Paper 3179-2019

Can’t Find The Right CAS Action? Create Your Own Action Using CASL
Brian Kinnebrew, SAS Institute Inc.

ABSTRACT

SAS® Cloud Analytic Services language (CASL) is a language specification in SAS® Cloud
Analytic Services (CAS) that provides a programming environment to manage the execution
of CAS actions. The results of those CAS actions are processed with functions and
expressions to prepare the parameters for subsequent CAS actions. CASL and the CAS
actions provide the most control, flexibility, and options when interacting with CAS. In
addition to the many CAS actions supplied by SAS®, as of SAS® Viya® 3.4, you can create
your own CAS actions using CASL. You specify the interface to your new CAS action, provide
a name and parameters, and supply the CASL code that implements your new CAS

action. Once created, your CAS action is available for use by any user that has

permission. Your CAS actions look and feel just like CAS actions provided by SAS. Jump on
board and find out how to create your own CAS actions that are tailor-made for your needs!

INTRODUCTION

CASL is a language specification that can be used by the SAS client and other clients to
interact with and provide easy access to Cloud Analytic Services (CAS). CASL is a
statement-based scripting language with many uses and strengths including:

e Specifying CAS actions to submit requests to the CAS server to perform work and
return results.

e Evaluating and manipulating the results returned by a CAS action.

e Creating user-defined CAS actions and functions and creating the arguments to a
CAS action.

e Developing analytic pipelines.

CASL uses the CAS procedure, which enables you to program and execute CAS actions from
the SAS client and use the results to prepare the parameters for a subsequent CAS action.
A single PROC CAS statement can contain several CASL programs. With the CAS procedure
you can run any CAS action supported by the server, load new CAS action sets into the
server, use multiple sessions to perform asynchronous execution and operate on
parameters and results as variables using the function expression parser.

CASL, and the CAS actions, provide the most control, flexibility, and options when
interacting with CAS. Combining DATA Step, CAS-enabled PROCS and CASL provides
optimal flexibility and control. CASL works well with traditional SAS interfaces and the Base
SAS language.

Each CAS action belongs to a CAS action set. Each CAS action set is further categorized by
product including Visual Analytics, Visual Statistics, and Visual Data Mining and Machine
Learning. Please refer to the documentation for a list of each action set by product. In
addition to the many CAS actions supplied by SAS, as of SAS® Viya® 3.4, you can create
your own CAS actions using CASL. Developing and using your own CAS actions allows you
to further customize your code and increase your ability to work with CAS in a manner that
best suits you and your organization.

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=allprodsactions&docsetTarget=actionSetsByProduct.htm&locale=en

ABOUT USER-DEFINED CAS ACTION SETS

Developing a CASL program that is stored on the CAS server for processing is defined as a
user-defined CAS action set. Since the CAS action set is stored on the CAS server, the
CASL statements can be written once and executed by many users. This can help reduce
the exchange of programs between users that execute common code. Note: You cannot
add, remove, or modify a single user-defined CAS action. The entire user-defined CAS
action set must be redefined.

As a best practice, prior to creating any user-defined CAS actions, test your routines and
functions first to ensure they execute successfully in CAS when submitted from the
programming client.

DEVELOPING USER-DEFINED CAS ACTIONS

To create user-defined CAS actions, use the defineActionSet CAS action in the builtins CAS
action set and add your code. You also need to modify your code to use CASL functions
such as SEND_RESPONSE, so the resulting objects on the server are returned to the client.

COMBINE SAS-PROVIDED CAS ACTIONS

One technique for creating your own CAS actions is to combine one or more SAS provided
CAS actions into a single user-defined CAS action. This method allows you to execute one
CAS procedure and call one CAS action which subsequently calls all the SAS provided CAS
actions contained within. This is extremely beneficial if you repeatedly run many of the
same CAS actions against a CAS table. Suppose your organization has data on which it
needs to regularly generate summary statistics, a correlation analysis, and a Random Forest
model. Lastly, the model generated is used to provide scoring and probability information.
This entire routine can be rolled up into a single user-defined CAS action. An example of
this is illustrated below:

proc cas;
builtins.defineActionSet / name="udActionSet"
actions={

{

name="statmodel"

desc="
1. Generate multi-dimensional descriptive statistics of numeric
variables
2. Generate Pearson Product-Moment correlation coefficients
3. Generate HTML output for summary and correlation results
4. Run a Random Forest model with training and scoring - generate
OOB errors and variable importance analytics;
generate prediction errors and scoring information analytics

parms={
{name="caslib" type="string" required=TRUE}
{name="intable" type="string" required=TRUE}
{name="grpvarl" type="string" required=TRUE}
{name="grpvar2" type="string" required=TRUE}
{name="avarl" type="string" required=TRUE}
{name="avar2" type="string" required=TRUE}
{name="avar3" type="string" required=TRUE}
{name="avar4" type="string" required=TRUE}
{name="outtable" type="string" required=TRUE}

}

definition="

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-builtins-defineactionset.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-builtins-TblOfActions.htm&locale=en

simple.summary result=a /

table={caslib=caslib, name=intable, groupby={name={name=grpvarl},
name={name=grpvar2}}},

inputs={{name=avarl}},

casout={caslib=caslib, name=outtable, replace=true};

send response (a) ;

simple.correlation result=b /
inputs={avarl, avar2}
pairWithInput={avar3, avard}
table={caslib=caslib name=intable};
send response (b) ;

table.fetch result=c /
table={caslib=caslib, name=outtable,

vars={{name=grpvarl}, {name=grpvar2}, {name=' Min '},
{name=' Max '}, {name=' NObs '},
{name=' Mean ', format='6.0"'}, {name=' Std ', format='6.0"'}}},

index=false;
send response (c) ;

decisionTree.forestTrain result=d / table={name=intable,
caslib=caslib},

target="'BAD',

inputs={{name='LOAN'}, {name='MORTDUE'}, {name='VALUE'},
{name="REASON'}, {name='JOB'}, {name='DELINQ'}, {name='NINQ'}},
nominals={{name='LOAN'}, {name='MORTDUE'}, {name='VALUE'},
{name="REASON'}, {name='JOB'}, {name='DELINQ'}, {name='NINQ'}},
nBins=20, maxLevel=21, maxBranch=2, leafSize=5, crit='VARIANCE',
missing='USEINSEARCH', vote='PROB', minUseInSearch=1,
binOrder=true, varImp=true,

casOut={name="'mymodel', caslib=caslib, replace=true},
mergeBin=true, encodeName=true, nTree=100, seed=17,
bootstrap=0.6, oob=true;

send response (d) ;

decisionTree.forestScore result=e / table={name=intable,
caslib=caslib},

modelTable={name="'mymodel', caslib=caslib}, copyVars={'id'},
vote="'PROB',

treeError=true, encodeName=true;

send response (e) ;

}
}i
quit;

In this example, a single user-defined CAS action named statmodel has been created by
using the SAS-provided CAS actions summary, correlation, fetch, forestTrain, and
forestScore. Each of these CAS actions return the information outlined in the description
section of the PROC CAS statement above. The new user-defined CAS action is also part of
the new user-defined CAS action set udActionSet. When the CASL code is executed, the
log will display a note that the new CAS action set has been added.

NOTE: Added action set 'udActionSet'.
{actionset=udActionSet}

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casanpg&docsetTarget=cas-simple-summary.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casanpg&docsetTarget=cas-simple-correlation.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-table-fetch.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casanpg&docsetTarget=cas-decisiontree-foresttrain.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casanpg&docsetTarget=cas-decisiontree-forestscore.htm&locale=en

Once the new CAS action set and CAS action have been created and added, call them via a
PROC CAS statement. Specify the user-defined CAS action set, user-defined CAS action(s),
and parameters for each:

proc cas;

session mysess;

udActionSet.statmodel /
caslib="public"
intable="hmeqg"
grpvarl="reason"
grpvar2="job"
avarl="mortdue"
avar2="derog"
avar3="deling"
avar4d="bad"
outtable="hmeqg out";

quit;
The parameters that are passed when calling the statmodel CAS action are defined in the

parms section above. Calling the statmodel CAS action produces the output shown in the
following tables:

Selected Rows from Table HMEG_OUT

REASON | JOB _Min_ | _Max_ | _NObs_ | _Mean_ | _5td_
5TEZ | E8823 24 | 40354 | 28024

Mgr 16878 | 126038 21 | 93207 | 35340

Other 11300 | 258431 55 | T340 | 42882

DebiCon | Seif 21400 | 198702 71 | 107741 | 47863
Homelmp | Sales | 27055 | 120310 1| 7775 | 27002
Homelmp | Seif BODD | 242111 104 | 95023 | TB124
DiebtCon 16300 | 170638 112 | @820 | 27357
DebtCon | Office 7051 | 173875 505 | B0132 | 28420
ProfExe | 21000 | 152004 24 | TTBSD | 43773

Homelmp | ProfExe | 3372 | 371003 402 | OBEDS | 50453
DebtCon | ProfSxe | 67093 | 288412 832 | 94711 | 52852
DebiCon | Sales 2810 | 170725 88 | 82003 | 44035
Homelmp | Office 5115 | 155478 250 | 53544 | 35518
DebiCon | Mar 4742 | 241921 561 | 853333 43535
Homelmp 13000 | 108308 a5 | 82224 | 383020
Homelmp | Cther 2083 | 207TEET 564 | 535S | 28240
Office 15832 | 105203 27 | 44021 | 34870

Self 53000 | 148000 5| 24307 | 39318

DebtCon | Other 4447 | 1@7852 1478 | &1012 | 32868
Homelmp | Mar 5818 | 300550 157 | 78220 | 48192

Table 1. Multi-Dimensional Descriptive Statistics Generated By The SUMMARY Action

Summary 5tatistics in Correlation Analysis for HMEGQ

Analysis Variable N Mean Sum | 5td Dev Mimn Max
DELING 5380 | 04404 2418 1.1273 0 | 15.0000
EAD 5960 | 01995 1138 0.3ea7 0 10000
MORTDUE 5442 | T3ITE1 | 401408367 44458 | 2083.00 | 309530
DEROG G252 | 02548 1337 0.8460 0 | 10.0000

Pearson Correlation Coefficients for HMEGQ

MORTDUE DEROG

DELING -0.00104 o211
041 5175

BAD -0.04822 0.2781
S34z2 5z2bz

Table 2. Summary Statistics and Correlation Coefficients Generated By The CORRELATION Action

Forest for HMEQ

Number of Trees 100.000000
Number of Selected Variables (M) 3.000000
Random Number Seed 17000000
Bootstrap Percentage (%) G0.000000
Number of Bins 20.000000
Number of Variables 7000000
Alpha for Cost-Complexity Pruning ¥
Max Mumber of Tree Nodes 581.000000
Min Number of Tree Nodes 358.000000
Max Mumber of Branches 2.000000
Min Number of Branches 2000000
Max Number of Levels 21.000000
Min Mumber of Levels 20.000000
Max Number of Leaves 285.000000
Min Mumber of Leaves 195.000000
Maximum 5ize of Leaves 822.000000
Minimum Size of Leaves 5000000
Out-of-Bag RMSE 0.118032

Table 3. Decision Tree Specifications Generated By The FORESTTRAIN Action

Prediction Error With Forest Analytics for HMEGQ

Tree ID | Number of Trees | Mumber of Leaves | Awverage Squared Error | Root Average Squared Error | Maximum Absolute Error

i] 1 278 0.1151 0.3383 1.0000
1 2 526 008777 0.2863 1.0000
2 3 T2 0.08070 0.2841 1.0000
3 4 1042 0.07805 0.2758 1.0000
4 5 1312 0.074132 0.2723 1.0000
5 G 1553 0.07278 0.2688 0.9817
G 7 1812 007117 0.26858 0.9341
7 g 2085 007017 0.2640 09851
g <] 2345 0.05804 0.2828 0.9877
<] 10 2815 0.08378 0.2823 0.9880
10 1 2882 0.05348 0.2817 0.9523

Table 4. Partial Result: Prediction Error Results Generated By The FORESTTRAIN Action

Wariable Importance in Decision Tree Related Analytics

Variable Name Importance Std Dew.
WALLE 106.27 43882
LOAM 953215 2.1586
MORTDUE T4.4581 1.3735
DELING 54.5430 11.5850
MING I7.6040 23234
JOB 251352 1.3051
REASCM 3.8435 1.1282

Table 5. Variable Importance Results Generated By The FORESTTRAIN Action

Scoring Information Table With Forest Analytics for HMEQ

Number of Observations Read 52460
Number of Observations Used H2E0
Mean Squared Error 0.08479188092

Encoded Name Information
Level Il | Variable HName
0 | P_BAD

Table 6. Scoring Information Results Generated By The FORESTSCORE Action

APPLY YOUR OWN CODE

Another method for creating user-defined CAS actions is to apply your own code, functions,
and statements instead of SAS-provided CAS actions. This gives you the flexibility to truly
customize your code. Suppose you want to calculate the speed of sound in meters per
second given a certain air temperature.

proc cas;
builtins.defineActionSet / name="speed"
actions={

{

name="tc"
desc="Convert temperature in Fahrenheit (tf) to Celsius (tc)"
parms={

{name="tf" type="int64" required=TRUE}
}
definition="
tc = (tf - 32) * (5/9);
send response ({temp=tc}) ;
}
{
name="sound"
desc="Calculate Speed of Sound in Meters per Second at a Certain
Air Temperature in Degrees Celsius
parms={
{name="tc" type="double" required=TRUE}
}
definition="
s = 331 + (.6 * tc);
send response ({spd=s}) ;
}
i
quit;

In this example, two user-defined CAS actions named tc and sound have been created by
incorporating user-defined code. Similar to the first example, these CAS actions return the
information outlined in the description sections of the PROC CAS statement above. The new
user-defined CAS actions are now part of the new user-defined CAS action set speed.

When the CASL code is executed, the log will display a note that the new CAS action set has
been added.

NOTE: Added action set 'speed'.
{actionset=speed}

Once the new CAS action set and CAS actions have been created and added, they can be
called individually or all at once via PROC CAS. Specify the user-defined CAS action set,
user-defined CAS action(s), and parameters for each:

proc cas;
session mysess;
do n over {0 32 60 68 80 100};
speed.tc result=a / tf = n;
temp=a.temp;
print "At " put(n, best2.) " degrees Fahrenheit the
temperature in Celsius is " compress (put (temp, best3.));
end;

print "

ALY
4

do n over {-18 0 16 20 27 38};
speed.sound result=z / tc = n;

spd=z.spd;
print "At " put(n, best2.) " degrees Celsius the speed of
sound in meters per second is " compress (put (spd, best3.));
end;
quit;

This example uses a range of values for the temperature conversion. Subsequently, the
range of converted temperatures are used as input for the speed of sound calculation. The
output from this example is written to the SAS log and is shown below:

At
At
At
At
At
At

At
At
At
At
At
At

0 degrees
32 degrees
60 degrees
68 degrees
80 degrees

Fahrenheit the temperature
Fahrenheit the temperature
Fahrenheit the temperature
Fahrenheit the temperature
Fahrenheit the temperature

in
in
in
in
in

Celsius is
Celsius is
Celsius is
Celsius is
Celsius is

-18
0
16
20
27

100 degrees Fahrenheit the temperature in Celsius is 38

-18 degrees Celsius the speed of sound in meters per second is 320
0 degrees Celsius the speed of sound in meters per second is 331

16 degrees Celsius the speed of sound
20 degrees Celsius the speed of sound
27 degrees Celsius the speed of sound
38 degrees Celsius the speed of sound

in
in
in
in

meters per
meters per
meters per
meters per

second is 341
second is 343
second is 347
second is 354

Output 1. Output from PROC CAS calling user-defined CAS actions tc and sound

SAVING AND LOADING USER-DEFINED CAS ACTIONS

User-defined CAS action sets only exist in the current CAS session. If the current CAS
session is terminated, the program used to create the user-defined CAS action set must be
executed again unless an in-memory table is created from the CAS action set and the in-
memory table is subsequently persisted to a SASHDAT file. Note: SASHDAT files can only
be saved to path-based caslibs such as Path, DNFS, and HDFS. To create an in-memory
table and persist it to a SASHDAT file, use the actionSetToTable and save CAS actions.

proc cas;
builtins.actionSetToTable /
actionSet="speed"
casOut={caslib="casuser" name="speed" replace=True};

run;

table.save /

caslib="casuser"
table="speed"
name="speed.sashdat"
replace=True;

quit;

The actionSetToTable CAS action creates an in-memory table from the user-defined CAS

action set speed and places it in the Casuser caslib. The save CAS action subsequently

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-builtins-actionsettotable.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-table-save.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-builtins-actionsettotable.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-table-save.htm&locale=en

saves this in-memory table to the caslib’s data source as a SASHDAT file. In this case,
speed.sashdat has been saved to the Casuser caslib. After executing this code, the SAS log
will display a note that the new SASHDAT file has been saved.

NOTE: Cloud Analytic Services saved the file speed.sashdat in
caslib CASUSER(userid).
{cas1lib=CASUSER(userid),name=speed.sashdat}

Now that the CAS action set is saved, it can be used whenever necessary. To use the user-
defined CAS action set, it needs to be restored from the saved SASHDAT file. This is done
with the actionSetFromTable CAS action.

proc cas;
builtins.actionSetFromTable /
table="speed.sashdat"
name="speed";
quit;
After executing this code, the SAS log will display a note that the CAS action set has been
restored and added. You are now free to use the CAS action set and the CAS actions within
it.
NOTE: Added action set 'speed'.
{actionset=speed}

CONCLUSION

CASL provides the most flexibility and functionality when interacting with Cloud Analytic
Services (CAS). This paper has demonstrated one of the many versatile features in CASL,
the ability to create your own CAS actions. The many SAS provided CAS actions deliver an
array of capabilities for programming in CAS. CASL takes the next step by offering the
means to customize your code by creating custom CAS actions and using them in different
clients and with different languages such as Python, R, Lua, Java, and REST APIs. Both SAS
provided and user-defined CAS actions can be used alone or in conjunction with other CAS
enabled PROCS and Base SAS code to maximize the CAS programming experience.

RECOMMENDED READING

e SAS Global Forum 2019 Session: 3177 - Got Results? Let CASL Help You Turn them into Superior
Reports

e SAS Global Forum 2019 Session: 3040 — What is CASL?

e Getting Started with CASL Programming 3.4

e SAS® Cloud Analytic Services 3.4: CASL Reference

o SAS® Cloud Analytic Services 3.4: CASL Programmer’s Guide

e Writing User-Defined Actions

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caspg&docsetTarget=cas-builtins-actionsetfromtable.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=casl&docsetTarget=titlepage.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=proccas&docsetTarget=titlepage.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caslpg&docsetTarget=titlepage.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=caslpg&docsetTarget=n0q8zs3edn7j9mn16dg5sh4t6rjz.htm&locale=en

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Brian Kinnebrew

SAS Institute Inc.
469.801.7461
brian.kinnebrew@sas.com
WWW.Sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

10

mailto:brian.kinnebrew@sas.com
http://www.sas.com/

