
1

Paper 3154-2019

Modeling with Deep Recurrent Architectures: A Case Study of

Using SAS and Python for Deep Learning

Linh Le, Institute of Analytics and Data Science; Ying Xie, Department of

Information Technology;
Kennesaw State University

ABSTRACT

Deep learning is attracting more and more researchers and analysts with its numerous

breakthrough successes in different areas of analytics and artificial intelligence. Although

being well-known for its power in data processing and manipulation, SAS® is still relatively

new as a deep learning toolbox. On the other hand, Python has become “the language for

deep learning” due to its flexibilities and great supports from deep learning researchers. In

this paper, we present a case study of combining SAS and Python for the task of predicting

next-day stock price direction with deep recurrent architectures, including vanilla Recurrent

Neural Network, Long Short-Term Memory, Gated Recurrent Unit, and a novel model we

proposed named Recurrent Embedding Kernel. To use the power of each framework, we

preprocess data in SAS and build our deep models in Python. The whole process is unified in

one framework using the SASPy module, which allows access to SAS codes in Python

environment.

INTRODUCTION

Deep learning is a recent emerged field with numerous breakthrough successes in different

areas of analytics and artificial intelligence. In brief, deep learning models utilize a high

number of parameters stacked by layers to non-linearly map data to a feature space where

decisions are made. Both the mapping and the decision function are learned from data

which gives deep models great robustness and flexibility. Different deep network

architectures are also designed for different data types (e.g. tabular data, images, audios,

texts, etc.). For all this reason, deep learning is attracting more and more researchers and

analysts in all fields.

Although being well-known for its power in data processing and statistical modeling, SAS is

still relatively new as a deep learning toolbox. Advance types of deep learning models like

Convolutional Neural Networks [1] and Recurrent Neural Networks [2] are only available in

the new SAS Viya environment through the Cloud Analytic Services (CAS). On the other

hand, Python has become “the language for deep learning” due to its flexibilities and great

supports from deep learning researchers.

In this paper, we discuss a case study of combining SAS and Python in utilizing deep

learning for analytical tasks. More specifically, we focus on using deep architectures for

sequential data for the task of predicting next-day stock price direction. The models we use

include vanilla Recurrent Neural Network (RNN) [2], Long Short-Term Memory(LSTM) [3],

Gated Recurrent Unit (GRU) [4], and a novel model we proposed named Recurrent

Embedding Kernel (REK) [5]. Based on the power of each framework, we preprocess data in

SAS and build our deep models in Python. The whole process is unified in one framework

using the SASPy [6] module, which allows access to SAS codes in Python environment. As

we use Theano [7], a low-level deep learning library in Python which might be over-

complicated for the general users, we will focus more on connecting a Python session to

SAS and executing SAS codes in Python environment through SASPy. In the next session,

we first review the three mentioned deep learning models for sequential data, namely RNN,

LSTM, and GRU.

2

DEEP LEARNING FOR SEQUENTIAL DATA

Deep learning algorithms use a vast number of parameters stacked by layers to model the

data. The simplest form of a deep network is a deep feed-forward network (or deep neural

network - DNN) [8]. Let 𝐻𝑖, 𝑊𝑖, and 𝑏𝑖 denote the output, the weight matrix, and the bias

vector of hidden layer 𝑖𝑡ℎ respectively, then

𝐻𝑖+1 = 𝜎(𝑊𝑖 ∙ 𝐻𝑖 + 𝑏𝑖) (1)

with 𝜎(∙) being an activation function, often in the form of sigmoid, hyperbolic tangent, or

rectified linear function (ReLU). The output layer of a DNN uses a task-driven output

function, e.g., SoftMax for classification tasks, or a linear function for regression tasks.

Figure 1 shows a common illustration of a DNN. The nodes refer to the outputs of the

layers, the last nodes in each row represent the bias of the layers, and the connections

between nodes represent to the weights of the layers.

Figure 1. A Common Illustration of a Deep Neural Network

DNNs are usually trained to minimize a predefined loss function 𝐿 using gradient descent. In

details, with a loss function 𝐿 defined, the network is iteratively updated by

𝑊𝑖 ← 𝑊𝑖 − 𝛼
𝜕𝐿

𝜕𝑊𝑖

𝑏𝑖 ← 𝑏𝑖 − 𝛼
𝜕𝐿

𝜕𝑏𝑖

(2)

where 𝛼 is the learning rate. Commonly, 𝐿 varies by the task given to the network. For

example, a binary classification DNN uses the binary cross-entropy loss function, a multi-

label classification DNN uses the negative log likelihood loss function, and a regression DNN

uses the mean squared error loss function.

Recurrent Neural Networks (RNN) are specifically designed to handle temporal information

in sequential data. Commonly used RNN types include RNN, Long Short-Term Memory

(LSTM), and Gated Recurrent Unit (GRU). In vanilla RNN’s, the memory state of the current

time point is computed from both the current input and its previous memory state. More

formally, given a sequence 𝑋 = {𝑋0, 𝑋1, … , 𝑋𝑇}, the hidden state 𝑈𝑡 of 𝑋𝑡 (i.e. the state of 𝑋 at

time 𝑡) outputted by the network can be expressed as

𝑈𝑡 = 𝜎(𝑊 ∙ 𝑋𝑡 + 𝑅 ∙ 𝑈𝑡−1 + 𝑏) (3)

3

where 𝑊 and 𝑅 are weight matrices of the network; 𝑏 is the bias vector of the network; and

𝜎(∙) is a selected activation function. The computational flow of RNN is shown in Figure 2.

Figure 2. The Computational Flow of RNN

Since its memory state is updated with the current input at every time point, vanilla RNN is

typically unable to keep long-term memory. LSTM is an improved version of RNN with the

design goal of learning to capture both long-term and short-term memories. A LSTM block,

shown in Figure 3, uses gates to control how much its long-term memory would be updated

at each time point. The outputted short-term memory is then computed from the current

input, the current long-term memory, and the previous short-term memory. More formally,

an LSTM block can be described by the following formula:

Zt = g(WZ ⋅ Xt + RZ ⋅ U𝑡−1 + bz)

it = σ(Wi ⋅ Xt + Ri ⋅ Ut−1 + pi × Ct−1 + bi)

ft = σ(Wf ⋅ Xt + Rf ⋅ U𝑡−1 + pf × Ct−1 + bf)

Ct = it × Zt + ft × C𝑡−1

ot = σ(Wo ⋅ Xt + Ro ⋅ U𝑡−1 + po × Ct−1 + bo)

Ut = ot × h(Ct)

(4)

where 𝑊∗ and 𝑅∗ are weight matrices; 𝑏∗ are bias vectors; 𝑝∗ are peepholes; 𝑋𝑡, 𝑈𝑡, and 𝐶𝑡

are the LSTM's input, output, and cell state (i.e. long-term memory) at time point𝑡; 𝑍𝑡 is the

proposed update to the cell state; 𝑖𝑡, 𝑓𝑡, and 𝑜𝑡 are the output of the input gate, forget gate,

and output gate, respectively; 𝑔(⋅) is the input activation, 𝜎(⋅) is the sigmoid function, and

ℎ(⋅) is the output activation. The overall architecture and computational flow of LSTM is

shown in Figure 3. As can be seen, the current long-term memory is computed from the

previous input, short-term memory, and long-term memory, and the current short-term

memory is computed using the current long-term memory. Unlike the vanilla RNN, all the

memory updates are controlled using gates (represented by the dashed arrows in Figure 3).

Figure 3. The Architecture1 and Computational Flow of LSTM

1 Figure adapted from [3]

4

Compared with vanilla RNN, LSTM introduces a mechanism to learn to capture task-relevant

long-term memory. At each time point, the captured long-term memory is expressed as a

vector. However, the architecture of an LSTM block is relatively complex, which may cause

training of a LSTM-based model difficult and time consuming. GRU can be viewed as an

alternative to LSTM that can learn to capture task-relevant long-term memories with a

simplified architecture. A GRU block contains only two gates, as shown in Figure 4. It can be

mathematically described using the following formula:

Ut = (1 − zt) × Ut−1 + zt × Ut̃

Ut̃ = g(WU ⋅ Xt + RU ⋅ (rt × Ut−1) + bU)

zt = σ(Wz ⋅ Xt + Rz ⋅ Ut−1 + bz)

rt = σ(Wr ⋅ Xt + Rr ⋅ Ut−1 + br)

(5)

where all notations are similar to LSTM, except for 𝑧𝑡 and 𝑟𝑡, which are the outputs of the

update gate and reset gate, respectively. The computational flow of GRU is similar to that of

vanilla RNN in Figure 2, except that the memory update is also controlled with gates like

LSTM.

Figure 4. The Architecture of a GRU Block2

The final deep architecture we utilize in this paper is the Recurrent Embedding Kernel (REK)

which is proposed in [5]. Unlike the other three recurrent architectures that make decisions

directly from the short-term memory states, REK has another component that takes inputs

as the short-term memory states at each pair of time points and compute their pairwise

similarity. Decisions are then made based on the computed similarities using a K Nearest

Neighbors (KNN) strategy. To do this, REK consists of a recurrent embedding network (REN)

and a similarity network (SN). The REN component takes input state at each time point to

compute their memory states that are represented through embedding vectors. In this case,

any of the mentioned recurrent architectures can be used in place of REN. Each pair of

memory states is then aggregated to form a single vector that is fed into the SN component

to compute the pair’s similarity. More specifically, SN is a deep network that output one

single scalar representing the pairwise similarity of the time points. We use the sigmoid

function as the output function of SN so that the similarity of a pair of instances can be

interpreted as the probability of them having the same labels.

We show the computational flow and the decision-making process of REK in Figure 5. With

the KNN strategy, REK makes decision at each time point based on the whole historical

sequence before it. Mathematically, let 𝑡 < 𝑣 be two time points in the sequence, 𝐸̂(⋅) be the

vectorizing function represented by the REN component, and 𝑆̂(⋅) be the SN component,

then we have

𝑈𝑡 = 𝐸̂(𝑋𝑡 , 𝑈𝑡−1)

𝑈𝑣 = 𝐸̂(𝑋𝑣 , 𝑈𝑣−1)
𝑈(𝑡,𝑣) = 𝑈𝑡⨀𝑈𝑣

𝑠(𝑋𝑡 , 𝑋𝑣) = 𝑆̂(𝑈(𝑡,𝑣))

(6)

2 Figure adapted from [4]

5

where

𝑈(𝑡,𝑣) = {𝑈𝑡1 ∗ 𝑈𝑣1, 𝑈𝑡2 ∗ 𝑈𝑣2, … 𝑈𝑡𝑑 ∗ 𝑈𝑣𝑑 , |𝑈𝑡1 − 𝑈𝑣1|, |𝑈𝑡2 − 𝑈𝑣2|, … , |𝑈𝑡𝑑 − 𝑈𝑣𝑑|} (7)

and 𝑠(𝑋𝑡 , 𝑋𝑣) represents the pairwise similarity between 𝑋𝑡 and 𝑋𝑣. When making prediction

for a time point with an unknown label, we first compute its similarity with the rest of the

time points (with known labels). Then, we base on the computed similarities to find most

similar time points of the unknown one, and assign its label accordingly.

Figure 5. The Computational Flow and Decision-Making Process of Recurrent Embedding Kernel

To ensure both networks of REK are trained towards the goal of optimizing the decision

making for KNN, we sample training data in the neighborhood of each instance. More

specifically, each iteration in the training process of REK on a sequence 𝑋 = {𝑋0, 𝑋1, . . . 𝑋𝑡 , . . . }
can be described as follows.

1. Input the whole sequence into REN to obtain embedding vectors from each time

point

2. Input all pair of embedding vectors into the KN to obtain their pairwise similarities

3. Use the computed similarities to determine the neighborhood of 𝑘 nearest time

points with the same label for each time point in the training sequence

4. Compute the loss based on pairs of time points and all time points in their

determined neighborhood

5. Use Gradient Descent to update the weight matrices and bias vectors throughout the

REK network to minimize the aggregated loss

CASE STUDY: PREDICTING DAILY STOCK PRICE DIRECTION

In this section, we utilize all discussed deep models into the specific task of predicting daily

stock price direction. More specifically, given the price sequence of a stock ticker up to the

current day, we predict if the adjusted close price would be up or down for the next trading

day. Utilizing recurrent architectures, the prediction not only depends on the price of the

current day but also on certain critical information from historical price movements.

As discussed, we implement all experiments Python 2.7.15rc1 with the use of the SASPy

library to execute SAS codes in Python environment. Assuming the SASPy package is

already installed and configured to connect to the user’s SAS server, a SAS session is

started by importing the SASPy library and call the 𝑆𝐴𝑆𝑆𝑒𝑠𝑠𝑖𝑜𝑛 function:

import saspy

#additional packages to process data

import pandas as pd

import numpy as np

6

from IPython.display import HTML

#initialize SAS session

sas = saspy.SASsession()

Here, we also import the Pandas [9] and Numpy [10] packages to use later. Additionally, we

import the HTLM module to show results from SAS code in HTML format. If SASPy is

configured correctly, the users will be required to log in. A successfully initialized session

shows output as showed in Figure 6. The created 𝑠𝑎𝑠 object then represents the SAS session

in Python.

Figure 6. Logging into a SAS Session with Saspy in Jupyter Notebook

With a SAS session established, we begin our analysis with the stock data. All stock data are

obtained from Yahoo! Finance from the beginning of 2008 to the end of 2017. We test our

model using the daily, weekly, and monthly data from six ETFs:

1. SPDR S\P 500 ETF Trust (SPY)

2. SPDR Dow Jones Industrial Average ETF (DIA)

3. iShares US real Estate ETF (IYR)

4. SPDR Gold Shares (GLD)

5. Vanguard Energy ETF (VDE)

6. VanEck Vectors Gold Miners ETF (GDX)

We select the six ETFs in order to cover different types of long-term trends. As shown in

Figure 7, SPY, DIA, and IYR have an overall upward trend; GLD presents an uptrend

followed by a downtrend; VDE develops a long-term consolidation; and GDX demonstrate a

downward trend for the most part of the series.

a) SPY

b) DIA

7

c) IYR d) GLD

e) VDE

f) GDX

Figure 7. The Trends of Experimented Stock Series

Data downloaded from Yahoo! Finance is in CSV format, and the daily, weekly, and monthly

data are in separate files. Unless the data is already available on the SAS server, the users

need to load the downloaded data to the server from their local machine. The code snippet

below loads the downloaded CSV into a Pandas data frame in Python, then use the 𝑑𝑓2𝑠𝑑

method of 𝑠𝑎𝑠 to send them to the server:

daily_pd = pd.read_csv("Daily.csv")

daily = sas.df2sd(daily_pd,table='daily')

weekly_pd = pd.read_csv("Weekly.csv")

weekly = sas.df2sd(weekly_pd,table='weekly')

monthly_pd = pd.read_csv("Monthly.csv")

monthly = sas.df2sd(monthly_pd,table='monthly')

After executing the snippet, the three sets are available in the SAS server as SAS datasets;

their names can be set through the 𝑡𝑎𝑏𝑙𝑒 = argument in the 𝑑𝑓2𝑠𝑑 method. The users can

check the available in a SAS library with the 𝑙𝑖𝑠𝑡_𝑡𝑎𝑏𝑙𝑒𝑠 method. For example, the snippet

below lists all datasets in the WORK library:

sas.list_tables('work')

which shows results as in Figure 8.

Figure 8. Output from the list_table Method

With the data loaded, the users can use different methods or functions available through the

𝑠𝑎𝑠 object to analyze the data with the connected SAS system. Alternatively, the user can

user the 𝑠𝑢𝑏𝑚𝑖𝑡 method of the 𝑠𝑎𝑠 object to directly submit SAS code in Python. For

example, the code snippet below can be run from Python to submit the PRINT procedure in

SAS to display the first five observations of the daily dataset:

c = sas.submit("""

 proc print data=daily (obs=5);

 run;

""")

HTML(c['LST'])

8

The result of the snippet above is identical to results from a PRINT procedure executed in

SAS environment, as showed in Figure 9.

Figure 9. Output of the PRINT Procedure Called in Python through Saspy

Our task is to predict if the adjusted close price of the next day is up or down. For this

purpose, we label each day in the training sequence as "Up" if the adjusted close of its next

day is higher than its current adjusted close price; otherwise, we label it as "Down". We use

18 input features to describe each day, which include open, close, highest, lowest, adjusted

close, and volume, of the current day, current week, and current month. The code snippet

below modifies the imported data from Pandas, then sort and merge them into a dataset

named “𝑎𝑙𝑙” that contains all daily, weekly, and monthly information:

c = sas.submit("""

/**Import data and rename daily, weekly, and monthly data**/

data daily;

 set daily;

 date_num = input(date, yymmdd10.);

 format date_num yymmdd10.;

 rename open = open_d close = close_d high = high_d low = low_d

 'adj close'n = adjclose_d volume = volume_d;

data weekly;

 set weekly;

 date_num = input(date, yymmdd10.);

 format date_num yymmdd10.;

 rename open = open_w close = close_w high = high_w low = low_w

 'adj close'n = adjclose_w volume = volume_w;

data monthly;

 set monthly;

 date_num = input(date, yymmdd10.);

 format date_num yymmdd10.;

 rename open = open_m close = close_m high = high_m low = low_m

 'adj close'n = adjclose_m volume = volume_m;

/**Merge**/

data daily;

 set daily;

 week = WEEK(date_num); month = MONTH(date_num); year = YEAR(date_num);

proc sort data=daily; by year week;

data weekly;

 set weekly;

 week = WEEK(date_num); month = MONTH(date_num); year = YEAR(date_num);

proc sort data=weekly; by year week;

data monthly;

 set monthly;

 week = WEEK(date_num); month = MONTH(date_num); year = YEAR(date_num);

proc sort data=monthly; by year month ;

data all;

9

 merge daily weekly; by year week;

proc sort data=all; by year month;

data all;

 merge all monthly; by year month; """)

Given that the stock price can change dramatically over a long-term period, in order to

avoid the sharp differences in the input values of any two given days, we use the

differences of current day's values and previous day's values as the input values for each

feature. This is done with the code snippet below:

c = sas.submit("""

/**Get Difference**/

data diff;

 set all;

 open_d = dif(open_d); close_d = dif(close_d);

 high_d = dif(high_d); low_d = dif(low_d);

 adjclose_d = dif(adjclose_d); volume_d = dif(volume_d);

 open_w = dif(open_w); close_w = dif(close_w);

 high_w = dif(high_w); low_w = dif(low_w);

 adjclose_w = dif(adjclose_w); volume_w = dif(volume_w);

 open_m = dif(open_m); close_m = dif(close_m);

 high_m = dif(high_m); low_m = dif(low_m);

 adjclose_m = dif(adjclose_m); volume_m = dif(volume_m);

 ;

""")

Next, we generate the labels for the data and merge them with the differenced features to

form a master dataset, then standardizing all features:

c = sas.submit("""

/**Get Label**/

data Y;

 set diff;

 date_num = lag(date_num);

 if adjclose_d > 0

 then y = 1;

 else y = 0;

 keep date_num y;

proc sort data=diff; by date_num;

proc sort data=y; by date_num;

data master;

 merge diff y; by date_num;

proc standard data=master mean=0 std=1 out=master_std;

 var open_d close_d high_d low_d adjclose_d volume_d

 open_w close_w high_w low_w adjclose_w volume_w

 open_m close_m high_m low_m adjclose_m volume_m;

""")

Finally, the processed dataset in SAS can be loaded back to the local Python system with

the 𝑠𝑎𝑠𝑑𝑎𝑡𝑎2𝑑𝑎𝑡𝑎𝑓𝑟𝑎𝑚𝑒 method of the 𝑠𝑎𝑠 object:

data = sas.sasdata2dataframe('master_std')

In Python, we split data from 2008 to 2016 to for training, and data in 2017 for testing; the

training set is further split into training (2008 to 2015) and validation (2016) for

determining early stop of the training:

10

in_list = ['open_d', 'high_d', 'low_d', 'close_d', 'adjclose_d',

 'volume_d', 'open_w', 'high_w', 'low_w', 'close_w',

 'adjclose_w', 'volume_w', 'open_m', 'high_m',

 'low_m', 'close_m', 'adjclose_m', 'volume_m']

X = data[['date_num'] + in_list]

y = data[['date_num','y']]

trainX = X[X['date_num']<'01-01-2015'][in_list].values

validX = X[(X['date_num']>='01-01-2015') & (X['date_num']<='01-01-

2016')][in_list].values

testX = X[X['date_num']>='01-01-2017'][in_list].values

trainY = y[y['date_num']<'01-01-2015']['y'].values

validY = y[(y['date_num']>='01-01-2015') & (y['date_num']<='01-01-

2016')]['y'].values

testY = y[y['date_num']>='01-01-2017']['y'].values

We train REK's using the discussed strategy. The REK that is used in all experiments

includes a two-layer REN (with 36 hidden neurons each layer), and a three-layer KN (one

hidden layer of 36 neurons and one output neuron). LSTM and GRU models have 36 hidden

neurons. Vanilla RNN models have two hidden layers of 36 neurons. All referenced models

use Softmax for decision making. All models are trained with decaying learning rates

starting from 0.1. We then decrease the learning rates by a factor of 10 when training cost

begins to heavily fluctuate among adjacent epochs. Model training is controlled using early

stopping with validation accuracy. The last model with highest validation accuracy is then

fitted on the testing data to obtain the testing accuracy. All models use ReLU activation,

except for LSTM that uses tanh, because ReLU LSTMs explode rapidly in our experiments.

Table 1 shows the testing performance of all models on each ETF. We also include the

percentage of actual Up days in the testing data in the second column of Table 1.

Table 1. Classification Accuracy of Tested Models

Data % Up REK RNN GRU LSTM

SPY 57.32 71.43 67.55 69.11 69.11

DIA 61.45 71.89 67.55 70.27 68.07

IYR 53.01 70.06 67.47 65.86 69.08

GLD 56.63 70.28 67.46 66.36 70.04

VDE 47.79 71.89 64.23 69.88 70.28

GDX 50.6 67.47 61.45 55.02 60.24

We are not including the Python code to build, train, and test, the deep models in this paper

since they are implemented in Theano which is a low-level deep learning package. More

specifically, building a deep network in Theano requires processes such as initializing all

variables and parameters, building their computational flow, and manually execute Gradient

Descent, to be done manually. Therefore, the Theano code for each of these models is

relatively complicated and might not be of interests to the general users. With the purpose

of using common deep learning models at the application level, we recommend the uses of

high-level deep learning tools like TensorFlow [11], Keras [12], or PyTorch [13]. In such

packages, the users can quickly generate a network with pre-defined functions where

hyper-parameters like network types, number of layers, layer types, etc., are directly input.

11

CONCLUSION

In this paper, we showcase an analysis that is done with a combination of SAS and Python

with the aids of the saspy package. In more details, saspy connects a Python session to a

SAS server, and allows users to submit SAS code and use the server backend in their

Python session. Based on each tool’s advantages, we use SAS to preprocess the data, and

Python to build and fit deep learning models, on the task of predicting daily stock price

direction.

This paper can also be used as a general case study of connecting between a SAS session

and a Python session to utilize their different toolboxes. For example, SAS statistical

modeling, or Python machine learning packages (e.g. Sci-kit Learn [14]).

REFERENCES

[1] LeCun, Yann, Yoshua Bengio, et al. (1995). “Convolutional networks for images,

speech, and time series”. In: The handbook of brain theory and neural networks

3361.10, p. 1995.

[2] Funahashi, Ken-ichi and Yuichi Nakamura (1993). “Approximation of dynamical

systems by continuous time recurrent neural networks”. In: Neural networks 6.6, pp.

801–806.

[3] Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In:

Neural computation 9.8, pp. 1735–1780.

[4] Chung, Junyoung et al. (2014). “Empirical evaluation of gated recurrent neural

networks on sequence modeling”. In: arXiv preprint arXiv:1412.3555.

[5] Le, Linh and Ying Xie (2018). “Recurrent Embedding Kernel for Predicting Stock Daily

Direction”. In: 2018 IEEE/ACM 5rd International Conference on Big Data Computing

Applications and Technologies (BDCAT).

[6] Saspy 2.4.3 Documentation, sassoftware.github.io/saspy/.

[7] Bergstra, James et al. (2010). “Theano:ACPU and GPU math compiler in Python”. In:

Proc. 9th Python in Science Conf, pp. 1–7.

[8] Schmidhuber, Jürgen (2015). “Deep learning in neural networks: An overview”. In:

Neural networks 61, pp. 85–117.

[9] McKinney, W. (2011). pandas: a foundational Python library for data analysis and

statistics. Python for High Performance and Scientific Computing, 14.

[10] Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: a

structure for efficient numerical computation. Computing in Science & Engineering,

13(2), 22.

[11] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016).

Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium

on Operating Systems Design and Implementation ({OSDI} 16) (pp. 265-283).

[12] Gulli, A., & Pal, S. (2017). Deep Learning with Keras. Packt Publishing Ltd.

[13] Ketkar, N. (2017). Introduction to pytorch. In Deep learning with python (pp. 195-

208). Apress, Berkeley, CA.

[14] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... &

Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of machine

learning research, 12(Oct), 2825-2830.

12

CONTACT INFORMATION

Linh Le

Institute of Analytics and Data Science

Kennesaw State University

lle12@students.kennesaw.edu

