
1

Paper 3179-2019

Can’t Find The Right CAS Action? Create Your Own Action Using CASL

Brian Kinnebrew, SAS Institute Inc.

ABSTRACT

SAS® Cloud Analytic Services language (CASL) is a language specification in SAS® Cloud

Analytic Services (CAS) that provides a programming environment to manage the execution

of CAS actions. The results of those CAS actions are processed with functions and

expressions to prepare the parameters for subsequent CAS actions. CASL and the CAS

actions provide the most control, flexibility, and options when interacting with CAS. In

addition to the many CAS actions supplied by SAS®, as of SAS® Viya® 3.4, you can create

your own CAS actions using CASL. You specify the interface to your new CAS action, provide

a name and parameters, and supply the CASL code that implements your new CAS

action. Once created, your CAS action is available for use by any user that has

permission. Your CAS actions look and feel just like CAS actions provided by SAS. Jump on

board and find out how to create your own CAS actions that are tailor-made for your needs!

INTRODUCTION

CASL is a language specification that can be used by the SAS client and other clients to

interact with and provide easy access to Cloud Analytic Services (CAS). CASL is a

statement-based scripting language with many uses and strengths including:

• Specifying CAS actions to submit requests to the CAS server to perform work and

return results.

• Evaluating and manipulating the results returned by a CAS action.

• Creating user-defined CAS actions and functions and creating the arguments to a

CAS action.

• Developing analytic pipelines.

CASL uses the CAS procedure, which enables you to program and execute CAS actions from

the SAS client and use the results to prepare the parameters for a subsequent CAS action.

A single PROC CAS statement can contain several CASL programs. With the CAS procedure

you can run any CAS action supported by the server, load new CAS action sets into the

server, use multiple sessions to perform asynchronous execution and operate on

parameters and results as variables using the function expression parser.

CASL, and the CAS actions, provide the most control, flexibility, and options when

interacting with CAS. Combining DATA Step, CAS-enabled PROCS and CASL provides

optimal flexibility and control. CASL works well with traditional SAS interfaces and the Base

SAS language.

Each CAS action belongs to a CAS action set. Each CAS action set is further categorized by

product including Visual Analytics, Visual Statistics, and Visual Data Mining and Machine

Learning. Please refer to the documentation for a list of each action set by product. In

addition to the many CAS actions supplied by SAS, as of SAS® Viya® 3.4, you can create

your own CAS actions using CASL. Developing and using your own CAS actions allows you

to further customize your code and increase your ability to work with CAS in a manner that

best suits you and your organization.

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=allprodsactions&docsetTarget=actionSetsByProduct.htm&locale=en

2

ABOUT USER-DEFINED CAS ACTION SETS

Developing a CASL program that is stored on the CAS server for processing is defined as a

user-defined CAS action set. Since the CAS action set is stored on the CAS server, the

CASL statements can be written once and executed by many users. This can help reduce

the exchange of programs between users that execute common code. Note: You cannot

add, remove, or modify a single user-defined CAS action. The entire user-defined CAS

action set must be redefined.

As a best practice, prior to creating any user-defined CAS actions, test your routines and

functions first to ensure they execute successfully in CAS when submitted from the

programming client.

DEVELOPING USER-DEFINED CAS ACTIONS

To create user-defined CAS actions, use the defineActionSet CAS action in the builtins CAS

action set and add your code. You also need to modify your code to use CASL functions

such as SEND_RESPONSE, so the resulting objects on the server are returned to the client.

COMBINE SAS-PROVIDED CAS ACTIONS

One technique for creating your own CAS actions is to combine one or more SAS provided

CAS actions into a single user-defined CAS action. This method allows you to execute one

CAS procedure and call one CAS action which subsequently calls all the SAS provided CAS

actions contained within. This is extremely beneficial if you repeatedly run many of the

same CAS actions against a CAS table. Suppose your organization has data on which it

needs to regularly generate summary statistics, a correlation analysis, and a Random Forest

model. Lastly, the model generated is used to provide scoring and probability information.

This entire routine can be rolled up into a single user-defined CAS action. An example of

this is illustrated below:

 proc cas;

 builtins.defineActionSet / name="udActionSet"

 actions={

{

 name="statmodel"

 desc="

1. Generate multi-dimensional descriptive statistics of numeric

variables

2. Generate Pearson Product-Moment correlation coefficients

 3. Generate HTML output for summary and correlation results

4. Run a Random Forest model with training and scoring - generate

OOB errors and variable importance analytics;

generate prediction errors and scoring information analytics

"

 parms={

{name="caslib" type="string" required=TRUE}

 {name="intable" type="string" required=TRUE}

 {name="grpvar1" type="string" required=TRUE}

 {name="grpvar2" type="string" required=TRUE}

 {name="avar1" type="string" required=TRUE}

 {name="avar2" type="string" required=TRUE}

 {name="avar3" type="string" required=TRUE}

 {name="avar4" type="string" required=TRUE}

 {name="outtable" type="string" required=TRUE}

 }

 definition="

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-builtins-defineactionset.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-builtins-TblOfActions.htm&locale=en

3

 simple.summary result=a /

table={caslib=caslib, name=intable, groupby={name={name=grpvar1},

name={name=grpvar2}}},

 inputs={{name=avar1}},

 casout={caslib=caslib, name=outtable, replace=true};

 send_response(a);

 simple.correlation result=b /

 inputs={avar1, avar2}

 pairWithInput={avar3, avar4}

 table={caslib=caslib name=intable};

 send_response(b);

 table.fetch result=c /

table={caslib=caslib, name=outtable,

vars={{name=grpvar1}, {name=grpvar2}, {name='_Min_'},

{name='_Max_'}, {name='_NObs_'},

{name='_Mean_', format='6.0'}, {name='_Std_', format='6.0'}}},

index=false;

send_response(c);

decisionTree.forestTrain result=d / table={name=intable,

caslib=caslib},

target='BAD',

inputs={{name='LOAN'}, {name='MORTDUE'}, {name='VALUE'},

{name='REASON'}, {name='JOB'}, {name='DELINQ'}, {name='NINQ'}},

nominals={{name='LOAN'}, {name='MORTDUE'}, {name='VALUE'},

{name='REASON'}, {name='JOB'}, {name='DELINQ'}, {name='NINQ'}},

nBins=20, maxLevel=21, maxBranch=2, leafSize=5, crit='VARIANCE',

missing='USEINSEARCH', vote='PROB', minUseInSearch=1,

binOrder=true, varImp=true,

casOut={name='mymodel', caslib=caslib, replace=true},

mergeBin=true, encodeName=true, nTree=100, seed=17,

bootstrap=0.6, oob=true;

send_response(d);

decisionTree.forestScore result=e / table={name=intable,

caslib=caslib},

modelTable={name='mymodel', caslib=caslib}, copyVars={'id'},

vote='PROB',

treeError=true, encodeName=true;

send_response(e);

"

 }

 };

 quit;

In this example, a single user-defined CAS action named statmodel has been created by

using the SAS-provided CAS actions summary, correlation, fetch, forestTrain, and

forestScore. Each of these CAS actions return the information outlined in the description

section of the PROC CAS statement above. The new user-defined CAS action is also part of

the new user-defined CAS action set udActionSet. When the CASL code is executed, the

log will display a note that the new CAS action set has been added.

 NOTE: Added action set 'udActionSet'.
 {actionset=udActionSet}

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casanpg&docsetTarget=cas-simple-summary.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casanpg&docsetTarget=cas-simple-correlation.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-table-fetch.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casanpg&docsetTarget=cas-decisiontree-foresttrain.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casanpg&docsetTarget=cas-decisiontree-forestscore.htm&locale=en

4

Once the new CAS action set and CAS action have been created and added, call them via a

PROC CAS statement. Specify the user-defined CAS action set, user-defined CAS action(s),

and parameters for each:

 proc cas;

session mysess;

udActionSet.statmodel /

 caslib="public"

 intable="hmeq"

 grpvar1="reason"

 grpvar2="job"

 avar1="mortdue"

 avar2="derog"

 avar3="delinq"

 avar4="bad"

 outtable="hmeq_out";

 quit;

The parameters that are passed when calling the statmodel CAS action are defined in the

parms section above. Calling the statmodel CAS action produces the output shown in the

following tables:

Table 1. Multi-Dimensional Descriptive Statistics Generated By The SUMMARY Action

5

Table 2. Summary Statistics and Correlation Coefficients Generated By The CORRELATION Action

Table 3. Decision Tree Specifications Generated By The FORESTTRAIN Action

6

Table 4. Partial Result: Prediction Error Results Generated By The FORESTTRAIN Action

Table 5. Variable Importance Results Generated By The FORESTTRAIN Action

Table 6. Scoring Information Results Generated By The FORESTSCORE Action

APPLY YOUR OWN CODE

Another method for creating user-defined CAS actions is to apply your own code, functions,

and statements instead of SAS-provided CAS actions. This gives you the flexibility to truly

customize your code. Suppose you want to calculate the speed of sound in meters per

second given a certain air temperature.

7

 proc cas;

 builtins.defineActionSet / name="speed"

 actions={

 {

 name="tc"

 desc="Convert temperature in Fahrenheit (tf) to Celsius (tc)"

 parms={

 {name="tf" type="int64" required=TRUE}

 }

 definition="

 tc = (tf - 32) * (5/9);

 send_response({temp=tc});

 "

 }

 {

 name="sound"

 desc="Calculate Speed of Sound in Meters per Second at a Certain

 Air Temperature in Degrees Celsius

"

 parms={

 {name="tc" type="double" required=TRUE}

 }

 definition="

 s = 331 + (.6 * tc);

 send_response({spd=s});

 "

 }

 };

 quit;

In this example, two user-defined CAS actions named tc and sound have been created by

incorporating user-defined code. Similar to the first example, these CAS actions return the

information outlined in the description sections of the PROC CAS statement above. The new

user-defined CAS actions are now part of the new user-defined CAS action set speed.

When the CASL code is executed, the log will display a note that the new CAS action set has

been added.

 NOTE: Added action set 'speed'.
 {actionset=speed}

Once the new CAS action set and CAS actions have been created and added, they can be

called individually or all at once via PROC CAS. Specify the user-defined CAS action set,

user-defined CAS action(s), and parameters for each:

 proc cas;

 session mysess;

 do n over {0 32 60 68 80 100};

 speed.tc result=a / tf = n;

 temp=a.temp;

print "At " put(n, best2.) " degrees Fahrenheit the

temperature in Celsius is " compress(put(temp, best3.));

 end;

8

print " ";

do n over {-18 0 16 20 27 38};

 speed.sound result=z / tc = n;

 spd=z.spd;

print "At " put(n, best2.) " degrees Celsius the speed of

sound in meters per second is " compress(put(spd, best3.));

end;

 quit;

This example uses a range of values for the temperature conversion. Subsequently, the

range of converted temperatures are used as input for the speed of sound calculation. The

output from this example is written to the SAS log and is shown below:

At 0 degrees Fahrenheit the temperature in Celsius is -18
At 32 degrees Fahrenheit the temperature in Celsius is 0
At 60 degrees Fahrenheit the temperature in Celsius is 16
At 68 degrees Fahrenheit the temperature in Celsius is 20
At 80 degrees Fahrenheit the temperature in Celsius is 27
At 100 degrees Fahrenheit the temperature in Celsius is 38

At -18 degrees Celsius the speed of sound in meters per second is 320
At 0 degrees Celsius the speed of sound in meters per second is 331
At 16 degrees Celsius the speed of sound in meters per second is 341
At 20 degrees Celsius the speed of sound in meters per second is 343
At 27 degrees Celsius the speed of sound in meters per second is 347
At 38 degrees Celsius the speed of sound in meters per second is 354

Output 1. Output from PROC CAS calling user-defined CAS actions tc and sound

SAVING AND LOADING USER-DEFINED CAS ACTIONS

User-defined CAS action sets only exist in the current CAS session. If the current CAS

session is terminated, the program used to create the user-defined CAS action set must be

executed again unless an in-memory table is created from the CAS action set and the in-

memory table is subsequently persisted to a SASHDAT file. Note: SASHDAT files can only

be saved to path-based caslibs such as Path, DNFS, and HDFS. To create an in-memory

table and persist it to a SASHDAT file, use the actionSetToTable and save CAS actions.

 proc cas;

 builtins.actionSetToTable /

 actionSet="speed"

 casOut={caslib="casuser" name="speed" replace=True};

 run;

 table.save /

 caslib="casuser"

 table="speed"

 name="speed.sashdat"

 replace=True;

 quit;

The actionSetToTable CAS action creates an in-memory table from the user-defined CAS

action set speed and places it in the Casuser caslib. The save CAS action subsequently

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-builtins-actionsettotable.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-table-save.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-builtins-actionsettotable.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-table-save.htm&locale=en

9

saves this in-memory table to the caslib’s data source as a SASHDAT file. In this case,

speed.sashdat has been saved to the Casuser caslib. After executing this code, the SAS log

will display a note that the new SASHDAT file has been saved.

NOTE: Cloud Analytic Services saved the file speed.sashdat in
caslib CASUSER(userid).

 {caslib=CASUSER(userid),name=speed.sashdat}

Now that the CAS action set is saved, it can be used whenever necessary. To use the user-

defined CAS action set, it needs to be restored from the saved SASHDAT file. This is done

with the actionSetFromTable CAS action.

 proc cas;

 builtins.actionSetFromTable /

 table="speed.sashdat"

 name="speed";

 quit;

After executing this code, the SAS log will display a note that the CAS action set has been

restored and added. You are now free to use the CAS action set and the CAS actions within

it.

 NOTE: Added action set 'speed'.
 {actionset=speed}

CONCLUSION

CASL provides the most flexibility and functionality when interacting with Cloud Analytic

Services (CAS). This paper has demonstrated one of the many versatile features in CASL,

the ability to create your own CAS actions. The many SAS provided CAS actions deliver an

array of capabilities for programming in CAS. CASL takes the next step by offering the

means to customize your code by creating custom CAS actions and using them in different

clients and with different languages such as Python, R, Lua, Java, and REST APIs. Both SAS

provided and user-defined CAS actions can be used alone or in conjunction with other CAS

enabled PROCS and Base SAS code to maximize the CAS programming experience.

RECOMMENDED READING

• SAS Global Forum 2019 Session: 3177 - Got Results? Let CASL Help You Turn them into Superior
Reports

• SAS Global Forum 2019 Session: 3040 – What is CASL?

• Getting Started with CASL Programming 3.4

• SAS® Cloud Analytic Services 3.4: CASL Reference

• SAS® Cloud Analytic Services 3.4: CASL Programmer’s Guide

• Writing User-Defined Actions

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-builtins-actionsetfromtable.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casl&docsetTarget=titlepage.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=proccas&docsetTarget=titlepage.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caslpg&docsetTarget=titlepage.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caslpg&docsetTarget=n0q8zs3edn7j9mn16dg5sh4t6rjz.htm&locale=en

10

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Brian Kinnebrew

SAS Institute Inc.

469.801.7461

brian.kinnebrew@sas.com

www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

mailto:brian.kinnebrew@sas.com
http://www.sas.com/

