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ABSTRACT  
Natural gas is the most important energy source in Italy, fueling domestic heating, industrial 
facilities, and thermoelectric power plants. Gas demand forecasting is a critical task for energy 
providers since it ensures safe, reliable and efficient operational planning and impacts gas 
prices as well as future investment requirements. This paper details a Machine Learning 
approach to forecasting the daily Italian gas demand, based on an ensemble of artificial neural 
networks developed utilizing SAS® software. This task results particularly difficult in Italy due 
to the complicated structure of the gas network as well as volatile weather patterns. The focus 
will be on the one-day-ahead model, subject to government regulations that impose the 
quality of the prediction by charging providers with a fee proportional to the daily percentage 
error. 

 

INTRODUCTION  
Natural gas is in the midst of a rapid growth phase. Since 2010, average global gas 
consumption has grown by 1.8% per year, making it the fastest growing energy source other 
than renewable power. This growth is a result of the multiple benefits offered by gas as a 
clean, abundant, flexible, and cost-effective fuel. 

In Italy, natural gas is the most common fuel for both power plants and domestic heating.  
Furthermore, it is used for heating and powering productive processes by various large 
industrial facilities. In 2018 over 70 billion cubic meters of natural gas were consumed, with 
an overall increase in demand of 11% compared to 2015. Out of the total gas demand in 
2018, about 35% was due to thermoelectric power plants, 20% to industrial facilities and 
45% to residential users. 

The transport of natural gas in Italy occurs at two main levels. The first, called “primary 
distribution” (Figure 1), involves transport at a national and regional scale through large 
pipelines. The second level or “secondary distribution” supplies gas locally for domestic use 
through a widespread system. Primary distribution is guaranteed by a network of over 32 
thousand kilometers of pipelines that spans the whole of Italy, apart from Sardinia. The entity 
entrusted with transporting energy through primary distribution is defined the transmission 
system operator (TSO). A TSO receives gas from producers or shippers, transports it via 
pipeline through an area, and delivers it to second level gas distribution companies or directly 
to industries and power plants.  

Natural gas is introduced into the Italian national network at eight entry points, where the 
network connects to the import pipelines and at the liquefied natural gas (LNG) regasification 
terminals. Italy’s major supplier is Russia, amounting to more than 45% of importations, 
followed by Algeria with 32%. Natural gas is also produced in Italy, with it being injected into 
the network at over 50 entry points.  
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Figure 1 – The Italian primary distribution network 

Due to the cost of establishing and maintaining a national transmission infrastructure, a TSO 
is typically a monopoly and as such is often subjected to regulations. Amongst these 
procedures, the TSO is required to produce gas demand forecasts for the entire network. 
Demand forecasting can be classified according to the prediction horizon, ranging from hourly 
to yearly, and the reference area, which can correspond to a single node of the network up 
to the total national demand. A variety of approaches can be adopted, from mathematical 
models based on fluid dynamics to time series models that evaluate demand trends to more 
complex Machine Learning models that allow a large assortment of input variables. Gas 
demand forecasting is a critical task for energy providers since these values are used in a 
wide variety of contexts: 

• Operational planning – demand forecasts feed directly into the assessment of the 
natural gas infrastructure, to ensure its reliability in satisfying gas demand. They 
provide relevant information to effectively reserve pipe capacity and plan stocks, 
guaranteeing that sufficient gas is available to support the safe operation of the 
network; 

• Network balancing - energy regulations impose the balance of the network by charging 
providers with a fee proportional to their unbalanced quantity; 

• Pricing - demand forecasts are used in the setting of natural gas futures prices;  

• Investment planning - demand forecasts provide insights on network developments, 
the evolution of gas tariffs and a cross-check on customers’ expectations of the 
evolution of the market. 
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Our study focuses on the day-ahead forecasting of the daily Italian gas demand. The TSO 
initially generated forecasts using time series models (see Figure 2): resulting efficient and 
simple to develop, they satisfied the operational planning needs of energy providers. 
However, due to the continuous development of the gas network infrastructure and the 
creation of new protocols associated to network balancing and gas future prices, during the 
course of 2017 it became apparent that a new and more advanced approach was required. 
The Italian government in fact promulgated a new regulation that imposed the quality of the 
day-ahead prediction: the daily forecasts are required to have a percentage error below 5% 
to avoid a large penalty, with desired average performances of 3.5% during the winter months 
and 4.5% during the summer months.  

 
Figure 2 – Evolution of day-ahead forecasting for the daily Italian gas demand 

In October 2017 we adopted a Machine Learning approach to exploit a broader set of data 
and developed a new day-ahead forecasting model based on artificial neural networks. The 
input data consisted in real-time gas transportation data, demand history, calendar, and basic 
weather forecasts. The model performed well during the winter months, with an average 
percentage error below 3%, but in April 2018 volatile weather patterns and unprecedented 
electricity generation led to bizarre gas demand. The model was unable to capture these 
unique patterns, leading to a monthly performance above 9% and large government 
penalties. Even though the model performed well during the remaining summer months, we 
decided to introduce new data and improve the model. Using SAS® software, we developed 
a system that provides hourly forecasts utilizing a “Mixture of Experts” ensemble of neural 
networks called DAFNE (Dynamically Adjusted Forecasting Neural Ensemble). DAFNE is an 
ensemble of 6 models characterized by different data sources and model architectures. These 
models then contribute to the final prediction based on dynamically adjusted weights, 
increasing both the accuracy and the stability. 

 

THE ENSEMBLE APPROACH 
Due to the Italian government introducing a regulation that imposes the quality of the day-
ahead forecast, requiring that the daily predictions have a percentage error below 5% to avoid 
a large penalty, in October 2017 we developed a new day-ahead forecasting model. This 
model was based on artificial neural networks and implemented utilizing SAS/STAT®, 
SAS/ETS® and Enterprise MinerTM software. The input data consisted in: 
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• demand history – past values of the daily gas demand. Gas consumption fluctuates 
according to the season: volumes during the winter are two to three times the volumes 
during the summer months. This is because domestic heating is typically switched off 
when the temperature climbs above 18°C. Furthermore, we extracted the seasonality 
through time series decomposition and discovered that gas demand has a yearly 
seasonality (Figure 3), due to the temperature and heating requirements, as well as 
weekly seasonality (Figure 4), with higher volumes during working days compared to 
weekends and holidays; 

 
Figure 3 – Yearly seasonality of gas demand 

 
Figure 4 – Weekly seasonality of gas demand 

• real-time SCADA gas transportation data – hourly aggregations of real-time SCADA 
(Supervisory Control and Data Acquisition) measurements of volumes, per entry and 
exit point of the network as well as storage and pipe capacity; 

• historic operational business data – official transported gas balances, containing all the 
detail about the total intake (gas entering the network) and total offtake (gas being 
withdrawn from the network). For example, we have the historic values of imports, 
national production, storage systems, exports and consumption per user; 
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• calendar – as previously described, gas demand has two levels of seasonality. To 
capture these phenomena, we introduced a series of binary calendar variables that 
indicate the period of the year as well as the day type. Some examples are the month 
and the weekday, encoded as dichotomic features, and extended holidays, a binary 
feature with value 1 on holidays and weekends; 

• weather forecasts – day-ahead weather forecasts of temperature, humidity and 
precipitation for the main Italian cities as well as sub-regional areas of Italy. They are 
received from the provider in the morning and remain constant through-out the day. 

The model has a rolling operating mode, since it is continuously retrained with the most recent 
data. We also optimized the hyperparameters and tested the model on a year of data 
(specifically October 2016 – September 2017), obtaining a yearly mean absolute percentage 
error or MAPE of 4% with daily error peaks a little below 20%. Once deployed, this model 
performed well during the winter months, with a MAPE below 3% that respected the desired 
government performance. However, the model encountered difficulties in April 2018: volatile 
weather conditions, with temperatures varying greatly over the course of the day, impacted 
demand associated to domestic heating while unusual electricity generation, with only 
renewable sources being used, led to extremely low demand from thermoelectric power 
plants. The model was unable to capture these unique patterns, leading to a monthly MAPE 
above 9% with various error peaks above 20%. Even though the model performed well during 
the remaining summer months (see Figure 5) and had a yearly MAPE of 4%, the events in 
April had convinced us to make some improvements. We set out to develop a new forecasting 
system, with the goal of incrementing the stability as well as the accuracy of the forecasts. 
We also wanted to introduce new data, such as electricity demand forecasts and more detailed 
weather forecasts. 

 
Figure 5 – Gas demand forecasting performances Oct 17 – Sep 18  

 

DYNAMICALLY ADJUSTED FORECASTING NEURAL ENSEMBLE (DAFNE) 
On October 1st, 2018 we deployed the new day-ahead gas demand forecasting model called 
DAFNE or Dynamically Adjusted Forecasting Neural Ensemble. Completely developed using 
SAS/STAT®, SAS/ETS® and Enterprise MinerTM procedures, the system provides hourly 
forecasts utilizing a “Mixture of Experts” ensemble of neural networks. Specifically, DAFNE is 
an ensemble of 6 sub-models characterized by different data sources and model architectures. 
These sub-models then contribute to the final prediction based on dynamically adjusted 
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weights calculated on the past performances. The input data consists in the previously 
described sources as well as two new ones: 

• electricity demand forecasts – day-ahead forecasts of electricity demand per power 
station, which is then cross-referenced with the power plants that utilize gas; 

• more detailed weather forecasts – extension of the previously described day-ahead 
predictions to include more detailed sub-regional areas of Italy and updates of all 
forecasts during the course of the day. 

When designing the model, we decided to build a set of models able to forecast gas demand 
utilizing different points-of-view. To do this we specialized each model on different input data, 
therefore obtaining six independent experts (see Table 1). Specifically, we developed the 
following sub-models: 

1. Autoregressive model – neural network that reproduces the logics of an autoregressive 
model by specializing itself in demand history, as well as considering a few other 
regressors associated to calendar and weather; 

2. Company model – neural network corresponding to the first model deployed in October 
2017. It is the expert that gives equal weight to operational business data and real-
time SCADA gas transportation data; 

3. SCADA model - neural network specialized in real-time SCADA gas transportation data, 
while also considering calendar, weather and demand history; 

4. Complete model – model designed to evaluate all data sources, giving similar weights 
to each input; 

5. Similarity model – model based on the notion of similar day, distinguishing between 
work-days and extended holidays (holidays and weekends). It is actually composed of 
two neural networks, with complementary training sets, that switch on and off 
according to the type of the forecast day; 

6. Electricity model – neural network that focuses on the fluctuations of electricity 
demand and therefore gas demand associated to thermoelectric power plants. This 
expert is particularly important during the summer. 

 

Sub-model 
Input data 

Demand 
history SCADA data Calendar Business data Weather Electricity 

demand 

Autoregressive          
Company         

SCADA        
Complete       

Similarity        
Electricity         

Table 1 – Input data of the DAFNE sub-models 

The sub-models are continuously retrained with the most recent data, allowing the system to 
have a rolling operating mode. We optimized the hyperparameters of each sub-model as well 
as the logics of the ensemble before testing the system on a year of data (specifically October 
2017 – September 2018), obtaining a yearly mean absolute percentage error or MAPE of 
2.7% with daily error peaks around 15%. 
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THE ENSEMBLE ALGHORITM 
DAFNE is a “Mixture of Experts” ensemble with the peculiarity that every sub-model 
contributes to the final prediction based on its past performance, where the performance is 
calculated considering a dynamic time period. Specifically, the sub-model performances are 
characterized by evaluating the mean absolute percentage error in five different situations: 

• local MAPE: evaluates the short-term performances since it corresponds to the mean 
absolute percentage error of the last k days of the current month, with k reaching at 
most a value of 14 days; 

• historic MAPE: evaluates the historic performances since it corresponds to the mean 
absolute percentage error obtained during the current month in past years; 

• work-day MAPE: evaluates the performances on work-days, since it corresponds to the 
mean absolute percentage error calculated on all past work-days;  

• extended holiday MAPE: evaluates the performances on extended holidays, since it 
corresponds to the mean absolute percentage error calculated on past weekends and 
holidays;  

• holiday MAPE: evaluates the performances on holidays, since it corresponds to the 
mean absolute percentage error calculated on Italian public holidays. 

The algorithm used to determine the weight of each sub-model and therefore generate the 
final prediction can be summarized in two steps: 

1. Determine the sub-model weight – for each sub-model, we have that the local MAPE 
and historic MAPE evaluate the performance during the current month while the 
remaining three MAPE evaluate the performance based on the day type of the 
reference date of the prediction. These five indexes are aggregated using a weight 
system that is a function of the reference date of the prediction (see Figure 6). We can 
identify three different phases: 

• Phase 1 – for day-ahead predictions referred to the first two days of the month, 
the local MAPE can’t be calculated since the actual gas demand is not yet 
available: the actual demand of the first day of the month is available on the 
second day, when we are already generating the day-ahead forecast referred 
to the third day of the month. For this reason, the monthly performance must 
be evaluated using exclusively the historic MAPE. In this situation the historic 
MAPE has a weight of 50% in determining the overall sub-model weight. The 
remaining 50% is assigned based on the day type performances: on work-days 
we consider the work-day MAPE, on weekends we consider the extended 
holiday MAPE, and on holidays we consider the weighted average between the 
extended holiday MAPE and the holiday MAPE (weights respectively ¼ and ¾); 

• Phase 2 – For day-ahead forecasts referred to the third to sixteenth day of the 
month, the local MAPE is not at full capacity since less than 14 actuals are 
available. To calculate the monthly performance, it is necessary to use a 
weighted average of the local and the historic MAPE (the weights are 
proportionate to the number of actuals). In this situation the historic MAPE has 
a weight of 60% in determining the overall sub-model weight. The remaining 
40% is assigned based on the day type performances: on work-days we 
consider the work-day MAPE, on weekends we consider the extended holiday 
MAPE, and on holidays we consider the weighted average between the 
extended holiday MAPE and the holiday MAPE (weights respectively ¼ and ¾);  
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• Phase 3 – For day-ahead forecasts referred to the sixteenth day of the month 
onwards, we have over 14 actuals available and therefore have a local MAPE at 
full capacity. In this situation the monthly performance is evaluated using 
exclusively the local MAPE and has a weight of 60% in determining the overall 
sub-model weight. The remaining 40% is assigned based on the day type 
performances, as previously explained. 

  
Figure 6 – MAPE aggregation logics to determine the sub-model weight 

2. Determine the final prediction – DAFNE’s prediction corresponds to the weighted 
average of the sub-model forecasts, where each sub-model is assigned a weight that 
is dynamically adjusted based on past performances and the reference data of the 
prediction as previously described.  

𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
1

∑ 𝑤𝑤𝑖𝑖6
𝑖𝑖=1

�𝑤𝑤1𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 +𝑤𝑤2𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑤𝑤3𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑤𝑤4𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑤𝑤5𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑤𝑤6𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� 

 

The ensemble algorithm, while dynamic, is rule-based and therefore deterministic. We could 
not use a stacking approach, that is train a new model which learns from the sub-model 
predictions, because of the limited amount of training data. The evaluations of the current 
algorithm are made utilizing forecasts from October 2015 to today, and we could not extend 
this period further into the past due to restrictions caused by the availability of the input data. 

 

SIMULATED PERFORMANCES OF SUB-MODELS AND DAFNE 
Each of the sub-models was optimized on a validation set (Table 2) consisting in the period 
October 2016 – September 2017 before being tested (Table 3) on the period October 2017 – 
September 2018. We selected those models that had the lowest MAPE on the validation set 
and that obtained similar results on the test set. This optimization phase was carried out using 
a grid search implemented with moving window logics and monthly retraining of the models 
to reproduce the rolling operating mode. 
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 Simulated Performances: Validation 
(Oct 16 – Sep 17) 

  MAPE MAPE 
Max 

MAPE 
StdDev 

N° errors 
 < 10% 

Autoregressive 3.93% 25.6% 3.4% 95.1% 

Company 4.01% 17.5% 3.3% 93.7% 

SCADA 4.04% 17.9% 3.3% 93.4% 

Complete 3.26% 17.9% 2.6% 97.8% 

Similarity 3.56% 18.8% 2.8% 97.5% 

Electricity 3.54% 19.4% 3.0% 96.4% 

Table 2 – Sub-model performances on the validation set (Oct 16 – Sep 17) 

 

 Simulated Performances: Test 
(Oct 17 – Sep 18) 

  MAPE MAPE 
Max 

MAPE 
StdDev 

N° errors 
 < 10% 

Autoregressive 4.58% 20.1% 4.2% 89.0% 

Company 4.05% 21.2% 3.8% 92.1% 

SCADA 4.00% 48.2% 4.2% 92.3% 

Complete 3.44% 16.3% 2.8% 97.3% 

Similarity 3.17% 18.2% 2.8% 96.7% 

Electricity 3.48% 13.6% 2.6% 97.3% 

Table 3 – Sub-model performances on the test set (Oct 17 – Sep 18) 

 

After selecting the six sub-models, we applied the ensemble algorithm maintaining the same 
validation and test sets. The validation set was used to tune the logics of the ensemble, while 
the test set was used to confirm that no overfitting was occurring. The results (Table 4) 
confirmed that the DAFNE approach boosted both model accuracy and stability: the yearly 
MAPE was reduced below 3% while the standard deviation of the percentage error is below 
that of every sub-model. 

  Simulated Performances 

  MAPE MAPE 
Max 

MAPE 
StdDev 

N° errors 
< 10% 

Validation  
(Oct 16 – Sep 17) 

2.87% 13.8% 2.3% 99.2% 

Test 
(Oct 17 – Sep 18) 

2.73% 15.6% 2.5% 97.5% 

Table 4 – DAFNE simulated performances 
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DEPLOYED PERFORMANCES OF SUB-MODELS AND DAFNE 
On October 1st, 2018 we deployed the new day-ahead forecasting model DAFNE. The model 
was released into the production environment and began using live data. The models would 
therefore have to face typical operational issues such as missing values, automatically 
imputed by the system, or bad quality due to data collection problems of the underlying 
database.  

Considering the period from deployment to February 2019, all sub-models have performed 
better than anticipated except for the Autoregressive model (Table 5). This may be due to 
the fact that, even though gas demand has a strong seasonality, the process has become less 
autoregressive and requires more variables to adjust the forecast. 

 Deployed Performances 
(Oct 18 – Feb 19) 

  MAPE MAPE 
Max 

MAPE 
StdDev 

N° errors 
 < 10% 

Autoregressive 5.34% 20.2% 4.4% 88.7% 

Company 3.81% 17.6% 3.1% 94.7% 

SCADA 3.15% 19.7% 3.0% 96.0% 

Complete 2.66% 9.2% 2.1% 100.0% 

Similarity 2.75% 14.4% 2.5% 99.3% 

Electricity 3.38% 18.1% 3.2% 93.9% 

Table 5 – Sub-model performances after deployment (Oct 18 – Feb 19) 

 

DAFNE has also respected the simulation results (Table 6 and Figure 7), performing slightly 
better than expected. The system was able to handle the performance issues of the 
Autoregressive model through the ensemble algorithm, assigning less weight to this model. 

  Deployed Performances 
 (Oct 18 – Feb 19) 

  MAPE MAPE 
Max 

MAPE 
StdDev 

N° errors 
< 10% 

Oct-18 2.06% 7.8% 1.8% 100.0% 

Nov-18 2.61% 9.3% 2.2% 100.0% 

Dec-18 3.29% 13.0% 2.8% 96.8% 

Jan-19 2.08% 11.4% 2.6% 96.8% 

Feb-19 2.35% 8.5% 2.0% 100.0% 

Overall 2.48% 13.0% 2.3% 98.7% 

Table 6 – DAFNE performances after deployment (Oct 18 – Feb 19) 
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Figure 7 – Daily performances of the DAFNE system 

It can be noted that the model had higher error peaks during the Christmas holidays, from 
roughly December 24th, 2018 to January 6th, 2019. This period, along with Easter and the 
week of Ferragosto (Italian holiday that occurs on August 15th), is the hardest to predict since 
there are many bridge holidays, the autoregressive dependency is irrelevant and there is a 
strong dependency on weather patterns. 

 

CONCLUSION 
The DAFNE system provides an effective solution for gas demand forecasting, guaranteeing 
reliable and efficient operational planning as well as providing dependable insights on gas 
prices and investment planning. On the one hand, the “mixture of Experts” approach leads to 
a boost in both accuracy and stability compared to the sub-models. On the other, the 
ensemble algorithm based on dynamically adjusted weights calculated on the past 
performances allows the system is to adapt itself to the evolving gas demand patterns.  

DAFNE thus far has confirmed the simulation results and respected the government 
regulations, performing slightly better than expected. It will be interesting to see how the 
system handles the summer months, where gas demand largely depends on thermoelectric 
power plants due to the absence of domestic heating. 

Finally, the ensemble algorithm, while dynamic, remains rule-based and therefore 
deterministic. DAFNE could benefit from the use of stacking, with the creation of a model 
trained directly on the sub-model predictions and performances. 
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