;

SELECT NAME,

COUNT(NAME)

INTO :MVARIABLES SEPARATED BY ' ',

QUIT ;

:MVARIABLESNUM
FROM DICTIONARY.COLUMNS
WHERE LIBNAME="WORK"
AND UPCASE(MEMNAME)="MOVIES" ;

%PUT &MVARIABLES &MVARIABLESNUM ;

SAS Log Results:

%PUT &MVARIABLES &MVARIABLESNUM ;
Title Length Category Year Studio Rating

The previous example can be expanded so only the character-defined variables are saved in the macro variable. The next
example illustrates PROC SQL code to capture the names of the character-defined columns contained in the MOVIES table and
the contents of the macro variable is then specified in a SELECT statement to produce a report.

PROC SQL Code:

PROC SQL NOPRINT ;

SELECT NAME

INTO :MVARIABLES SEPARATED BY ', '

FROM DICTIONARY.COLUMNS
WHERE LIBNAME="WORK"

AND UPCASE(MEMNAME)="MOVIES"

AND UPCASE(TYPE)="CHAR" ;
%PUT &MVARIABLES ;
RESET PRINT ;

)

)

)

SELECT &MVARIABLES FROM MOVIES ;

QUIT ;

Page 12

Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019

SAS Log Results:

%PUT &MVARIABLES ;
Title, Category, Studio, Rating

PROC PRINT Results:

Title Category Studio Rating
Brave Heart Action Adventure Paramount Pictures | R
Caszablanca Crrama MGM / UA PG
Christmas ‘acation Comedy Warner Brothers PG-13
Coming to America Comedy Paramount Pictures | R
Dracula Horror Columbia TriStar R
Creszad to Kill Crrama Mysteres Filmways Pictures =3
Forrest Gump Cirama Paramount Pictures | PG-13
Ghost Drama Romance Paramount Pictures | PG-13
Jaws Action Adventure Universal Studios PG
Jurassic Park Action Universal Pictures PG-13
Lethal Weapon Acfion Cops & Robber | \Wamer Brothers 3
Michael Drama Warner Brothers PG-13
Mational Lampoon's Vacation | Comedy Warner Brothers PG-13
Paoltergeist Hosror MGM / UA PG
Rocky Action Adventure MGM / UA PG
Scarface Acfion Cops & Robber | Universal Studios R
Silence of the Lambs Drama Suspense Orion R
Star Wars Action Sci-F Lucas Film Lid PG
The Hunt for Red October Action Adventure Paramount Pictures | PG
The Terminator Action Sci-F Live Entertainment R
The Wizard of Oz Adventurs MGM / UA G
Titanic Drama Romance Paramount Pictures | PG-13

Data-driven Programming Using the CALL EXECUTE Routine
SAS users have a powerful DATA step routine called CALL EXECUTE that can be used for data-driven processing. The CALL

EXECUTE routine accepts a single argument where the value can be a character-string or, when needed, a character expression
containing SAS code elements to be executed after they are resolved. The CALL EXECUTE routine permits SAS statements and
macro code to be stacked together and then executed, Batkhan (2017).

When the CALL EXECUTE routine contains SAS statement code without macro variables or macro references, the code is
appended to the input stack for immediate execution after the DATA step ends. The argument can be specified with single or
double quotes, dynamically generating SAS code for execution. To leverage data-driven processes with CALL EXECUTE, a control
data set containing four distinct movie ratings (i.e., “G”, “PG”, “PG-13"” and “R”) represented as four observations is created.
The second DATA step then reads the contents of the control data set populating the unique value for the movie_rating
variable in the individual CALL EXECUTE statements. Note: The CATS function is used to strip blanks and concatenate multiple
strings together.

Code:

data movie_list ; /* Control Data Set */
length movie_rating $5. ;
input @1 movie_rating $5. ;
datalines ;

G

PG

Page 13

Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019

PG-13
R
>
run ;

data _null_ ; /* Populate Unique Value for the Movie_rating Variable */
set movie_list ;
call execute(CATS('ods Excel file="/folders/myfolders/',movie_rating,'_Rpt.xlsx"
style=styles.barrettsblue
options(embedded_titles="yes");')) ;
call execute(CAT('title ', movie_rating, ' Movies;')) ;
call execute(CATS('proc freq data=mydata.Movies(where=
(rating="',movie_rating,'"));"')) ;
call execute('tables Title;') ;
call execute('run;') ;
call execute('ods Excel close;') ;
run ;

The dynamically generated SAS code produced by the preceding CALL EXECUTE statements is displayed, below.

SAS Log (Generated SAS Code):

1 + ods Excel file="/folders/myfolders/G_Rpt.xlsx"
style=styles.barrettsblue
options(embedded_titles="yes");

2 + title G Movies;

3 + proc freq data=mydata.Movies(where=(rating="G"));

4 + tables Title;

5 + run;

6 + ods Excel file="/folders/myfolders/PG_Rpt.xlsx"
style=styles.barrettsblue
options(embedded_titles="yes");

7 + title PG Movies;

8 + proc freq data=mydata.Movies(where=(rating="PG"));

9 + tables Title;

10 + run;

11 + ods Excel file="/folders/myfolders/PG-13_Rpt.xlsx"
style=styles.barrettsblue
options(embedded_titles="yes");

12 + title PG-13 Movies;

13 + proc freq data=mydata.Movies(where=(rating="PG-13"));

14 + tables Title;

15 + run;

16 + ods Excel file="/folders/myfolders/R_Rpt.xlsx"
style=styles.barrettsblue
options(embedded_titles="yes");

17 + title R Movies;

18 + proc freq data=mydata.Movies(where=(rating="R"));
19 + tables Title;

20 + run;

Page 14

Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019

Results (Using CALL EXECUTE):

_4 A | 8 | ¢ | ©o | E |

G Movies

The FREQ Procedure

_4 A . B | ¢ | D | E \
PG Movies
The FREQ Procedure

_4| A | B | € | D | E |
1 PG-13 Movies

2

3 The FREQ Procedure

4

[z}l Christmas Vacation
[l Forrest Gump

[t} Jurassic Park

'} Michael

Lil National Lampoon's Vacation

L] Titanic

A [B [¢ [b [E]

1 R Movies
2]
=1 The FREQ Procedure

4

Brave Heart

Coming to America
Dracula

Dressed to Kill
Lethal Weapon
Scarface

Silence of the Lambs
The Terminator

== = > B & B

Data-driven Programming Using Custom-defined Formats from Data

The FORMAT procedure is a powerful tool for building user-defined informats and formats. These “custom” user-defined
informats and formats provides SAS with instructions on how to read data into SAS variables and write (or display) output.
Custom-defined informats and formats are defined as temporary or permanent, and are stored as entries in SAS catalogs. The
available operations performed by the FORMAT procedure include the ability to:

Page 15

Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019

e Convert character values to numeric values
e Convert numeric values to character values
. Convert character values to other character values.

To prevent hard-coding VALUE clauses, custom-defined formats can be created dynamically from a SAS data set. This not only
can be a more efficient approach than processing sort, merge, and join operations, Droogendyk (2010), it also allows data-
driven processes to be leveraged. Consequently, the FORMAT procedure is able to create informats and formats without
specifying an INVALUE, PICTURE, or VALUE clause by using a SAS control data set as input.

The control data set is specified with the CNTLIN option of PROC FORMAT. To start the process, the control data set being used
must have the following required variables:

e FMTNAME - specifies the name of a character variable whose value is the format or informat name.
e START - specifies the name of a character variable that contains the value to be converted.
e LABEL - specifies the name of a character variable that contains the converted value.

In the next example, the DATA step is specified with IF-THEN/ELSE logic to produce the control data set with the required
variables. The contents of the control data set are then displayed with the PRINT procedure. Finally, the control data set is
specified in the PROC FORMAT CNTLIN option.

Code:

data control ;
fmtname = "$Movie_Rating" ;
length label $23. ;
input start $5. ;
if start = "G" then label

"General Audience" ;

else if start = "PG" then label = "Parental Guidance" ;
else if start = "PG-13" then label = "Parental Guidance >= 13" ;
else if start = "R" then label = "Restricted" ;
else if start = "" then label = "ERROR - Movie Rating" ;
output ;
datalines ;

G

PG

PG-13

R

5

run ;

proc print data=control noobs ;
title ;
var fmtname start label ;

run ;

proc format library=work cntlin=control ;
quit ;

proc print data=mydata.movies noobs ;
format rating $movie_rating. ;
run ;

Page 16

Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019

SAS Log (Generated Control Data Set):

data control ;
fmtname = "$Movie_Rating" ;
length label $23. ;
input start $5. ;

if start = "G" then label = "General Audience" ;

else if start = "PG" then label = "Parental Guidance" ;

else if start = "PG-13" then label = "Parental Guidance >= 13" ;
else if start = "R" then label = "Restricted" ;

else if start = "" then label = "ERROR - Movie Rating" ;

output ;
datalines ;

NOTE: The data set WORK.CONTROL has 5 observations and 3 variables.

5
run ;

proc print data=control noobs ;
title ;
var fmtname start label ;

run ;

NOTE: There were 5 observations read from the data set WORK.CONTROL.

proc format library=work cntlin=control ;
NOTE: Format $MOVIE_RATING has been output.
quit ;

NOTE: There were 5 observations read from the data set WORK.CONTROL.
proc print data=mydata.movies noobs ;
format rating $movie_rating. ;

run ;

NOTE: There were 22 observations read from the data set MYDATA.MOVIES.

Results:

The results of printing the dynamically-generated control data set and performing the formatted output are displayed, below.

Page 17

Introduction to Data-driven Programming Techniques Using SAS®, continued

fmtname start label Title Length
FMovie_Rsting G General Audience Brave Heart 177
FMovie_Rsting PG Parentsl Guidance Casablanca 102
SMovie_Rsting | PG-13 | Parentsl Guidance >= 13 Christmas Vacstion o
$Movie_Rating | R Restricted Coming to America 118
$Movie_Rating ERROR - Mavie Rating Dreculs 130
Dressed to Kill 105
Forrest Gump 142
Ghost 127
Jaws 125
Jurassic Park 127
Lethal Weapon 110
Michasl 108
Mational Lampoon's Wacation a3
Paoltergeist 115
Rocky 120
Scarface 170
Silence of the Lambs 112
Star Viiars 124
The Hunt for Red October 135
The Terminator 102
The Wizard of Oz 101
Titanic 194

Category

Acion Adventure
Drama

Comedy
Comedy

Horror

Drama Mysteries
Drama

Drama Romance
Acfion Adventurs
Action

Action Cops & Robber
Drama

Comedy

Horror

Acion Adventure
Acfion Cops & Robber
Drama Suspense
Action Sci-Fi
Acfion Adventurs
Action Sei-Fi
Adventure

Drama Romance

Year
1895
1842
1080
1088
1093
1850
1894
1880
1875
1883
1887
1897
1083
1882
1878
1853
1891
1877
1858
1854
1838
1097

Studio

Paramount Pictures
MG/ UA

Warner Brothers
Paramount Pictures
Columbia TriStar
Filmways Pictures
Paramount Pictures
Paramount Pictures
Universal Studios
Universal Pictures
Warner Brothers
‘Warner Brothers
Warner Brothers
MG/ UA

MGM /UA
Universal Studios
Orion

Lucas Filr Ltd
Paramount Pictures
Live Entertainment
MG/ UA

Paramount Pictures

SGF 2019

Rating

Restricted

Parentsl Guidanes
Parental Guidance »= 13
Restricted

Restricted

Restricted

Parentsl Guidance »= 13
Parantal Guidancs == 13
Parental Guidance
Parental Guidance == 13
Restricted

Parental Guidanes == 13
Parental Guidance »= 13
Parental Guidancs
Parental Guidancs
Restricted

Restricted

Parentsl Guidance
Parental Guidance
Restricted

General Audience

Parental Guidance == 13

Data-driven Programming Using the SQL Procedure and the Macro Language
The SQL procedure and the macro language are two versatile tools found in the Base SAS software. Combining the two together

provides users with all the tools necessary to construct highly useful and effective data-driven programs. Lafler (2018) offers a
data-driven approach to creating multiple Excel files. Triggered by calling a macro to reduce coding requirements, the process
uses the Macro language, PROC SQL, the ODS Excel destination, and PROC FREQ to send output (results) to Excel. The ODS Excel
Destination became production in SAS 9.4 (M4). It serves as an interface between SAS and Excel. The ODS Excel features

include:
v/ SAS Results and Output can be sent directly to Excel
v/ Offers a Flexible way to create Excel files
v/ Supports Reports, Tables, Statistics and Graphs
v/ Formats Data into Excel Worksheet cells
v/ Permits Automation of Production-level Workbooks.

The ODS Excel destination easily sends output and results to Excel. The ODS Excel syntax simplifies the process of sending

output, reports, tables, statistics and graphs to Excel files. The ODS Excel options are able to:

Programmatically generate output and results
Control font used and font sizes

Add special features to row and column headers
Adjust row and column sizes

Format data values

Align data to the left, center or right

AN NENE N NEN

Add hyperlinks for drill-down capability.

Producing Multiple Excel Files

In the next example, a data-driven approach using PROC SQL SELECT code embedded inside a user-defined macro routine is
constructed to dynamically produce separate Excel spreadsheets containing the frequency results for each unique By-group

(e.g., Movie Rating). The SELECT query processes the Movies table, creates a single-value macro variable with the number of

unique movie ratings, and a value-list macro variable with a list of the unique movie ratings separated with a tilde

“uesn

. Using the

FREQ procedure and a user-defined macro, both macro variables along with their respective values, an iterative macro %DO

Page 18

Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019

statement, a %SCAN function, and WHERE= data set option dynamically sends the results to one or more Excel spreadsheets for
each By-group.

Macro and PROC SQL Code:

%smacro multExcelfiles ;
proc sql noprint ;
select count(distinct rating)
into :mrating_cnt /* number of unique movie ratings */
from WORK.Movies
order by rating ;
select distinct rating
into :mrating_lst separated by "~" /* 1list of movies */
from WORK.Movies
order by rating ;
quit ;
%do i=1 %to &mrating_cnt ;
ods Excel file="c:/%SCAN(&mrating_lst,&i,~)_Rpt.xlsx"
style=styles.barrettsblue
options(embedded_titles="yes") ;
title "%SCAN(&mrating_lst,&i,~)-Rated Movies" ;
proc freq data=WORK.Movies(where=(rating="%SCAN(&mrating_lst,&i,~)")) ;
tables Title ;
run ;
ods Excel close ;
%send ;
%put &mrating_1lst ;
%smend multExcelfiles ;

smultExcelfiles ;

The dynamically generated SAS code produced by the iterative %DO statement is displayed, below.

SAS Log (Generated SAS Code):

ods Excel file="/folders/myfolders/G_Rpt.xlsx"
style=styles.barrettsblue
options(embedded_titles="yes") ;
title "G-Rated Movies" ;
proc freq data=mydata.Movies(where=(rating="G")) ;
tables Title ;
run ;
ods Excel close ;
NOTE: There were 1 observations read from the data set MYDATA.MOVIES.
WHERE rating='G"';
NOTE: Writing EXCEL file: /folders/myfolders/G_Rpt.x1lsx

ods Excel file="/folders/myfolders/PG_Rpt.xlsx"
style=styles.barrettsblue
options(embedded_titles="yes") ;
title "PG-Rated Movies" ;
proc freq data=mydata.Movies(where=(rating="PG")) ;
tables Title ;
run ;

Page 19

Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019

ods Excel close ;

NOTE: There were 6 observations read from the data set MYDATA.MOVIES.
WHERE rating='PG';

NOTE: Writing EXCEL file: /folders/myfolders/PG_Rpt.x1lsx

ods Excel file="/folders/myfolders/PG-13_Rpt.xlsx"
style=styles.barrettsblue
options(embedded_titles="yes") ;
title "PG-13-Rated Movies" ;
proc freq data=mydata.Movies(where=(rating="PG-13")) ;
tables Title ;
run ;
ods Excel close ;
NOTE: There were 7 observations read from the data set MYDATA.MOVIES.
WHERE rating='PG-13';
NOTE: Writing EXCEL file: /folders/myfolders/PG-13_Rpt.xlsx

ods Excel file="/folders/myfolders/R_Rpt.xlsx"
style=styles.barrettsblue
options(embedded_titles="yes") ;
title "R-Rated Movies" ;
proc freq data=mydata.Movies(where=(rating="R")) ;
tables Title ;
run ;
ods Excel close ;
NOTE: There were 8 observations read from the data set MYDATA.MOVIES.
WHERE rating='R';
NOTE: Writing EXCEL file: /folders/myfolders/R_Rpt.xlsx

G~PG~PG-13~R

Results (4 Excel spreadsheets are produced):

A B C D E
1 G-Rated Movies
2
3 The FREQ Procedure
4
5
(3]

A B C D [E
PG-Rated Movies

1
2
2 The FREQ Procedure
4

Casablanca
Jaws

Poltergeist
Rocky

Page 20

Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019

A B C D E
PG-13-Rated Movies

The FREQ Procedure

FNIRINTEN

5
[ifl] Christmas Vacation
7
8

it J Jurassic Park

10 UCLETE

(4§ National Lampoen's Vacation
L4 Titanic

A B C D E
R-Rated Movies

The FREQ Procedure

TR

Coming to America
Dracula
M Dressed to Kill
10 M GEIRYEET ST
(h} Scarface
(#4 Silence of the Lambs
(£} The Terminator

5
(i} Brave Heart
7
8

00 = O N W N =

Conclusion

Unlike procedural programming languages where a program’s flow of execution is described using a detailed step-by-step
logical approach to solving a problem or with object-oriented programming where an object is told how to behave, data-driven
programming involves writing code that has its decisions and processes (the flow of execution) controlled (or dictated) by the
data (or data structures). Data-driven programming offers SAS users with many virtues over rival programming paradigms
including enhanced flexibility and easier to maintain due to a reduction, or elimination, of “hard-coded” values. Several data-
driven programming techniques were presented including using the SAS System’s read-only Dictionary tables and SASHELP
views to provide valuable information about SAS libraries, data sets, columns and attributes, catalogs, indexes, macros, system
options, and views; using the CALL EXECUTE routine to process (or execute) code generated by a DATA step; constructing a
user-defined format directly from data; and using the SQL procedure and the macro language to construct an automated
looping process.

References

Abolafia, Jeff and Frank Dilorio (2008), “Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language,”
Proceedings of the 2008 SAS Global Forum (SGF) Conference.

Batkhan, Leonid, 2017, “CALL EXECUTE made easy for SAS data-driven programming”, a SAS Blog Post.

Batkhan, Leonid, 2016, “Modifying variable attributes in all datasets of a SAS library”, a SAS Blog Post,
http://blogs.sas.com/content/sgf/2016/11/25/modifying-variable-attributes-in-all-datasets-of-a-sas-library/.

Carpenter, Arthur L. (2017), “Building Intelligent Macros: Using Metadata Functions with the SAS® Macro Language,” 2017 SAS
Global Forum (SGF) Conference, California Occidental Consultants, Anchorage, AK, USA.

Davis, Michael (2001), “You Could Look It Up: An Introduction to SASHELP Dictionary Views,” Proceedings of the 2001 SAS Users
Group International (SUGI) Conference, Bassett Consulting Services, North Haven, CT, USA.

Droogendyk, Harry (2010). “SAS® Formats: Effective and Efficient,” Proceedings of the 2010 SouthEast SAS Users Group (SESUG)
Conference.

Page 21

http://www2.sas.com/proceedings/forum2008/128-2008.pdf
https://blogs.sas.com/content/sgf/2017/08/02/call-execute-for-sas-data-driven-programming/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+SasGlobalForumBlog+%2528SAS+Users%2529
https://blogs.sas.com/content/sgf/2016/11/25/modifying-variable-attributes-in-all-datasets-of-a-sas-library/#comment-380722
http://support.sas.com/resources/papers/proceedings17/0835-2017.pdf
http://www2.sas.com/proceedings/sugi26/p017-26.pdf
https://analytics.ncsu.edu/sesug/2010/FF04_Droogendyk.pdf

Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019

Graebner, Robert W. (2001). “Developing Data-Driven SAS® Programs Using PROC CONTENTS,” Proceedings of the 2001
MidWest SAS Users Group (MWSUG) Conference.

Hamilton, Jack (1998), “Some Utility Applications of the Dictionary Tables in PROC SQL,” Proceedings of the 1998 Western Users
of SAS Software (WUSS) Conference, 85-90.

Lafler, Kirk Paul (2018), “Introduction to Data-driven Programming Using SAS®,” Proceedings of the 2018 South Central SAS
Users Group (SCSUG) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2016), “Valuable Things You Can Do with SAS DICTIONARY Tables and SASHELP Views,” Wisconsin Illinois SAS
Users (WIILSU) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2019). PROC SQL: Beyond the Basics Using SAS, Third Edition, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2012), “Exploring DICTIONARY Tables and SASHELP Views,” South Central SAS Users Group (SCSUG) Conference
and Kansas City SAS Users Group (KCSUG) Meeting, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009), “DATA Step versus PROC SQL Programming Technigues,” 2009 South East SAS Users Group (SESUG)
Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” 2009 Western Users of SAS Software (WUSS)
Conference and 2009 Pharmaceutical SAS Users Group (PharmaSUG) Conference, Software Intelligence Corporation, Spring
Valley, CA, USA.

Lafler, Kirk Paul (2008), “Undocumented and Hard-to-find PROC SQL Features,” Greater Atlanta SAS Users Group (GASUG)
Meeting (June 11th, 2008); Pharmaceutical SAS Users Group (PharmaSUG) Conference (June 1% - 4”', 2008); 2008 Michigan
SAS Users Group (MSUG) Meeting (May 29”‘, 2008); 2008 Vancouver SAS Users Group Meeting (April 23“’, 2008); and 2008
PhilaSUG User Group Meeting (March 13”‘, 2008); Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2006), “Exploring Dictionary Tables with PROC SQL,” SAS Press Webinar Series —June 27, 2006.

Lafler, Kirk Paul (2005), “Exploring Dictionary Tables and SASHELP Views,” Proceedings of the Thirteenth Annual Western Users
of SAS Software Conference.

Matise, Joe (2016). “Writing Code With Your Data: Basics of Data-Driven Programming Techniques,” Proceedings of the 2016
South East SAS Users Group (SESUG) Conference.

Raithel, Michael A. (2016). “PROC DATASETS; The Swiss Army Knife of SAS® Procedures,” Proceedings of the 2016 SAS Global
Forum (SGF) Conference.

Varney, Brian (2000). “How to Think Through the SAS® DATA Step,” Proceedings of the 2000 SAS Users Group International
(SUGI) Conference.

Villacorte, Renato G. (2012). “Go Beyond The Wizard With Data-Driven Programming,” Proceedings of the 2012 SAS Global
Forum (SGF) Conference.

Wang, Hui (2015). “Creating Data-Driven SAS® Code with CALL EXECUTE,” Proceedings of the 2015 PharmaSUG Conference.

Whitlock, lan (2006). “How to Think Through the SAS® DATA Step,” Proceedings of the 2006 SAS Users Group International
(SUGI) Conference.

Whitlock, lan (1998). “CALL EXECUTE: How and Why,” Proceedings of the 1998 SAS Users Group International (SUGI)
Conference.

Acknowledgments

The author wishes to thank MaryAnne DePesquo, SAS Global Forum (SGF) 2019 Conference Chair, and the SGF 2019 Leadership
for accepting my abstract and paper. The author also wishes to thank the SAS Global Forum (SGF) Executive Board and SAS
Institute for organizing and supporting a great conference!

Trademark Citations

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective
companies.

Page 22

http://www.lexjansen.com/mwsug/2001/ApplicationDevelopment/APP-009-developing.pdf
http://www.lexjansen.com/mwsug/2001/ApplicationDevelopment/APP-009-developing.pdf
http://www.lexjansen.com/mwsug/2001/ApplicationDevelopment/APP-009-developing.pdf
https://www.lexjansen.com/wuss/1998/WUSS98017.pdf
https://www.lexjansen.com/scsug/2018/Introduction%20to%20Data-driven%20Programming%20Using%20SAS%20(SCSUG%202018).pdf
http://www.wiilsu.org/sdajgfuirHIUTlsdfnloa312/SUSJun2016/Proceedings/Papers/Lafler%20-%20Valuable%20Things%20You%20Can%20Do%20with%20SAS%20DICTIONARY%20Tables%20and%20SASHELP%20Views.pdf
https://www.sas.com/store/prodBK_71650_en.html
https://www.lexjansen.com/scsug/2012/Exploring-DICTIONARY-Tables-and-SASHELP-Views-SCSUG-2012.pdf
http://analytics.ncsu.edu/sesug/2009/FF003.Lafler.pdf
https://www.lexjansen.com/wuss/2009/dmw/DMW-Lafler.pdf
https://www.lexjansen.com/pharmasug/2008/tt/TT02.pdf
https://support.sas.com/en/search.html?q=%22sas%20press%20webinar%20series%22
https://www.lexjansen.com/wuss/2005/data_warehousing_and_database_management/dwdb_exploring_dictionary.pdf
http://analytics.ncsu.edu/sesug/2016/BB-229_Final_PDF.pdf
http://support.sas.com/resources/papers/proceedings16/3440-2016.pdf
http://support.sas.com/resources/papers/proceedings16/3440-2016.pdf
http://support.sas.com/resources/papers/proceedings16/3440-2016.pdf
http://www2.sas.com/proceedings/sugi25/25/cc/25p077.pdf
http://support.sas.com/resources/papers/proceedings12/148-2012.pdf
http://support.sas.com/resources/papers/proceedings12/148-2012.pdf
http://support.sas.com/resources/papers/proceedings12/148-2012.pdf
https://www.pharmasug.org/proceedings/2015/BB/PharmaSUG-2015-BB15.pdf
http://www2.sas.com/proceedings/sugi31/246-31.pdf
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER70.PDF

Introduction to Data-driven Programming Techniques Using SAS®, continued SGF 2019

About The Author

Kirk Paul Lafler is entrepreneur and founder at Software Intelligence Corporation, and has worked with SAS software since
1979. As a SAS consultant, application developer, programmer, data analyst, mentor, infrastructure specialist, educator and
author at Software Intelligence Corporation, and an advisor and SAS programming adjunct professor at the University of
California San Diego Extension, Kirk has taught SAS courses, seminars, workshops, and webinars to thousands of users around
the world. Kirk has also authored or co-authored several books including PROC SQL: Beyond the Basics Using SAS, Third Edition
(SAS Press. 2019) and Google® Search Complete (Odyssey Press. 2014); hundreds of papers and articles on a variety of SAS
topics; selected as an Invited speaker, educator, keynote and section leader at SAS user group conferences and meetings
worldwide; and is the recipient of 25 "Best" contributed paper, hands-on workshop (HOW), and poster awards.

Comments and suggestions can be sent to:

Kirk Paul Lafler
SAS® Consultant, Application Developer, Programmer, Data Analyst, Educator and Author
Software Intelligence Corporation
E-mail: KirkLafler@cs.com
LinkedIn: https://www.linkedin.com/in/KirkPaulLafler/
LinkedIn: https://www.linkedin.com/in/Order-of-Magnitude-Analytics/
Twitter: @sasNerd

Page 23

mailto:KirkLafler@cs.com
https://www.linkedin.com/in/KirkPaulLafler/
https://www.linkedin.com/in/Order-of-Magnitude-Analytics/

