
1

Paper 3174 -2019

Lessons Learned Architecting a Modern Data Analytics Platform
in the Cloud Using MapR and SAS® Viya®

Shane Gibson, PitchBlack

ABSTRACT
During 2018, I was the Technical Lead on an Analytics 2.0 project for a large New Zealand
Government organization that was deploying a MapR converged data platform in Microsoft
Azure and a SAS® Viya® and SAS® 9.4 Platform via SAS® Global Hosting in Amazon Web
Services (AWS). This presentation covers the technical architecture that was defined for the
integrated platforms and the lessons learned during the architecture of the platforms.

INTRODUCTION
This paper outlines the lessons learnt architecting a MapR converged data platform in
Microsoft Azure and a SAS® Viya® and SAS® 9.4 Platform via SAS® Global Hosting in
Amazon Web Services (AWS) and provides recommendations on how to mitigate some of
issues that were encountered.

The papers covers the following key areas:

1. Implementing multi-cloud platforms;
2. SAS Viya multi-tenancy architecture design;
3. Implementing SAS Viya and SAS 9.4—why you need to consider the tradeoffs;
4. Defining authentication and authorization in a managed platform environment;
5. Data integration patterns between SAS Viya and a MapR data lake or data vault; and
6. The automation required to achieve a DataOps vision.

The presentation itself provides a number of architecture diagrams and more detailed
discussion on the issues encountered.

BACKGROUND
The Government organisation had a legacy SAS data platform which was developed over 20
years ago and currently operating based on a SAS 9.4 technology stack. They also had a
newer data platform that was implemented based on an Oracle technology stack and was
planned to replace the legacy SAS platform. However, after a number of years of
implementation, the Oracle project was completed without fully replacing and
decommissioning the legacy SAS platform, resulting in both platforms being operational and
requiring ongoing maintenance. In addition, the Oracle data platform was coupled to data
in the legacy SAS platform during its implementation.

As part of a digital transformation program tasked was driving large scale organizational
and technology changes, the organisation decided to replace both the legacy SAS and
Oracle platforms with a new Analytics 2.0 platform based on MapR, SAS Viya and SAS 9.4.

The initial phase of the Analytics 2.0 project implemented a data lake and operational
reporting for a new source system using the MapR and SAS capabilities, however a number
of challenges with this implementation resulted in the inability to scale the platforms to a
larger number of source systems or users in subsequent phases. This included the coupling
the new MapR/SAS platform to both the legacy SAS and Oracle platforms.

I joined the organisations project team to assist in architecting a scalable solution utilising
MapR and SAS Viya as part of the second implementation phase.

2

Learning Recommendation
Couple to your legacy
environment at your risk

If you have no choice lightly
couple, aka via micro service
patterns to enable future
decoupling

Decommissioning the last 20%
of a legacy solution is hard

It needs to be decommissioned
otherwise you will bleed
ongoing resources maintaining
both

When you incur technical debt,
it has future consequences

Keep architecture decisions and
technical debt registers so they
are visible and can be
remediated in the future

Evolving architecture is great,
but there is risk of tactical
solutions

You need an initial blueprint
(hypothesis) and regular
validation to ensure it evolves
into a scalable architecture

A data lake isn’t one solution
to rule them all, especially if
your replacing operational
reporting to thousands of
information consumers

You still need to repeatably
transform data to provide
trusted information to
information consumers, so
ensure you architect this as
part of your solution

If you’re not experienced at
systems integration, don’t
pretend you are

Engage somebody for their
systems integration expertise,
ideally one of the vendors who
own the solution

Table 1. Lessons learned from previous projects

MULTI CLOUD INTEGRATION
The Government organisation had a cloud first strategy and a multi-cloud strategy which
resulted in both Microsoft Azure and Amazon Web Services (AWS) being approved cloud
infrastructure platforms. The second phase of the project moved from a model where the
platforms were managed by the Government organisation to a model where the software
vendors provided managed platforms. MapR selected Microsoft Azure as their preferred
cloud platform and SAS Global Hosting selected AWS.

Learning Recommendation
Multi-cloud strategy constantly
challenged by organizational
behavior

Make sure the strategy is
documented and agreed by
those that could challenge it,
“urban legends” won’t cut it

Contract negotiations may
take longer than provisioning
the platform

Define success/acceptance
criteria early before starting
negotiations

3

Learning Recommendation
Worry about where the highest
volume of data moves

It is probably between your
systems of record and your
data lake, and between your
data lake and your data
scientists tools

Worry about where the highest
volume of adhoc users and the
highest volume of their data
are co-located

It’s probably between your self-
service analytics tool for citizen
data scientists and your
transformed data

Obtaining access to
production-esk data volumes
is difficult

If necessary, fall back to using
open data that has
representative data volumes

Watch out for network
trombone’s

Validate the network at a
detailed level to ensure it is
configured the way expected

Table 2. Lessons learned Multi-Cloud Integration

MULTI-TENANCY
SAS Viya can be deployed as a managed platform via SAS Global Hosting utilising a multi-
tenancy architecture. In a multi-tenancy architecture, a provider manages one or more
tenants within a single deployment. The essential characteristics of multi-tenancy are
separation and sharing.

Many SAS Viya components are shared across tenants, for example, applications are shared
across tenants. Some components have a dedicated instance for each tenant, for example,
each tenant has its own dedicated CAS controller.

Multiple tenancies can be used to efficiently manage environment separation within the SAS
Viya platform, while retaining a single installation of the core SAS software components.

Learning Recommendation
Multi-tenancy is a great way of
managing environment
separation

Use separate tenancies for each
environment, but architect how
you will share the data across
tenancies where practical

Multi-tenancy support is
enabled during provisioning
and cannot be changed

Enable multi-tenancy by
default, you cannot turn it on
later

Multi-tenancy increases
complexity of the environment

As SAS Global Hosting
administer the managed
platform, the level of
complexity is irrelevant to you
as the customer

SAS Solutions can be isolated
in a separate tenancy

If you are utilising a SAS Viya
based solution, for example the
SAS Fraud solution, then deploy
it in its own dedicated tenancy

4

Learning Recommendation
SAS 9.4 does not have the
concept of tenancies

You will need to define an
architecture that provides a
similar model for sharing and
separating the things you care
about

You cannot stand up and burn
down tenancies on demand

You need to put thought into
the number of tenancies
required and the applicable use
cases

Table 3. Lessons learned Multi-Tenancy

SAS VIYA VS SAS 9.4 TRADEOFFS
SAS are undertaking a gradual transition from the legacy SAS 9.4 architecture to the new
SAS Viya architecture.

SAS are progressively re-architecting many of the SAS 9.4 components and solution to
utilise the SAS Viya architecture, for example SAS Data Management. A number of SAS 9.4
solutions are being replaced with new solutions built upon the SAS Viya architecture, for
example the SAS Fraud solution and SAS Enterprise Miner. While a number of the other
SAS 9.4 components are being updated to integrate with SAS Viya components while
retaining their SAS 9.4 architecture, for example SAS Enterprise Guide. Some other
components, for example SAS Studio, have both a SAS 9.4 version and a SAS Viya version
(in fact SAS Studio had two SAS Viya versions available in 2018).

Some of the new SAS Viya components and solutions do not yet have feature parity with
the legacy SAS 9.4 versions. This forces a number of decisions on what version of each
component and solution should be architected into the platform.

Learning Recommendation
Migrating from the SAS 9.4 to
SAS Viya version is not trivial

Implement the SAS Viya
version where possible

SAS Viya versions often have
limited features

Understand the core use cases
and map to the features
required, to see if the SAS Viya
version is viable

Enterprise guide is still the
equivalent of the swiss army
knife and users still love it

SAS Studio and the planned
notebook capability will
eventually replace EG, but until
then you will probably need to
include it

SAS Desktop tools provide
possible ongoing compatibility
issues with a SAS Managed
Platform

Provide the tools on virtual
desktops, and if possible,
include in the SAS Global
Hosting managed services

Table 4. Lessons learned in the SAS Viya vs SAS 9.4 Tradeoff

AUTHENTICATION AND AUTHORISATION

5

SAS Viya, SAS 9.x and MapR all have a number of components and a number of the
component have unique authentication and/or authorization models.

SAML was identified as the preferred authentication model, to ensure internal user names
and passwords were not exposed or stored in the managed platforms. However, SAS 9.x
and MapR were unable to support this model for the majority of their components.

The creation of unique user names and passwords on each managed platform was deemed
to be a difficult model to scale to thousands of information consumers. A hybrid
authentication model was adopted.

Learning Recommendation
You may need multiple
authentication approaches
depending on the solution
capabilities and user roles

Create and validate persona’s
early so you can describe the
authentication approach for
each

You need to manage security
of non-production data even if
nobody else in the
organisation does

Plan to secure and/or
obfuscation data in your non
production environments

Everybody has an opinion on
what data should be secured

Decide if you core authorization
principal is visible by default or
hidden by default

Table 5. Lessons learned designing Authentication and Authorization

DATA INTEGRATION PATTERNS
Another challenge encountered was how to do you identify the best way to integrate the
data between the many components being used in MapR and the many components in SAS
Viya and SAS 9.x.

To resolve this challenge, we used a combination of use cases to identify the potential data
flows needed and data integration patterns to identify and select the best integration
pattern for each use case.

Learning Recommendation
When there are lots of moving
parts and lots of options you
may not know which patterns
to focus on

Create use cases to identify the
main flows of data and then
design for those

Your vendor may not
understand using a pattern
approach

Co-design the patterns
together, co-design provides a
number of additional benefits

You won’t know that your
patterns will work until you
prove them

Do a Proof of Concept (PoC) for
each integration pattern

When undertaking
performance testing with
volumes your pattern may not
survive

Ensure the PoC is proven with
representative volumes of data,
use large open data sets if
necessary

6

Learning Recommendation
Your first pattern may not be
production viable

Ensure you always have an
alternative pattern defined for
each use case

Table 6. Lessons learned using data patterns for integration

DATAOPS
DevOps is an approach to software development that accelerates the build lifecycle
(formerly known as release engineering) using automation. DataOps uses automation to
reduce the end-to-end cycle time of data analytics, from the origin of ideas to the literal
creation of data, visualisations and models that create value. So while DataOps leverages a
lot of the DevOps principals and patterns of automation, it is about automating everything
you can, not just the infrastructure and code.

One of the challenges is that a lot of software solutions that have been around for a while
are not architected to enable a DataOps approach. For example the ability to check-out and
check-in components of a dashboard as you incrementally build it.

Learning Recommendation
DataOps is new, vendors who
say they have automated
solutions still often use manual
techniques to make changes
as they haven’t created full
automation yet

Validate early what is actually
automated with the vendor

Manual “changes” to data and
configuration is dangerous and
unsustainable

Changes should be deployed as
automated code. If not
available yet, at least the
manual processes should follow
a version control check-in /
check-out approach

Most Visualisation tools don’t
support a DataOps approach
yet, i.e. you can’t use git to
create and maintain
visualisation code objects

Use git during the release /
promotion process

Contracts and or technology
doesn’t support the burn down
and stand up of environments
on the fly

Identify this early with your
vendor and then design your
architecture with these
constraints in mind

Contracts often don’t support
auto-scaling of resources, or
the customers financial models
cannot support variable cost
every day

Determine the financial model
the customer needs to operate
in and architect to match that
model, but also enable change
to the model in the future

Table 7. Lessons learned implementing a DataOps approach

CONCLUSION

7

Architecting a multi-cloud solution utilising both SAS Viya and SAS 9.4 as well as MapR and
Attunity is challenging. Engage and utilise experts from each vendor on the best way to
architect, provision and manage the respective platforms.

Where possible move to a managed cloud platform, where the vendors are accountable for
provisioning and maintaining their own software solutions.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Shane Gibson
PitchBlack
Shane.gibson@pitchblack.nz
https://pitchblack.nz

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

